Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381:142–51.
Article
PubMed
PubMed Central
Google Scholar
Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11.
Article
PubMed
PubMed Central
Google Scholar
Traeger-Synodinos J, Vrettou C, Kanavakis E. Rapid detection of fetal Mendelian disorders: thalassemia and sickle cell syndromes. Methods Mol Biol. 2008;444:133–45.
Article
CAS
PubMed
Google Scholar
Rivella S. Ineffective erythropoiesis and thalassemias. Curr Opin Hematol. 2009;16:187–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vichinsky EP. Clinical manifestations of α-thalassemia. Cold Spring Harb Perspect Med. 2013;3:a011742.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu H, Wang H, Lan L, Zeng M, Guo W, Zheng Z, et al. Invasive molecular prenatal diagnosis of alpha and beta thalassemia among Hakka pregnant women. Medicine (Baltimore). 2018;97:e13557.
Article
Google Scholar
O’Shea LC, Fair T, Hensey C. X-linked α-thalassemia with mental retardation is downstream of protein kinase a in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damage. Biol Reprod. 2019;100:1238–49.
Article
PubMed
Google Scholar
Cavazzana M, Antoniani С, Miccio A. Gene therapy for β-hemoglobinopathies. Mol Ther. 2017;25:1142–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Kruger C, Dittgen T, et al. Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab. 2009;29:585–95.
Article
CAS
PubMed
Google Scholar
Ohyagi Y, Yamada T, Goto I. Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res. 1994;635:323–7.
Article
CAS
PubMed
Google Scholar
Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, et al. Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A. 2009;106:15454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, et al. An anemia of Alzheimer's disease. Mol Psychiatry. 2014;19:1227–34.
Article
CAS
PubMed
Google Scholar
Chen SH, Bu XL, Jin WS, Shen LL, Wang J, Zhuang ZQ, et al. Altered peripheral profile of blood cells in Alzheimer disease: A hospital-based case-control study. Medicine (Baltimore). 2017;96:e6843.
Article
CAS
Google Scholar
Altinoz MA, Ince B. Hemoglobins emerging roles in mental disorders. Metabolical, genetical and immunological aspects. Int J Dev Neurosci. 2017;61:73–85.
Article
CAS
PubMed
Google Scholar
Collins PY, Pate V, Joestl SS, March D, Inse TR, Collins PY, et al. Grand challenges in global mental health. Nature. 2011;475:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cassidy F, Zhao C, Badger J, Claffey E, Dobrin S, Roche S. Genome-wide scan of bipolar disorder and investigation of population stratification effects on linkage: support for susceptibility loci at 4q21, 7q36, 9p21, 12q24, 14q24, and 16p13. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:791–801.
Article
CAS
PubMed
Google Scholar
Kramer AH, Zygun DA. Anemia and red blood cell transfusion in neurocritical care. Crit Care. 2009;13:R89.
Article
PubMed
PubMed Central
Google Scholar
Ihle-Hansen H, Thommessen B, Wyller T,·Engedal K,·Oksengard AR, Engedal K, et al. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment. Dement Geriatr Cogn Disord 2011; 32: 401–407.
Article
PubMed
Google Scholar
Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol. 2008;64:168–76.
Article
PubMed
PubMed Central
Google Scholar
Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348:1215–22.
Article
PubMed
Google Scholar
Droge W, Schipper HM. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell. 2007;6:361–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah RC, Wilson RS, Tang Y, Dong X, Murray A, Bennett DA. Relation of hemoglobin to level of cognitive function in older persons. Neuroepidemiology. 2009;32:40–6.
Article
PubMed
Google Scholar
Deadmond MA, Smith-Gagen JA. Changing incidence of myeloproliferative neoplasms: trends and subgroup risk profiles in the USA, 1973–2011. J Cancer Res Clin Oncol. 2015;141:2131–8.
Article
PubMed
Google Scholar
Savinkova LK, Ponomarenko MP, Ponomarenko PM, Drachkova IA, Lysova MV, Arshinova TV, et al. TATA box polymorphisms in human gene promoters and associated hereditary pathologies. Biochemistry (Mosc). 2009;74:117–29.
