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An eight-mRNA signature outperforms the
lncRNA-based signature in predicting
prognosis of patients with glioblastoma
Zhenyu Gong†, Fan Hong†, Hongxiang Wang, Xu Zhang and Juxiang Chen*

Abstract

Background: The prognosis of the glioblastoma (GBM) is dismal. This study aims to select an optimal RNA
signature for prognostic prediction of GBM patients.

Methods: For the training set, the long non-coding RNA (lncRNA) and mRNA expression profiles of 151 patients
were downloaded from the TCGA. Differentially expressed mRNAs (DEGs) and lncRNAs (DE-lncRNAs) were identified
between good prognosis and bad prognosis patients. Optimal prognostic mRNAs and lncRNAs were selected
respectively, by using univariate Cox proportional-hazards (PH) regression model and LASSO Cox-PH model.
Subsequently, four prognostic scoring models were built based on expression levels or expression status of the
selected prognostic lncRNAs or mRNAs, separately. Each prognostic model was applied to the training set and an
independent validation set. Function analysis was used to uncover the biological roles of these prognostic DEGs
between different risk groups classified by the mRNA-based signature.

Results: We obtained 261 DEGs and 33 DE-lncRNAs between good prognosis and bad prognosis patients. A panel
of eight mRNAs and a combination of ten lncRNAs were determined as predictive RNAs by LASSO Cox-PH model.
Among the four prognostic scoring models using the eight-mRNA signature or the ten-lncRNA signature, the one
based on the expression levels of the eight mRNAs showed the greatest predictive power. The DEGs between
different risk groups using the eight prognostic mRNAs were functionally involved in calcium signaling pathway,
neuroactive ligand-receptor interaction pathway, and Wnt signaling pathway.

Conclusion: The eight-mRNA signature has greater prognostic value than the ten-lncRNA-based signature for GBM
patients based on bioinformatics analysis.
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Background
Glioblastoma (GBM) is the most aggressive primary
brain neoplasm [1]. The treatment involves maximal
surgical resection along with radiotherapy and chemo-
therapy [2]. However, the prognosis of GBM patients is
dismal that they have a survival of only 12–15months

after the standard treatment, with the 5-year survival
rate of 3–5% [1, 3]. Therefore, it is important to develop
therapeutic biomarkers for improving survival of GBM
patients.
Considerable efforts have been made to identify prog-

nostic gene signatures for GBM. For instance, a three-
gene signature of prognostic value for patients with
MGMT promoter-methylated GBM is reported by per-
forming bioinformatics analysis [4]. A study finds that a
combination of Notch and hypoxia genes is closely
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associated with survival of GBM patients [5]. Silencing
of the signal transducer and activator of transcription-3
(STAT3), an important mediator for the subtype of
highly aggressive mesenchymal GBM, by a novel
aptamer-siRNA chimera (Gint4.T) inhibits tumor growth
and angiogenesis in a mouse model. Thus, Gint4.T-
STAT3 is suggested as a novel molecule therapy for
GBM [6]. In addition, the phosphorylation of STAT3 on
Serine727 is identified as a potential prognostic marker
for GBM patients [7].
Long non-coding RNAs (lncRNAs) have been focused

recently because of its versatile roles in multiple bio-
logical processes [8]. Dysregulation of lncRNAs may be
potential biomarkers and therapeutic targets for cancer
[9]. A study investigates prognostic lncRNAs in GBM by
constructing a functional GBM lncRNA-mediated
ceRNA network [10]. Besides, using lncRNA expression
profiles in GBM patients from The Cancer Genome
Atlas (TCGA), a prognostic six-lncRNA signature is
identified by applying survival analysis and Cox regres-
sion model [11]. Moreover, serum lncRNA HOTAIR is
proposed as a prognostic biomarker for GBM [12].
Nevertheless, most of these studies have not validated
the predictive accuracy of these prognostic signatures
and the optimal prognostic model of GBM has not been
established.
In the current study, we analyzed the expression of

mRNAs and lncRNAs that related to the prognosis in
GBM patients from TCGA and built a prognostic pre-
diction model. In addition, accuracy of the predictive
model was validated using data in the Chinese Glioma
Genome Atlas (CGGA) database. Differential expression
on mRNAs were analyzed between high- and low-risk
groups based on the optimal prognostic model. Further
function and pathway enrichment analyses were per-
formed to provide hints concerning the roles of the
prognostic genes in GBM development and physiology.

