Oley C, Baraitser M. Blepharophimosis, ptosis, epicanthus inversus syndrome (BPES syndrome). J Med Genet. 1988;25(1):47–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zlotogora J, Sagi M, Cohen T. The blepharophimosis, ptosis and epicanthus inversus syndrome: delineation of two types. Am J Hum Genet. 1983;35:1020–7.
CAS
PubMed
PubMed Central
Google Scholar
Fukushima Y, Wakui K, Nishida T, Ueoka Y. Blepharophimosis sequence and de novo balanced autosomal translocation [46, XY, t (3; 4) (q23p15.2)]: possible assignment of the trait to 3q23. Med. Genet. 1991;40:485–7.
CAS
Google Scholar
Fryns JP, Stromme P, van den Berghe H. Further evidence for the location of the blepharophimosis syndrome (BPES) at 3q22.3-q23. Clin Genet. 1993;44(3):149–51.
Article
CAS
PubMed
Google Scholar
Small KW, Stalvey M, Fisher L, Mullen L, Dickel C, Beadles K, et al. Blepharophimosis syndrome is linked to chromosome 3q. Hum Mol Genet. 1995;4:443–8.
Article
CAS
PubMed
Google Scholar
Boccone L, Meloni A, Falchi AM, Usai V, Cao A. Blepharophimosis, ptosis, epicanthus inversus syndrome, a new case associated with de novo balanced autosomal translocation [46, XY, t(3;7)(q23;q32)]. Am J Med Genet. 1994;51(3):258–9.
Article
CAS
PubMed
Google Scholar
Amati P, Gasparini P, Zlotogora J, Zelante L, Chomel JC, Kitzis A, et al. A gene for premature ovarian failure associated with eyelid malformation maps to chromosome 3q22-q23. Am J Hum Genet. 1996;58(5):1089–92.
CAS
PubMed
PubMed Central
Google Scholar
Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27(2):159–66.
Article
CAS
PubMed
Google Scholar
Cocquet J, Pailhoux E, Jaubert F, Servel N, Xia X, Pannetier M, et al. Evolution and expression of FOXL2. J Med Genet. 2002;39(12):916–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cocquet J, De Baere E, Gareil M, Pannetier M, Xia X, Fellous M, et al. Structure, evolution and expression of FOXL2 transcription unit. Cytogenet Genome Res. 2003;101(3–4):206–11.
Article
CAS
PubMed
Google Scholar
Ellsworth BS, Egashira N, Haller JL, Butts DL, Cocquet J, Clay CM, et al. FOXL2 in the pituitary: molecular, genetic, and developmental analysis. Mol Endocrinol. 2006;20:2796–805.
Article
CAS
PubMed
Google Scholar
Batista F, Vaiman D, Dausset J, Fellous M, Veitia RA. Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics. ProcNatlAcad Sci. 2007;104:3330–5.
Article
CAS
Google Scholar
Verdin H, De Baere E. FOXL2 impairment in human disease. Horm Res Paediatr. 2012;77:2–11.
Article
CAS
PubMed
Google Scholar
Beysen D, De Paepe A, De Baere E. FOXL2 mutations and genomic rearrangements in BPES. Hum Mutat. 2009;30(2):158–69.
Article
CAS
PubMed
Google Scholar
De Baere E, Beysen D, Oley C, Lorenz B, Cocquet J, De Sutter P, et al. FOXL2 and BPES: mutational hotspots, phenotypic variability, and revision of the genotype-phenotype correlation. Am J Hum Genet. 2003;72:478–87.
Article
PubMed
PubMed Central
Google Scholar
De Baere E, Dixon MJ, Small KW, Jabs EW, Leroy BP, Devriendt K, et al. Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype-phenotype correlation. Hum Mol Genet. 2001;10:1591–600.
Article
PubMed
Google Scholar
Beysen D, De Jaegere S, Amor D, Bouchard P, Christin-Maitre S, Fellous M, et al. Identification of 34 novel and 56 known FOXL2 mutations in patients with blepharophimosis syndrome. Hum Mutat. 2008;29:E205–19.
Article
PubMed
Google Scholar
Hanna-Rose W, Hansen U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 1996;12(6):229–34.
Article
CAS
PubMed
Google Scholar
Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002;250:1–23.
Article
CAS
PubMed
Google Scholar
Caburet S, Demarez A, Moumné L, Fellous M, De Baere E, Veitia RA. A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J Med Genet. 2004;41:932–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moumné L, Dipietromaria A, Batista F, Kocer A, Fellous M, Pailhoux E, et al. Differential aggregation and functional impairment induced by polyalanine expansions in FOXL2, a transcription factor involved in cranio-facial and ovarian development. Hum Mol Genet. 2008;17:1010–9.
Article
PubMed
Google Scholar
Moumné L, Fellous M, Veitia RA. Deletions in the polyAlanine-containing transcription factor FOXL2 lead to intranuclear aggregation. Hum Mol Genet. 2005;14(23):3557–64.
Article
PubMed
Google Scholar
Kosaki K, Ogata T, Kosaki R, Sato S, Matsuo N. A novel mutation in the FOXL2 gene in a patient with blepharophimosis syndrome: differential role of the polyalanine tract in the development of the ovary and the eyelid. Ophthalmic Genet. 2002;23:43–7.
Article
PubMed
Google Scholar
Fokstuen S, Antonarakis SE, Blouin JL. FOXL2-mutations in blepharophimosis-ptosis-epicanthus inversus syndrome (BPES); challenges for genetic counseling in female patients. Am J Med Genet A. 2003;117A:143–6.
Article
PubMed
Google Scholar
Harris SE, Chand AL, Winship IM, Gersak K, Aittomaki K, Shelling AN. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8:729–33.
Article
CAS
PubMed
Google Scholar
Kumar A, Babu M, Raghunath A, Venkatesh CP. Genetic analysisof a five generation Indian family with BPES: a novel missensemutation (p.Y215C). Mol Vis. 2004;10:445–9.
CAS
PubMed
Google Scholar
Beysen D, Moumne L, Veitia R, Peters H, Leroy BP, De Paepe A, et al. Missense mutations in the forkhead domain of FOXL2 lead to subcellular mislocalization, protein aggregation and impaired transactivation. Hum Mol Genet. 2008;17:2030–8.
Article
CAS
PubMed
Google Scholar