Stumvoll MA, Goldstein BA, van Haeften TA. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365:1333–46.
Article
CAS
PubMed
Google Scholar
O’Rahilly SA, Barroso IA, Wareham NA. Genetic factors in type 2 diabetes: the end of the beginning? Science. 2005;307:370–3.
Article
PubMed
Google Scholar
Ashcroft FA, Rorsman PA. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148:1160–71.
Article
CAS
PubMed
Google Scholar
Ayub QA, Moutsianas LA, Chen YA, Panoutsopoulou KA, Colonna VA, Pagani LA, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2014;94:176–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara KA, Shojima NA, Hosoe JA, Kadowaki TA. Genetic architecture of type 2 diabetes. Biochem Biophys Res Commun. 2014;452:213–20.
Article
CAS
PubMed
Google Scholar
Mahajan AA, Go MA, Zhang WA, Below JA, Gaulton KA, Ferreira TA, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44.
Article
CAS
PubMed
Google Scholar
Bartel DA. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
Article
CAS
PubMed
Google Scholar
Erson AA, Petty EA. MicroRNAs in development and disease. Clin Genet. 2008;74:296–306.
Article
CAS
PubMed
Google Scholar
Ryan BA, Robles AA, Harris CA. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bandiera SA, Hatem EA, Lyonnet SA, Henrion-Caude AA. microRNAs in diseases: from candidate to modifier genes. Clin Genet. 2010;77:306–13.
Article
CAS
PubMed
Google Scholar
Mendell JA, Olson EA. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamar PA. Role of regulatory micro RNAs in type 2 diabetes mellitus-related inflammation. Nucleic Acid Ther. 2012;22:289–94.
CAS
PubMed
PubMed Central
Google Scholar
Locke JA, da Silva Xavier GA, Dawe HA, Rutter GA, Harries LA. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia. 2014;57:122–8.
Article
CAS
PubMed
Google Scholar
Liu CA, Rennie WA, Carmack CA, Kanoria SA, Cheng JA, Lu JA, et al. Effects of genetic variations on microRNA: target interactions. Nucleic Acids Res. 2014;42:9543–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO Diabetes Programme, About diabetes, http://www.who.int/diabetes/action_online/basics/en/index1.html Accessed 27 Apr 2015.
Yamakawa-Kobayashi K, Natsume M, Aoki S, Nakano S, Inamori T, Kasezawa N, et al. The combined effect of the T2DM susceptibility genes is an important risk factor for T2DM in non-obese Japanese: a population based case–control study. BMC Med Genet. 2012;13:11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villegas R, Williams SM, Gao YT, Long J, Shi J, Cai H, et al. Genetic variation in the peroxisome proliferator-activated receptor (PPAR) and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families and type 2 diabetes. Ann Hum Genet. 2014;78:23–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bodhini D, Radha V, Deepa R, Ghosh S, Majumder PP, Rao MRS, et al. The G1057D polymorphism of IRS-2 gene and its relationship with obesity in conferring susceptibility to type 2 diabetes in Asian Indians. Int J Obese. 2007;31:97–102.
Article
CAS
Google Scholar
Imamura M, Iwata M, Maegawa H, Watada H, Hirose H, Tanaka Y, et al. Genetic variants at CDC123/CAMK1D and SPRY2 are associated with susceptibility to type 2 diabetes in the Japanese population. Diabetologia. 2011;54:3071–7.
Article
CAS
PubMed
Google Scholar
Liu CA, Zhang FA, Li TA, Lu MA, Wang LA, Yue WA, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics. 2012;13:661.
Article
CAS
PubMed
PubMed Central
Google Scholar
MirSNP; A collection of human SNPs in predicted miRNA target sites: Peking University, China. 2012 http://bioinfo.bjmu.edu.cn/mirsnp/search/ Accessed 24 August 2015.
Bhattacharya AA, Ziebarth JA, Cui YA. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 2014;42:D86–91.
Article
CAS
PubMed
Google Scholar
PolymiRTS Database 3.0: University of Tennessee Health Science Center, TN. 2013. http://compbio.uthsc.edu/miRSNP/ Accessed 30 Apr 2015.
Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33:254–63.
Article
CAS
PubMed
Google Scholar
miRNASNP: Huazhong University of Science and Technology, China. 2014. http://bioinfo.life.hust.edu.cn/miRNASNP2/ Accessed 30 Apr 2015.
QUANTO Version 1.2: by Jim Gauderman, Ph.D. and John Morrison, M.S. University of Southern California http://biostats.usc.edu/software.html Accessed 27 July 2015.
Cereghini SA. Liver-enriched transcription factors and hepatocyte. FASEB J. 1996;10:267–82.
CAS
PubMed
Google Scholar
Edghill EA, Bingham CA, Ellard SA, Hattersley AA. Mutations in hepatocyte nuclear factor-1β and their related phenotypes. J Med Genet. 2006;43:84–90.
Article
CAS
PubMed
Google Scholar
Coffinier CA, Thepot DA, Babinet CA, Yaniv MA, Barra JA. Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development. 1999;126:4785–94.
CAS
PubMed
Google Scholar
Maestro MA, Boj SA, Luco RA, Pierreux CA, Cabedo JA, Servitja JA, et al. Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet. 2003;12:3307–14.
Article
CAS
PubMed
Google Scholar
Servitja JA, Ferrer JA. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia. 2004;47:597–613.
Article
CAS
PubMed
Google Scholar
Horikawa YA, Iwasaki NA, Hara MA, Furuta HA, Hinokio YA, Cockburn BA, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2). Nat Genet. 1997;17:384–5.
Article
CAS
PubMed
Google Scholar
Fajans SA, Bell GA, Polonsky KA. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001;345:971–80.
Article
CAS
PubMed
Google Scholar
Fajans SA, Bell GA. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011;34:1878–84.
Article
PubMed
PubMed Central
Google Scholar
Yamagata K. Regulation of pancreatic beta-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY). Endocrine J. 2003;50:491–9.
Article
CAS
Google Scholar
Prokopenko IA, McCarthy MA, Lindgren CA. Type 2 diabetes: new genes, new understanding. Trends Genet. 2008;24:613–21.
Article
CAS
PubMed
Google Scholar
Billings LA, Florez JA. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XA, Qiao HA, Zhao YA, Wang XA, Sun HA, Liu AA, et al. Association of single nucleotide polymorphisms in TCF2 with type 2 diabetes susceptibility in a Han Chinese population. PLoS One. 2012;7, e52938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kornfeld JA, Baitzel CA, Konner AA, Nicholls HA, Vogt MA, Herrmanns KA, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494:111–15.
Article
CAS
PubMed
Google Scholar
Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metabol. 2007;18:393–400.
Article
CAS
Google Scholar
Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, et al. miR-214 targets ATF4 to inhibit bone formation. Nature Med. 2013;19:93–100.
Article
PubMed
Google Scholar
Tian Q, Liang L, Ding J, Zha R, Shi H, Wang Q, et al. MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma. PloS One. 2012;7, e48958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshiuchi I, Yamagata K, Zhu Q, Tamada I, Takahashi Y, Onigata K, et al. Identification of a gain-of-function mutation in the HNF-1beta gene in a Japanese family with MODY. Diabetologia. 2002;45:154–5.
Article
CAS
PubMed
Google Scholar
Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303:1378–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni RN, Kahn CR. Molecular biology. HNFs-linking the liver and pancreatic islets in diabetes. Science. 2004;303:1311–12.
Article
CAS
PubMed
Google Scholar