Article
CAS
Google Scholar
Ponomarenko PM, Savinkova LK, Drachkova IA, Lysova MV, Arshinova TV, Ponomarenko MP, et al. A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Dokl Biochem Biophys. 2008;419:88–92.
Article
CAS
PubMed
Google Scholar
Savinkova L, Drachkova I, Arshinova T, Ponomarenko P, Ponomarenko M, Kolchanov N. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein. PLoS One. 2013;8:e54626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drachkova I, Savinkova L, Arshinova T, Ponomarenko M, Peltek S, Kolchanov N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum Mutat. 2014;35:601–8.
Article
CAS
PubMed
Google Scholar
Colonna V, Ayub Q, Chen Y, Pagani L, Luisi P, Pybus M, et al. Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. Genome Biol. 2014;15:R88.
Article
PubMed
PubMed Central
Google Scholar
Telenti A, Pierce LC, Biggs WH, di Iulio J, Wong EH, Fabani MM, et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci USA. 2016;113:11901–6.
Article
CAS
PubMed
Google Scholar
Wu J, Wu M, Li L, Liu Z, Zeng W, Jiang R. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions. Database (Oxford). 2016;2016:baw024.
Article
CAS
Google Scholar
Sharypova E, Drachkova I, Kashina E, Rasskazov D, Ponomarenko P, Ponomarenko M, et al. An experimental study of the effect of rare polymorphisms of human HBB, HBD and F9 promoter TATA boxes on the kinetics of interaction with the TATA-binding protein. Vavilovskii Zhurnal Genetiki i Selektsii. 2018;22:145–52.
Google Scholar
Delgadillo R, Whittington J, Parkhurst L, Parkhurst L. The TBP core domain in solution variably bends TATA sequences via a three-step binding mechanism. Biochemistry. 2009;48:1801–9.
Article
CAS
PubMed
Google Scholar
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, et al. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2018;9:0.
Article
CAS
Google Scholar
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, et al. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2016;17:995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ponomarenko P, Chadaeva I, Rasskazov DA, Sharypova E, Kashina EV, Drachkova I, et al. Candidate SNP markers of familial and sporadic Alzheimer’s diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. Front Aging Neurosci. 2017;9:231.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arkova OV, Ponomarenko MP, Rasskazov DA, Drachkova IA, Arshinova TV, Ponomarenko PM, et al. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2015;16:S5.
Article
PubMed
PubMed Central
Google Scholar
Ponomarenko P, Rasskazov D, Suslov V, Sharypova E, Savinkova L, Podkolodnaya O, et al. Candidate SNP markers of chronopathologies are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. Biomed Res Int. 2016;2016:8642703.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haeussler M, Raney BJ, Hinrichs AS, Clawson H, Zweig AS, Karolchik D, et al. Navigating protected genomics data with UCSC genome browser in a box. Bioinformatics. 2015;31:764–6.
Article
CAS
PubMed
Google Scholar
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drachkova IA, Repkova MN, Lysova MV, Arshinova TV, Savinkova LK. Interaction of proteins from general transcription complex RNA polymerase II with oligoribonucleotides. Mol Biol (Mosk). 2005;39:139–46.
Article
CAS
Google Scholar
Peterson MG, Tanese N, Pugh BF, Tjian R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science. 1990;248:1625–30.
Article
CAS
PubMed
Google Scholar
Pugh BF. Purification of the human TATA-binding protein, TBP. Methods Mol Biol. 1995;37:359–67.
CAS
PubMed
Google Scholar
Waardenberg AJ, Basset SD, Bouveret R, Harvey RP. CompGO: an R package for comparing and visualizing gene ontology enrichment differences between DNA binding experiments. BMC Bioinformatics. 2015;16:275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Levings PP, Bungert J. The human beta-globin locus control region. Eur J Biochem. 2002;269:1589–99.
Article
CAS
PubMed
Google Scholar
Higgs DR, Engel JD, Stamatoyannopoulos G. Thalassaemia. Lancet. 2012;379:373–83.
