Goulden R, Hoyle MC, Monis J, et al. qSOFA, SIRS and NEWS for predicting inhospital mortality and ICU admission in emergency admissions treated as sepsis. Emerg Med J. 2018;35(6):345–9.
Article
PubMed
Google Scholar
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monneret G, Venet F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytometry B Clin Cytom. 2016;90(4):376–86.
Article
PubMed
Google Scholar
Fan SL, Miller NS, Lee J, Remick DG. Diagnosing sepsis - the role of laboratory medicine. Clin Chim Acta. 2016;460:203–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Microb Pathog. 2017;107:234–42.
Article
CAS
PubMed
Google Scholar
Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8(8):959–70.
Article
CAS
PubMed
Google Scholar
Cole SW, Arevalo JM, Takahashi R, et al. Computational identification of gene-social environment interaction at the human IL6 locus. Proc Natl Acad Sci U S A. 2010;107(12):5681–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan M, McGuire W. Interleukin-6 (−174C) polymorphism and the risk of sepsis in very low birth weight infants: meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F427–9.
Article
CAS
PubMed
Google Scholar
Gao JW, Zhang AQ, Pan W, et al. Association between IL-6-174G/C polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0118843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allam G, Alsulaimani AA, Alzaharani AK, Nasr A. Neonatal infections in Saudi Arabia: association with cytokine gene polymorphisms. Cent Eur J Immunol. 2015;40(1):68–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao ZR, Zhang SL, Feng B. Association of IL-10 (−819T/C, −592A/C and -1082A/G) and IL-6-174G/C gene polymorphism and the risk of pneumonia-induced sepsis. Biomarkers. 2017;22(2):106–12.
Article
CAS
PubMed
Google Scholar
Feng B, Mao ZR, Pang K, Zhang SL, Li L. Association of tumor necrosis factor alpha -308G/a and interleukin-6 -174G/C gene polymorphism with pneumonia-induced sepsis. J Crit Care. 2015;30(5):920–3.
Article
CAS
PubMed
Google Scholar
Lorente L, Martin MM, Perez-Cejas A, et al. Association between Interleukin-6 Promoter Polymorphism (−174 G/C), Serum Interleukin-6 Levels and Mortality in Severe Septic Patients. Int J Mol Sci. 2016;17(11).pii: E1861.
Jimenez-Sousa MA, Medrano LM, Liu P, et al. IL-6 rs1800795 polymorphism is associated with septic shock-related death in patients who underwent major surgery: a preliminary retrospective study. Ann Intensive Care. 2017;7(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10.
Article
PubMed
Google Scholar
Harding D, Dhamrait S, Millar A, et al. Montgomery H. Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants? Pediatrics. 2003;112(4):800–3.
Article
PubMed
Google Scholar
Barber RC, Aragaki CC, Rivera-Chavez FA, Purdue GF, Hunt JL, Horton JW. TLR4 and TNF-alpha polymorphisms are associated with an increased risk for severe sepsis following burn injury. J Med Genet. 2004;41(11):808–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDaniel DO, Hamilton J, Brock M, et al. Molecular analysis of inflammatory markers in trauma patients at risk of postinjury complications. J Trauma. 2007;63(1):147–58.
Article
CAS
PubMed
Google Scholar
Accardo Palumbo A, Forte GI, Pileri D, et al. Analysis of IL-6, IL-10 and IL-17 genetic polymorphisms as risk factors for sepsis development in burned patients. Burns. 2012;38(2):208–13.
Article
CAS
PubMed
Google Scholar
Carregaro F, Carta A, Cordeiro JA, Lobo SM, Silva EH, Leopoldino AM. Polymorphisms IL10-819 and TLR-2 are potentially associated with sepsis in brazilian patients. Mem Inst Oswaldo Cruz. 2010;105(6):649–56.
Article
CAS
PubMed
Google Scholar
Gopel W, Hartel C, Ahrens P, et al. Interleukin-6-174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun. 2006;7(1):65–8.
Article
CAS
PubMed
Google Scholar
Wetterslev J, Jakobsen JC, Gluud C. Trial Sequential Analysis in systematic. reviews with meta-analysis. BMC Med Res Methodol. 2017;17(1):39.
Article
PubMed
PubMed Central
Google Scholar
Yang MX, Feng K, Zhang HX, et al. Correlation between IL-6 gene polymorphisms and sepsis of Chinese Han population in Henan province. Med J Chin PLA. 2011;36(1):71–2.
CAS
Google Scholar
Shimada T, Oda S, Sadahiro T, et al. Outcome prediction in sepsis combined use of genetic polymorphisms - a study in Japanese population. Cytokine. 2011;54(1):79–84.