Materials and methods
Data source
The GBM RNA-seq data were downloaded from the
TCGA portal (https://gdc-portal.nci. nih.gov/), contain-
ing 173 samples (154 primary GBM tissue samples, 14
recurrent samples and 5 normal controls) that se-
quenced on the platform of Illumina HiSeq 2000 RNA
Sequencing (https://tcga.xenahubs.net/download/TCGA.
GBM.sampleMap/HiSeqV2.gz). Among them, 151 pri-
mary GBM tissue samples that had survival and prog-
nostic information were used as the training set (TCGA
set). Meanwhile we downloaded RNA-seq data of 272
gliomas samples named “Part D” (http://cgga.org.cn/
download/20191128/CGGA.mRNA_array_301_gene_
level.20191128.txt.zip) [13] from the CGGA (http://cgga.
org.cn/), 138 of which were histologically confirmed to

be GBM, and were then used as the validation set. For
the both two sets, the raw data of the Fragments Per
Kilobase of exon model per Million mapped fragments
(FPKM) in TXT format were downloaded, and then
were normalized using the method as demonstrated in a
previous study [14], to eliminate the deviation at expres-
sion level due to different sequencing platforms or di-
verse experiment backgrounds.

Differentially expressed mRNAs and lncRNAs
Briefly, according to RefSeq ID information provided by
the training set and the validation set, we annotated
mRNAs and lncRNAs of the two sets based on HUGO
Gene Nomenclature Committee (HGNC) [15] (http://
www.genenames.org/), the database which records infor-
mation of 4055 lncRNAs and 19,198 protein-coding
genes (https://www.genenames.org/cgi-bin/genegroup/
download-all). In the training set, samples were classified
based on their clinical prognostic information. Accord-
ing to the sample characteristics, the good prognosis
samples was defined as patients with overall survival
(OS) of more than 6months and was alive; whereas bad
prognosis samples were those with OS less than 6
months and were died. Then, differentially expressed
mRNAs (DEGs) and lncRNAs (DE-lncRNAs) were
screened between good and bad prognosis patients
using the limma package (version 3.34.7) of R. False
discovery rate (FDR) < 0.05 and |log2 fold change
(FC)| > 1 were set as the cutoff for significance. Two-
way hierarchical clustering analysis based on centered
Pearson correlation algorithm was carried out for
these identified DEGs and DE-lncRNAs by pheatmap
package [16] (version 1.0.8) of R.

Prognosis prediction models
In the training set, in order to develop prognosis predic-
tion models, firstly, we determined prognosis-related
lncRNAs and mRNAs that were significantly linked to
OS from the identified DEGs and DE-lncRNAs by apply-
ing univariate Cox regression model and log-rank test. A
gene or a lncRNA with log-rank p < 0.05 was considered
as significant. These identified prognosis-related DEGs
and DE-lncRNAs were then used to fit L1-penalized
(LASSO) Cox-PH regression model [17] for selection of
the optimal predictive mRNAs and lncRNAs with penal-
ized package (version 0.9–50) of R (http://bioconductor.
org/packages/penalized/). The optimal parameter of
‘lambda’ in the selection model was calculated via the
cross-validation likelihood (cvl) method for 1000 times.

Prognosis prediction models based on expression status
of prognostic RNAs
X-Tile tool [18] was applied to calculate the optimal cut-
off point for expression levels of the aforementioned
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prognostic mRNAs and lncRNAs based on patients’
survival. Monte-Carlo P < 0.05 were set as the thresh-
old for the cutoff points. Then the RNA expression
status of a sample was defined based on the RNA’s
cutoff value: if expression level of a RNA is above the
cutoff value (high expression), its expression status is
equal to 1; otherwise, the expression level below the
cutoff value (low expression), the RNA expression
status of is equal to 0. Combing the expression status
with the Cox regression coefficients of these prognos-
tic RNAs, the sample risk assessment system was con-
structed, and the risk score of each sample was
obtained using the following formula:

Status Risk Score ¼
X

βRNAn � StatusRNAn:

βRNAn indicates Cox-PH coefficient of a RNA; Status

RNAn indicates expression status of a RNA.