Article
CAS
PubMed
Google Scholar
Thein SL. Genetic association studies in β-hemoglobinopathies. Hematology Am Soc Hematol Educ Program. 2013;2013:354–61.
Article
PubMed
Google Scholar
Martiney JA, Cerami A, Slater AF. Inhibition of hemozoin formation in plasmodium falciparum trophozoite extracte by heme analogs: possible implication in the resistance to malaria conferred by the beta-thalassemia trait. Mol Med. 1996;2:236–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eng B, Walker L, Nakamura LM, Hoppe C, Azimi M, Lee H, Waye JS. Three new beta-globin gene promoter mutations identified through newborn screening. Hemoglobin. 2007;31:129–34.
Article
CAS
PubMed
Google Scholar
He Z, Russell JE. Expression, purification, and characterization of human hemoglobins Gower-1 (zeta (2) epsilon (2)), Gower-2 (alpha (2) epsilon (2)), and Portland-2 (zeta (2) beta (2)) assembled in complex transgenic-knockout mice. Blood. 2001;97:1099–105.
Article
CAS
PubMed
Google Scholar
Sabath DE, Detter JC, Tait JF. A novel deletion of the entire a globin locus causing a -thalassemia-1 in a northern European family. Am J Clin Pathol. 1994;102:650.
Article
CAS
PubMed
Google Scholar
Ko TM, Tseng LH, Kao CH, Lin YW, Hwa HL, Hsu PM, et al. Molecular characterization and PCR diagnosis of Thailand deletion of alpha-globin gene cluster. Am J Hematol. 1998;57:124–30.
Article
CAS
PubMed
Google Scholar
Lanclos KD, Oner C, Dimovski AJ, Gu YC, Huisman TH. Sequence variations in the 5′ flanking and IVS-II regions of the G gamma- and a gamma-globin genes of beta S chromosomes with five different haplotypes. Blood. 1991;77:2488–96.
Article
CAS
PubMed
Google Scholar
Winter SS, Kinney TR, Ware RE. Gallbladder sludge in children with sickle cell disease. J Pediatr. 1994;125:747–9.
Article
CAS
PubMed
Google Scholar
Guberman AS, Scassa ME, Cánepa ET. Repression of 5-aminolevulinate synthase gene by the potent tumor promoter, TPA, involves multiple signal transduction pathways. Arch Biochem Biophys. 2005;436:285–96.
Article
CAS
PubMed
Google Scholar
Thunell S. Porphyrins, porphyrin metabolism and porphyrias. I. Update. Scand J Clin Lab Invest. 2000;60:509–54.
Article
CAS
PubMed
Google Scholar
Sassa S, Nagai T. The role of heme in gene expression. Int J Hematol. 1996;63:167–78.
Article
CAS
PubMed
Google Scholar
Cox EH, McLendon GL, Morel FMM, Lane TW, Prince RC, Pickering IJ, et al. The active site structure of Thalassiosira weissflogii carbonic anhydrase. Biochemistry. 2000;39:12128–30.
Article
CAS
PubMed
Google Scholar
Vulic R, Tyciakova S, Dubrovcakova M, Skultety L, Lakota J. Silencing of CA1 mRNA in tumour cells does not change the gene expression of the extracellular matrix proteins. J Cell Mol Med. 2018;22:695–9.
Article
CAS
PubMed
Google Scholar
Lolak N, Akocak S, Rajesh S, Sanku R, Supuran C. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg Med Chem. 2019;15(27):1588–94.
Article
CAS
Google Scholar
Gambhir KK, Ornasir J, Headings V, Bonar A. Decreased total carbonic anhydrase esterase activity and decreased levels of carbonic anhydrase 1 isozyme in erythrocytes of type II diabetic patients. Biochem Genet. 2007;45:431–9.
Article
CAS
PubMed
Google Scholar
Ostrowski D, Heinrich R. Alternative erythropoietin receptors in the nervous system. J Clin Med. 2018;7:E24.
Article
PubMed
CAS
Google Scholar
Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990;248:378–81.
