Wilcken B, Wiley V, Hammond J, Carpenter K: Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med. 2003, 348 (23): 2304-2312. 10.1056/NEJMoa025225.
Article
CAS
PubMed
Google Scholar
McHugh DM, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, Ahlman H, Allen JJ, Antonozzi I, Archer S, et al: Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med. 2011, 13 (3): 230-254. 10.1097/GIM.0b013e31820d5e67.
Article
PubMed
Google Scholar
Bhattacharya K, Khalili V, Wiley V, Carpenter K, Wilcken B: Newborn screening may fail to identify intermediate forms of maple syrup urine disease. J Inherit Metab Dis. 2006, 29 (4): 586-
Article
CAS
PubMed
Google Scholar
Frazier DM, Millington DS, McCandless SE, Koeberl DD, Weavil SD, Chaing SH, Muenzer J: The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inherit Metab Dis. 2006, 29 (1): 76-85. 10.1007/s10545-006-0228-9.
Article
CAS
PubMed
Google Scholar
Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P: Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007, 30 (4): 585-592. 10.1007/s10545-007-0691-y.
Article
CAS
PubMed
Google Scholar
Saheki T, Kobayashi K, Iijima M, Moriyama M, Yazaki M, Takei Y, Ikeda S: Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res. 2005, 33 (2): 181-184. 10.1016/j.hepres.2005.09.031.
Article
CAS
PubMed
Google Scholar
Saheki T, Kobayashi K: Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet. 2002, 47 (7): 333-341. 10.1007/s100380200046.
Article
CAS
PubMed
Google Scholar
Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, Saheki T: Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis. 2007, 30 (2): 139-144. 10.1007/s10545-007-0506-1.
Article
CAS
PubMed
Google Scholar
Tamamori A, Fujimoto A, Okano Y, Kobayashi K, Saheki T, Tagami Y, Takei H, Shigematsu Y, Hata I, Ozaki H, et al: Effects of citrin deficiency in the perinatal period: feasibility of newborn mass screening for citrin deficiency. Pediatr Res. 2004, 56 (4): 608-614. 10.1203/01.PDR.0000139713.64264.BC.
Article
CAS
PubMed
Google Scholar
Tang NL, Hui J, Law LK, To KF, Ruiter JP, Ijlst L, Wanders RJ, Ho CS, Fok TF, Yuen PM, et al: Primary plasmalemmal carnitine transporter defect manifested with dicarboxylic aciduria and impaired fatty acid oxidation. J Inherit Metab Dis. 1998, 21 (4): 423-425. 10.1023/A:1005314910623.
Article
PubMed
Google Scholar
Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y, et al: Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999, 21 (1): 91-94. 10.1038/5030.
Article
CAS
PubMed
Google Scholar
Stanley CA, Bennett MJ, Mayatepek E: Disorders of Mitochondrial Fatty Acid Oxidation and Related Metabolic Pathways. Inborn Metabolic Diseases. Edited by: Fernandes J, Saudubray JM, Berghe G, Walter JH. 2006, Heidelberg: Springer, 177-188.
Google Scholar
Tein I, De Vivo DC, Bierman F, Pulver P, De Meirleir LJ, Cvitanovic-Sojat L, Pagon RA, Bertini E, Dionisi-Vici C, Servidei S, et al: Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res. 1990, 28 (3): 247-255. 10.1203/00006450-199009000-00020.
Article
CAS
PubMed
Google Scholar
Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont JP, Saudubray JM, Haymond M, Trefz FK, Breningstall GN, et al: Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol. 1991, 30 (5): 709-716. 10.1002/ana.410300512.
Article
CAS
PubMed
Google Scholar
Mazzini M, Tadros T, Siwik D, Joseph L, Bristow M, Qin F, Cohen R, Monahan K, Klein M, Colucci W: Primary carnitine deficiency and sudden death: in vivo evidence of myocardial lipid peroxidation and sulfonylation of sarcoendoplasmic reticulum calcium ATPase 2. Cardiology. 2011, 120 (1): 52-58. 10.1159/000333127.
Article
CAS
PubMed
Google Scholar
Kishimoto S, Suda K, Yoshimoto H, Teramachi Y, Nishino H, Koteda Y, Itoh S, Kudo Y, Iemura M, Matsuishi T: Thirty-year follow-up of carnitine supplementation in two siblings with hypertrophic cardiomyopathy caused by primary systemic carnitine deficiency. Int J Cardiol. 2012, 159 (1): e14-15. 10.1016/j.ijcard.2011.11.010.
Article
PubMed
Google Scholar
Lee NC, Tang NL, Chien YH, Chen CA, Lin SJ, Chiu PC, Huang AC, Hwu WL: Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening. Mol Genet Metab. 2010, 100 (1): 46-50. 10.1016/j.ymgme.2009.12.015.
Article
CAS
PubMed
Google Scholar
Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA: L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol. 2004, 287 (2): C263-269. 10.1152/ajpcell.00333.2003.
Article
CAS
PubMed
Google Scholar
Wilcken B, Wiley V, Sim KG, Carpenter K: Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry. J Pediatr. 2001, 138 (4): 581-584. 10.1067/mpd.2001.111813.
Article
CAS
PubMed
Google Scholar
Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW, Tsui LC: Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue. Genomics. 1999, 62 (2): 289-292. 10.1006/geno.1999.6006.
Article
CAS
PubMed
Google Scholar
Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, Lei L, Kawabe K, Taura S, Yang Y, et al: Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency. J Hum Genet. 2005, 50 (7): 338-346. 10.1007/s10038-005-0262-8.
Article
CAS
PubMed
Google Scholar
Tang NL, Hwu WL, Chan RT, Law LK, Fung LM, Zhang WM: A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients. Hum Mutat. 2002, 20 (3): 232-
Article
PubMed
Google Scholar
Chen HW, Chen HL, Ni YH, Lee NC, Chien YH, Hwu WL, Huang YT, Chiu PC, Chang MH: Chubby face and the biochemical parameters for the early diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency. J Pediatr Gastroenterol Nutr. 2008, 47 (2): 187-192. 10.1097/MPG.0b013e318162d96d.
Article
CAS
PubMed
Google Scholar
Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, et al: Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab. 2004, 81 (Suppl 1): S20-26.
Article
CAS
PubMed
Google Scholar
Lin JT, Hsiao KJ, Chen CY, Wu CC, Lin SJ, Chou YY, Shiesh SC: High resolution melting analysis for the detection of SLC25A13 gene mutations in Taiwan. Clin Chim Acta. 2011, 412 (5–6): 460-465.
Article
CAS
PubMed
Google Scholar
Kikuchi A, Arai-Ichinoi N, Sakamoto O, Matsubara Y, Saheki T, Kobayashi K, Ohura T, Kure S: Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab. 2012, 105 (4): 553-558. 10.1016/j.ymgme.2011.12.024.
Article
CAS
PubMed
Google Scholar