Prognosis prediction model based on expression levels of
prognostic RNAs
Using expression levels of the DEGs and DE-lncRNAs,
and their Cox regression coefficients, the prognostic
scoring models were established with the following
formula:

Expression Risk Score ¼
X

βRNAn � ExpRNAn:

β RNAn and Exp RNAn represents Cox-PH coefficient
and expression level of a RNA, respectively. For lncRNA,
the expression unit is FPKM.
To detect the predictive ability of different prognostic

scoring models, they were tested on the training set and
the validation set, separately. According to median risk
score, each set was classified into a high-risk group and
a low-risk group. Thereafter, Kaplan-Meier (KM)
method was used to assess the survival curves between

Fig. 1 Graphic representation of differentially expressed RNAs (DEGs) between good prognosis and bad prognosis patients. a, volcano plot of
effect size (log2FC) and -log10(FDR) of DEGs. Blue and orange round spots stand for down- and up-regulated RNAs, respectively. Two red vertical
dash lines signal |logFC| > 1, and red horizontal dash line signals FDR < 0.05. b, Kernel density plot for DEGs. c, a heatmap illustrating two-way
hierarchical clustering of DEGs. Horizontal blue and pink bars indicate good prognosis and bad prognosis samples, respectively. Bad: bad
prognosis patients; good: good prognosis patients
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groups. Additionally, the accuracy for survival prediction
using these models were evaluated by area of the re-
ceiver operating characteristic curve (AUC). By integrat-
ing the parameters of the four models in both training
set and validation set, the optimal prognosis prediction
model was selected.

Nomogram survival rate model for independent
prognostic factor
Using the univariate and multivariate regression analysis
in the survival package of R (version 2.41–1), the prog-
nostic factors in the training set were selected with the
significance threshold of log-rank p < 0.05.
To further investigate the correlations between the

independent prognostic factors and the survival, we
combined the identified independent prognostic fac-
tors with the predicted risk information in the predic-
tion prognosis model to construct a nomogram 1-year
or 3-year survival rate model [19] by using rms
package of R. The actual and predicted probabilities of 1-
year OS and 3-year OS were compared using calibration
plots. P < 0.05 suggests statistical significance.

Function analysis
All samples in the training set were divided into
high-risk and low-risk groups according to the risk
score obtained from the optimal prognosis prediction
model. Then, DEGs between the two risk groups were
analyzed using the limma package in R (version

3.34.7), with the cutoff of FDR < 0.05 and |log2FC| >
0.263. The FC here was set as 1.2 because if it was
set as 2 as aforementioned, the DEG numbers were
small, which would impede the following enrichment
analysis.
Afterwards, using the clusterProfiler package [20] (ver-

sion 3.6.0) of R, we performed gene ontology (GO) func-
tion and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses to obtain the bio-
logical processes and KEGG signaling pathways that
were significantly enriched with these identified DEGs.
Statistical significance was set at p < 0.05.

Results
Identification of DEMs and DELs
Following data annotation, we obtained 17,299 mRNAs
and 770 lncRNAs overlapped by the TCGA set and the
validation set. Based on predefined classification criteria,
there identified 27 good prognosis samples and 37 bad
prognosis samples in the TCGA set. In total, 261
mRNAs and 33 lncRNAs were differentially expressed
between good prognosis and bad prognosis samples of
the training set, including 182 down-regulated and 79
up-regulated mRNAs, 3 down-regulated and 30 up-
regulated lncRNAs. To show whether FDR value and
|log2FC| conformed to logic with different test, we
illustrated these results in a volcano plot (Fig. 1a) and a
kernel density plot (Fig. 1b). Two-way hierarchical clus-
tering of these DEGs and DE-lncRNAs was depicted in a