Article
CAS
PubMed
Google Scholar
Bento C. Genetic basis of congenital erythrocytosis. Int J Lab Hematol. 2018;40:62–7.
Article
PubMed
Google Scholar
Vocanec D, Prijatelj T, Debeljak N, Kunej T. Genetic variants of erythropoietin (EPO) and EPO receptor genes in familial erythrocytosis. Int J Lab Hematol. 2019;41:162–7.
Article
PubMed
Google Scholar
Dame C, Juul SE, Christensen RD. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate. 2001;79:228–35.
Article
CAS
PubMed
Google Scholar
Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, et al. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci. 1996;8:666–76.
Article
CAS
PubMed
Google Scholar
Wilder JA, Hewett EK, Gansner ME. Molecular evolution of GYPC: evidence for recent structural innovation and positive selection in humans. Mol Biol Evol. 2009;26:2679–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rukova B, Staneva R, Hadjidekova S, Stamenov G, Milanova 5th, Toncheva D. Genome-wide methylation profiling of schizophrenia Balkan. J Med Genet. 2015;17:15–23.
Google Scholar
Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 1990;212:563–78.
Article
CAS
PubMed
Google Scholar
Stewart JJ, Fischback JA, Chen X, Stargell LA. Non optimal TATA element exibits diverse mechanistic consequences. J Biol Chem. 2006;281:22665–73.
Article
CAS
PubMed
Google Scholar
Stewart JJ, Stargell LA. The stability of the TFIIA-TBP-DNA complex dependent on the sequence of the TATAAA element. Biol Chem. 2001;276:30078–84.
Article
CAS
Google Scholar
Wobbe CR, Struhl K. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol. 1990;10:3859–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faiger H, Ivanchenko M, Cohen I, Haran TE. TBP flanking sequences: asymmetry of binding, long-range effects and consensus sequences. Nucleic Acids Res. 2006;34:104–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savinkova LK, Drachkova IA, Ponomarenko MP, Lysova MV, Arshinova T, Kolchanov NA. Interaction between the recombinant TATA-binding protein and the TATA-boxes of the mammalian gene promoters. Ecological Genetic. 2007;V:44–9.
Article
Google Scholar
Chen RL, Chou YC, Lan YJ, Huang TS, Shen CK. Developmental silencing of human zeta-globin gene expression is mediated by the transcriptional repressor RREB1. J Biol Chem. 2010;285:10189–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murayama H, Shinkai S, Nishi M, Taniguchi Y, Amano H, Seino S, et al. Albumin, hemoglobin, and the trajectory of cognitive function in community-dwelling older japanese: a 13-year longitudinal study. J Prev Alzheimers Dis. 2017;4:93–9.
CAS
PubMed
Google Scholar
İnce B, Guloksuz S, Altınbaş K, Oral ET, Alpkan LR, Altinoz MA. Minor hemoglobins HbA2 and HbF associate with disease severity in bipolar disorder with a likely protective role of HbA2 against post-partum episodes. J Affect Disord. 2013;151:405–8.
Article
PubMed
CAS
Google Scholar
Mangin O. High oxygen affinity hemoglobins. Rev Rev Med Interne. 2017;38:106–12.
Article
CAS
PubMed
Google Scholar
Marvasti VE, Dastoori P, Karimi M. Is beta-thalassemia trait a risk factor for developing depression in young adults. Ann Hematol. 2006;85:873–4.
Article
PubMed
Google Scholar
Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in eastern Quebec families. Mol Psychiatry. 2005;10:486–99.
Article
CAS
PubMed
Google Scholar
He Z, Russell JE. Anti-sickling effects of an endogenous human alpha-like globin. Nat Med. 2004;10:365–7.
Article
CAS
PubMed
Google Scholar
He Z, Lian L, Asakura T, Russell JE. Functional effects of replacing human [alpha] and [beta] globins with their embryonic globin homologues in defined hemoglobin heterotetramers. Br J Haemat. 2000;109:882–90.
Article
CAS
Google Scholar
Russell JE, Liebhaber SA. Reversal of lethal alpha- and beta-thalassemias in mice by expression of human embryonic globins. Blood. 1998;92:3057–63.
