Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet. 2011;89(2):241–52. https://doi.org/10.1016/j.ajhg.2011.07.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta. 2013;1832(11):1795–800. https://doi.org/10.1016/j.bbadis.2012.08.012.
Article
PubMed
CAS
Google Scholar
Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol. 2003;62(1):1–13.
Article
PubMed
Google Scholar
Mole SE, Williams R, Goebel HH. The neuronal ceroid Lipofuscinoses (batten disease). Oxford: Oxford University Press; 2011.
Google Scholar
NCL mutation and patient Database https://www.ucl.ac.uk/ncl/mutation.shtml. Accessed 1 June 2018.
Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology. 2012;79(2):183–91. https://doi.org/10.1212/WNL.0b013e31825f0547.
Article
PubMed
Google Scholar
Mole SE, Williams RE. Neuronal Ceroid-Lipofuscinoses. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2001. p. 1993–2018.
Google Scholar
Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD, et al. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet. 2007;81(1):136–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Topçu M, Tan H, Yalnizoğlu D, Usubütün A, Saatçi I, Aynaci M, et al. Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: clinical, neurophysiological, neuroradiological and histopathologic studies. Turk J Pediatr. 2004;46(1):1–10.
PubMed
Google Scholar
Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J, Topcu M, et al. Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain. 2009;132(Pt 3):810–9. https://doi.org/10.1093/brain/awn366.
Article
PubMed
Google Scholar
Stogmann E, El Tawil S, Wagenstaller J, Gaber A, Edris S, Abdelhady A, et al. A novel mutation in the MFSD8 gene in late infantile neuronal ceroid lipofuscinosis. Neurogenetics. 2009;10(1):73–7. https://doi.org/10.1007/s10048-008-0153-1.
Article
PubMed
CAS
Google Scholar
Siintola E, Topcu M, Kohlschütter A, Salonen T, Joensuu T, Anttonen AK, et al. Two novel CLN6 mutations in variant late-infantile neuronal ceroid lipofuscinosis patients of Turkish origin. Clin Genet. 2005;68(2):167–73.
Article
PubMed
CAS
Google Scholar
Ranta S, Topcu M, Tegelberg S, Tan H, Ustübütün A, Saatci I, et al. Variant late infantile neuronal ceroid lipofuscinosis in a subset of Turkish patients is allelic to northern epilepsy. Hum Mutat. 2004;23(4):300–5.
Article
PubMed
CAS
Google Scholar
Mandel H, Cohen Katsanelson K, Khayat M, Chervinsky I, Vladovski E, Iancu TC, et al. Clinico-pathological manifestations of variant late infantile neuronal ceroid lipofuscinosis (vLINCL) caused by a novel mutation in MFSD8 gene. Eur J Med Genet. 2014;57(11–12):607–12. https://doi.org/10.1016/j.ejmg.2014.09.004.
Article
PubMed
Google Scholar
Craiu D, Dragostin O, Dica A, Hoffman-Zacharska D, Gos M, Bastian AE, et al. Rett-like onset in late-infantile neuronal ceroid lipofuscinosis (CLN7) caused by compound heterozygous mutation in the MFSD8 gene and review of the literature data on clinical onset signs. Eur J Paediatr Neurol. 2015;19(1):78–86. https://doi.org/10.1016/j.ejpn.2014.07.008.
Article
PubMed
Google Scholar
Santavuori P, Haltia M, Rapola J. Infantile type of so-called neuronal ceroid-lipofuscinosis. Dev Med Child Neurol. 1974;16(5):644–53.
Article
PubMed
CAS
Google Scholar
Inoue E, Watanabe Y, Xing J, Kushima I, Egawa J, Okuda S, et al. Resequencing and association analysis of CLN8 with autism Spectrum disorder in a Japanese population. PLoS One. 2015;10(12):e0144624. https://doi.org/10.1371/journal.pone.0144624.
Article
PubMed
PubMed Central
CAS
Google Scholar
Valadares ER, Pizarro MX, Oliveira LR, Caldas de Amorim RH, Magalhães Pinheiro TM, Grieben U, et al. Juvenile neuronal ceroid-lipofuscinosis: clinical and molecular investigation in a large family in Brazil. Arq Neuropsiquiatr. 2011;69(1):13–8.
Article
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:10–2.
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 1 June 2018.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;11(1110):11.10.1–11.10.33.
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar
Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human non-synonymous and splice site SNVs. Hum Mutat. 2016;37(3):235–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
ClinVar. http://www.ncbi.nlm.nih.gov/clinvar/. Accessed 1 June 2018.
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(Database issue):D862–8.
Article
PubMed
CAS
Google Scholar
OMIM database (Online Mendelian Inheritance in Man). https://omim.org/. Accessed 1 June 2018.
The Human Gene Mutation Database http://www.hgmd.cf.ac.uk/ac/gene.php?gene=CTNS. Accessed 1 June 2018.
Ng PC, Henikoff SSIFT. Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
PolyPhen-2 (Polymorphism Phenotyping v2). http://genetics.bwh.harvard.edu/pph2/. Accessed 1 June 2018.
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit7.20. doi: https://doi.org/10.1002/0471142905.hg0720s76.
1000Genomes project. http://browser.1000genomes.org/index.html. Accessed 1 June 2018.
1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
Article
CAS
Google Scholar
ExAC (Exome Aggregation Consortium). http://exac.broadinstitute.org/. Accessed 1 June 2018.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23.
Article
PubMed
PubMed Central
Google Scholar
Talevich E, Shain AH, Botton T, Bastian BCCNV. Genome-wide copy number detection and visualization from targeted sequencing. PLoS Comput Biol. 2014;12(4):e1004873.
Article
CAS
Google Scholar
Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay. Cell. 1999;96(3):307–10.
Article
PubMed
CAS
Google Scholar
Aiello C, Terracciano A, Simonati A, Discepoli G, Cannelli N, Claps D, et al. Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis. Hum Mutat. 2009;30(3):E530–40. https://doi.org/10.1002/humu.20975.
Article
PubMed
Google Scholar
Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34.
PubMed
PubMed Central
CAS
Google Scholar
Sharifi A, Kousi M, Sagné C, Bellenchi GC, Morel L, Darmon M, et al. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet. 2010;19(22):4497–514. https://doi.org/10.1093/hmg/ddq381.
Article
PubMed
PubMed Central
CAS
Google Scholar