Table 1 Ten lncRNAs and eight mRNAs selected as prognostic RNAs

Type ID coefficient P-value HR 95%CI X-tile cutoff

lncRNA HOXB-AS3 0.074 0.007 1.350 1.086–1.676 0.87

LGALS8-AS1 0.122 0.014 1.292 1.053–1.584 0.20

LINC00032 −0.003 0.020 0.795 0.656–0.963 0.20

LINC00311 0.060 0.001 1.481 1.173–1.868 −2.01

LINC00494 −0.004 0.013 0.842 0.672–0.952 −0.14

LINC00544 0.021 0.021 1.265 1.035–1.543 0.02

LINC00589 0.067 0.019 1.147 0.934–1.407 0.00

LINC00626 −0.005 0.018 0.770 0.619–0.956 0.00

MEIS1-AS3 −0.053 0.040 0.803 0.650–0.989 0.15

VAV3-AS1 0.104 0.042 1.225 0.998–1.502 −0.09

mRNA ASIC5 0.065 0.035 1.246 1.016–1.528 −1.67

CGB7 0.072 0.003 1.405 1.124–1.756 −0.47

CLDN16 0.123 0.006 1.372 1.096–1.717 −2.39

HAPLN4 0.143 0.000 1.518 1.228–1.877 −2.03

KRT13 0.084 0.002 1.362 1.123–1.652 −0.01

LCN9 0.059 0.012 1.300 1.060–1.595 −0.22

SOST 0.033 0.018 1.148 1.038–1.404 0.60

TNS4 0.028 0.041 1.231 1.009–1.503 −0.14

HR Hazard ratio, CI Confidential interval
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heatmap (Fig. 1c). The results showed that good progno-
sis samples could be well distinguished from bad prog-
nosis samples based on expression patterns of these
DEGs and DE-lncRNAs. The specific mRNA and
lncRNA names are provided in the appendix 1.

The prognostic model based on expression levels of 8
mRNAs was superior to the ten-lncRNA-based prognostic
model
Combining the DEGs and DE-lncRNAs with the prog-
nostic information, the univariate Cox regression
analysis identified 21 of the 261 DEGs and 16 of the 33
DE-lncRNAs were significantly correlated with OS.
These prognosis-related DEGs and DE-lncRNAs were
then used to fit the LASSO Cox-PH regression model,
respectively, to select the optimal RNA set relating to
prognosis. As defined in the method section, the lambda
value was determined by conducting 1000 cvl. A panel
of 8 optimal DEG-set was obtained at the maximum

value of cvl (− 557.1395) when lambda was 7.1358; and
10 optimal DE-lncRNA set were obtained (lambda =
3.2821, cvlmax = − 558.6265) (Table 1). The eight
mRNAs were acid sensing ion channel subunit family
member (ASIC), chorionic gonadotropin subunit beta
(CGB), claudin (CLDN)16, keratin (KRT)13, hyaluronan
and proteoglycan link protein (HAPLN)4, lipocalin
(LCN)9, sclerostin (SOST), and tensin (TNS)4. The ten
lncRNAs consisted of homeobox (HOXB)–antisense
(AS)3 (HOXB-AS3), LGALS8-AS1, Long intergenic non-
protein coding (LINC)00032 (LINC00032), LINC00311,
LINC00494, LINC00544, LINC00589, LINC00626,
MEIS1-AS3 and VAV3-AS1.
As aforementioned,, X-Tile bio-informatics tool was

used to explore the correlations between the above
optimal sets with the prognosis, and to get the cutoff
value of each RNA. After obtaining the expression
status in each sample, a prognosis risk prediction
model based on expression status and Cox-PH

Fig. 2 Kaplan-Meier survival curves and the receiver operating characteristic curve (AUC) to evaluate predictive performance of the
prognosis prediction models based on expression status of the selected biomarkers in the training set and the validation set. a, selected
ten lncRNAs; b, selected eight mRNAs. All patients in each set are classified by each prognostic model into a high-risk group and a
low-risk group
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coefficients of the ten prognostic lncRNAs was estab-
lished as follows (model 1):
lncRNA status Risk Score = (0.074) * StatusHOXB-AS3 +

(0.122) * StatusLGALS8-AS1 + (− 0.003) * StatusLINC00032 +
(0.060) * StatusLINC00311 + (− 0.004) * StatusLINC00494 +
(0.021) * StatusLINC00544 + (0.067) * StatusLINC00589 + (−
0.005) * StatusLINC00626 + (− 0.053) * StatusMEIS1-AS3 +
(0.104) * Status VAV3- AS1.
The prognostic prediction model based on the eight

prognostic mRNAs was developed as follows (model 2):

mRNA status Risk Score = (0.065) * StatusASIC5 +
(0.072) * StatusCGB7 + (0.123) * StatusCLDN16 + (0.143) *
StatusHAPLN4 + (0.084) * StatusKRT13 + (0.123) *
StatusLCN9+ (0.143) * StatusSOST +(0.084) * Status TNS4.
The model based on Cox-PH coefficients and expres-

sion levels of the eight prognostic mRNAs were built as
follows (model 3):
lncRNA Expression Risk Score = (0.074) * ExpHOX-

B-AS3 + (0.122) * ExpLGALS8-AS1 + (− 0.003) *
ExpLINC00032 + (0.060) * ExpLINC00311 + (− 0.004) *