Article
CAS
PubMed
Google Scholar
Macias-Velez RJ, Fukushima-Diaz de León L, Beas-Zárate C, Rivera-Cervantes MC. Intranasal erythropoietin protects ca1 hippocampal cells, modulated by specific time pattern molecular changes after ischemic damage in rats. J Mol Neurosci. 2019;68:590–602.
Article
CAS
PubMed
Google Scholar
Winter SS, Howard T, Ware RE. Regulation of expression of the human erythropoietin receptor gene. Blood Cells Mol Dis. 1996;22:214–24.
Article
CAS
PubMed
Google Scholar
Marcuzzi F, Zucchelli S, Bertuzzi M, Santoro C, Tell G, Carninci P, Gustincich S. Isoforms of the erythropoietin receptor in dopaminergic neurons of the Substantia Nigra. J Neurochem. 2016;139:596–609.
Article
CAS
PubMed
Google Scholar
Gao Y, Mengana Y, Cruz YR, Munoz A, Teste IS, Garcia JD, et al. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of neuro-EPO for ischemic insults to the gerbil brain. J Histochem Cytochem. 2011;59:214–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26:1269–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa NDS, Menezes TN, Silva NA, Eulalio MDC, Paiva AA. Prevalence of anemia and correlation between the concentration of hemoglobin and cognitive factors among the elderly. Cien Saude Colet. 2018;23:935–44.
Article
PubMed
Google Scholar
Andro M, Le Squere P, Estivin S, Gentric A. Anaemia and cognitive performances in the elderly: a systematic review. Eur J Neurol. 2013;20:1234–40.
Article
CAS
PubMed
Google Scholar
Ferrer I, Gomez A, Carmona M, Huesa G, Porta S, Riera-Codina M, et al. Neuronal hemoglobin is reduced in Alzheimer’s disease, argyrophilic grain disease, Parkinson’s disease, and dementia with Lewy bodies. J Alzheimers Dis. 2011;23:537–50.
Article
CAS
PubMed
Google Scholar
Bocchetta A, Del Zompo M. Bipolar affective disorder and heterozygous beta-thalassaemia. Am J Psychiatr. 1990;147:1094.
CAS
PubMed
Google Scholar
Bocchetta A. Heterozygous beta-thalassaemia as a susceptibility factor in mood disorders: excessive prevalence in bipolar patients. Clin Pract Epidemiol Ment Health. 2005;1:6.
Article
PubMed
PubMed Central
Google Scholar
Winchester LM, Powell J, Lovestone S, Nevado-Holgado AJ. Red blood cell indices and anaemia as causative factors for cognitivefunction deficits and for Alzheimer's disease. Genome Med. 2018;10:51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shah RC, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology. 2011;77:219–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L, et al. Anemia and risk of dementia in older adults: findings from the health ABC study. Neurology. 2013;81:528–33.
Article
PubMed
PubMed Central
Google Scholar
Atti AR, Palmer K, Volpato S, Zuliani G, Winblad B, Fratiglioni L. Anaemia increases the risk of dementia in cognitively intact elderly. Neurobiol Aging. 2006;27:278–84.
Article
CAS
PubMed
Google Scholar
Ponomarenko M, Rasskazov D, Chadaeva I, Sharypova E, Ponomarenko P, Arkova O, Kashina E, Ivanisenko N, Zhechev D, Savinkova L, Kolchanov N. SNP_TATA_Comparator: genomewide landmarks for preventive personalized medicine. Front Biosci (Schol Ed). 2017;9:276–306.
Article
Google Scholar
Grigor'eva EV, Malankhanova TB, Surumbayeva A, Minina JM, Morozov VV, Abramycheva NY, Illarioshkin SN, Malakhova AA, Zakian SM. Generation of induced pluripotent stem cell line, ICGi007-a, by reprogramming peripheral blood mononuclear cells from a patient with Huntington's disease. Stem Cell Res. 2019;34:101382.
Article
CAS
PubMed
Google Scholar