Article
CAS
PubMed
Google Scholar
Shalhub S, Junker CE, Imahara SD, Mindrinos MN, Dissanaike S, O'Keefe GE. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma. 2009;66(1):115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reiman M, Kujari H, Ekholm E, et al. Interleukin-6 polymorphism is associated with chorioamnionitis and neonatal infections in preterm infants. J Pediatr. 2008;153(1):19–24.
Article
CAS
PubMed
Google Scholar
Tischendorf JJ, Yagmur E, Scholten D, et al. The interleukin-6 (IL6)-174 G/C promoter genotype is associated with the presence of septic shock and the ex vivo secretion of IL6. Int J Immunogenet. 2007;34(6):413–8.
Article
CAS
PubMed
Google Scholar
Schlüter B, Raufhake C, Erren M, et al. Effect of the interleukin-6 promoter polymorphism (−174G/C) on the incidence and outcome of sepsis. Crit Care Med. 2002;30(1):32–7.
Article
PubMed
Google Scholar
Balding J, Healy CM, Livingstone WJ, et al. Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? Genes Immun. 2003;4(8):533–40.
Article
CAS
PubMed
Google Scholar
Treszl A, Kocsis I, Szathmari M, et al. Genetic variants of TNF-[FC12] a, IL-1beta, IL-4 receptor [FC12]a-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate. 2003;83(4):241–5.
Article
CAS
PubMed
Google Scholar
Ahrens P, Kattner E, Kohler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004;55(4):652–6.
Article
PubMed
Google Scholar
Michalek J, Svetlikova P, Fedora M, et al. Interleukin-6 gene variants and the risk of sepsis development in children. Hum Immunol. 2007;68(9):756–60.
Article
CAS
PubMed
Google Scholar
Sipahi T, Pocan H, Akar N. Effect of various genetic polymorphisms on the incidence and outcome of severe sepsis. Clin Appl Thromb Hemost. 2006;12(1):47–54.
Article
CAS
PubMed
Google Scholar
Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med. 2006;4:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sabeļnikovs O, Ñikitina-Zaķe L, Vanags I. Association of Interleukin 6 promoter polymorphism (−174G/C) with IL-6 level and outcome in severe Sepsis. Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences. 2008;62(4–5):162–4.
Article
CAS
Google Scholar
Sole-Violan J, de Castro F, Garcia-Laorden MI, et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Respir Med. 2010;104(3):440–7.
Article
PubMed
Google Scholar
Davis SM, Clark EA, Nelson LT, Silver RM. The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol. 2010;202(3):308.e1–8.
Article
CAS
Google Scholar
Watanabe E, Zehnbauer BA, Oda S, Sato Y, Hirasawa H, Buchman TG. Tumor necrosis factor −308 polymorphism (rs1800629) is associated with mortality and ventilator duration in 1057 Caucasian patients. Cytokine. 2012;60(1):249–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Loeches I, Sole-Violan J. Rodriguez de Castro F, et al. variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38(2):256–62.
Article
CAS
PubMed
Google Scholar
Abdel-Hady H, El-Naggar M, El-Nady G, Badr R, El-Daker M. Genetic polymorphisms of IL-6–174 and IL-10–1082 in full term neonates with late onset blood stream infections. J Pediatr Infect Dis. 2009;4:357–65.
Google Scholar
Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102(7):1369–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000;275(24):18138–44.
Article
CAS
PubMed
Google Scholar
Kilpinen S, Hulkkonen J, Wang XY, Hurme M. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw. 2001;12(1):62–8.
CAS
PubMed
Google Scholar
Starr ME, Saito M, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation—II: the role of IL-1β in age-dependent IL-6 upregulation in adipose tissue. J Gerontol Ser A Biol Med Sci. 2015;70(12):1508–15.
Article
CAS
Google Scholar
Prusakowski MK, Chen AP. Pediatric Sepsis. Emerg Med Clin North Am. 2017;35(1):123–38.
Article
PubMed
Google Scholar
Lim CS, Zheng S, Kim YS, et al. The −174 G to C polymorphism of interleukin-6 gene is very rare in Koreans. Cytokine. 2002;19(1):52–4.
Article
CAS
PubMed
Google Scholar
Zhai R, Liu G, Yang C, Huang C, Wu C, Christiani DC. The G to C polymorphism. at −174 of the interleukin-6 gene is rare in a Southern Chinese population. Pharmacogenetics. 2001;11(8):699–701.
Article
CAS
PubMed
Google Scholar