Fig. 3 Kaplan-Meier survival curves and the receiver operating characteristic curve (AUC) to assess predictive ability of the prognosis prediction
models based on expression levels of the selected biomarkers in the training set and the validation set. a, selected ten lncRNAs; b, selected eight
mRNAs. Each set is separated by each prognostic model into a high-risk group and a low-risk group

Table 2 Predictive performances of four prognosis prediction models based on expression levels or status of lncRNAs or mRNAs

Type Status model Expression model

LogRank p-value AUC value LogRank p-value AUC value

Training set Validation set Training set Validation set Training set Validation set Training set Validation set

lncRNA 4.42 × 10−10 0.0480 0.907 0.743 1.84 × 10− 08 0.0841 0.957 0.808

mRNA 1.92 × 10−12 0.2116 0.900 0.655 4.32 × 10−14 0.0168 0.977 0.839

AUC Area of the receiver operating characteristic curve
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ExpLINC00494 + (0.021) * ExpLINC00544 + (0.067) *
ExpLINC00589 + (− 0.005) * ExpLINC00626 + (− 0.053) *
ExpMEIS1-AS3 + (0.104) * ExpVAV3-AS1.
Similarly, the model based on the ten lncRNAs was

established as follows (model 4):
mRNA Expression Risk Score = (0.065) *ExpASIC5 +

(0.072) * ExpCGB7 + (0.123) * ExpCLDN16 + (0.143) *
ExpHAPLN4 + (0.084) * ExpKRT13+ (0.123) * ExpLCN9 +
(0.143) * ExpSOST + (0.084) * Exp TNS4.
To compare prognostic performances of the four progno-

sis prediction models, all patients in the training set or the

validation set were separated into a high-risk group and a
low-risk group by risk score obtained from each model,
separately (Figs. 2-3). OS of the two risk groups were ana-
lyzed using KM plot and log-rank test, and predictive ability
of each model was measured by AUC curves. Log-rank p
and AUC values were summarized in Table 2.
Among the four prognostic models, the model based

on expression levels of the eight mRNAs generated the
lowest p-values (training set, p = 4.32 × 10− 14; validation
set, p = 0.01679) and the highest AUC values (training
set, AUC = 0.977; validation set, AUC = 0.839) for the

Table 3 Determination of prognostic clinical factors

Clinical characteristics Training set
(N = 151)

Uni-variables cox Multi-variables cox

HR 95%CI P-value HR 95%CI P-value

Age (years, mean ± SD) 59.82 ± 13.67 1.029 1.014–1.045 1.966 × 10− 04 1.022 1.005–1.039 1.310 × 10−02

Gender (Male/Female) 97/54 0.899 0.613–1.320 5.886 × 10−01 – – –

Chemo-therapy (Yes/No/−) 45/89/17 0.603 0.397–0.915 1.625 × 10− 02 1.791 0.895–3.585 9.960 × 10− 02

Drug-therapy (Yes/No/−) 20/113/18 0.729 0.431–1.234 2.377 × 10−01 – – –

Immuno-therapy (Yes/No/−) 2/131/18 0.555 0.136–2.264 4.050 × 10−01 – – –

Pharmaceutical-therapy (Yes/No/−) 55/82/14 0.419 0.276–0.639 3.239 × 10−05 0.335 0.169–0.663 1.700 × 10−03

Targeted molecular-therapy (Yes/No/−) 18/115/18 0.889 0.519–1.523 6.701 × 10−01 – – –

Radiotherapy (Yes/No/−) 20/117/14 0.611 0.346–1.078 8.575 × 10−02 – – –

Risk status (High/Low) 75/76 4.519 2.963–6.894 4.319 × 10−14 4.179 2.631–6.640 1.390 × 10−09

Dead (Death/Alive/−) 115/36 – – – – – –

Overall survival time (months, mean ± SD) 13.26 ± 10.82 – – – – – –

SD Standard deviation, HR Hazard ratio, CI Confidential interval

Fig. 4 Kaplan-Meier curves for overall survival of patients in the training set classified by clinical features. a, age; b, pharmaceutical therapy. All
patients in the training set are divided by age or pharmaceutical therapy into two subgroups, respectively. The patients younger than or equal to
60 years have significantly longer overall survival time than the patients older than 60 years (p = 3.205 × 10−2). Markedly better survival is observed
in the patients with pharmaceutical therapy compared to the patients without pharmaceutical therapy (p = 3.239 × 10−5)

Gong et al. BMC Medical Genetics           (2020) 21:56 Page 7 of 13



training set and the validation set (Table 2, Fig. 3b).
These results indicate a better predictive capability of
this prognostic model (model 3) than others, which was
then selected for further analyses.

Building nomogram based on prognostic clinical factors
and the eight-mRNA signature
As shown in Table 3 and Fig. 4, we found that age and
pharmaceutical therapy were independent prognostic
factors in the training set. Combining expression risk
score based on the eight-mRNA signature with age and
pharmaceutical therapy, we constructed a nomogram to
improve predictive accuracy (Fig. 5a). As shown in

calibration plots (Fig. 5b), consist results were ob-
served between predicted and actual 1- and 3-year
OS, respectively.

Function analysis of the prognostic eight-gene signature
We used the expression risk score of the eight-mRNAs
in the mRNA expression based model (model 3) to clas-
sify samples in the TCGA set into high-risk group and
low-risk group. We then screened DEGs between the
two risk groups. As a result, 11 down-regulated and 255
up-regulated genes (selection criteria: FDR < 0.05 and
|log2FC| > 0.263) were found between groups (Fig. 6).
Detailed genes are provided in appendix 2. These genes

Fig. 5 A nomogram incorporating risk score based on expression levels of eight mRNAs, age and pharmaceutical therapy for predicting survival
of GBM patients. a, the sum of points for each variable value is located on Total Point axis, and used to determine likelihood of 1-year and 3-year
overall survival of each individual patient. b, calibration plots of nomogram for predicting 1-year and 3-year overall survival
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were significantly related to 25 GO biological processes,
such as cellular metal ion homeostasis and cellular cal-
cium ion homeostasis (Table 4). Moreover, 5 KEGG sig-
naling pathways functionally involved these DEGs,
consisting of neuroactive ligand-receptor interaction,
tight junction, Wnt signaling pathway, calcium signaling
pathway, and cytokine-cytokine receptor interaction
(Table 4).

Discussion
Prognosis of GBM patients varies greatly due to het-
erogeneity of the disease, demanding development of
prognostic molecular indicators to improve outcome
of GBM patients [21]. In the present study, we identi-
fied a ten-lncRNA signature and an eight-mRNA
prognostic signature (ASIC5, CGB7, CLDN16,
HAPLN4, KRT13, LCN9, SOST and TNS4) of GBM.
Then, based on these signature sets, four prognosis
prediction models were built using their expression
levels or expression status, and the prognostic model
based on expression levels of the eight- mRNA was
superior to the others in predicting survival of GBM
patients. To our knowledge, this is the first study that
compares mRNA and lncRNA signatures for predict-
ing outcome of GBM patients. The eight-mRNA sig-
nature was capable to classify GBM patients into
subgroups with significantly different OS, showing
greater prognostic power. Results of validation set re-
vealed good reproducibility and robustness of the
eight-mRNA signature. Application of this eight-
mRNA signature would help clinicians to select

patients at high risk of death, thereby facilitating de-
velopment of individualized therapies for GBM
patients.
Of the eight mRNAs, ASIC5 is a member of ASIC

channels that primarily locate in the central and periph-
eral nervous system. ASIC channels participate in di-
verse processes during tumor development, such as
apoptosis, proliferation and migration, and may be po-
tential therapeutic targets for cancer therapies [22]. Im-
portantly, ASICs are correlated with malignant gliomas.
ASIC1a and ASIC3 are expressed in GBM stem cell lines
[23], and knockdown of ASIC1 in vitro inhibits the cell
mobility and migration of GBM [24]. However, function
of ASIC5 has not been revealed. Based on our study, ex-
pression of ASIC5 might be associated with prognosis of
GBM.
CGB7 gene encodes the beta 7 subunit of chorionic

gonadotropin. It has been demonstrated that human
chorionic gonadotropin β promotes development of
GBM [25]. However, there are few studies reporting the
correlation of this gene with prognosis. Our study might
provide novel insights into GBM prognosis with this
gene.
Claudin-16 encoded by CLDN16 is a component of

tight junction strands. Abnormal tight junction func-
tions have been established as a hallmark of human
carcinomas [26]. Reduced expressions of CLDN1 and
CLDN5, two family members of CLDN16, are associ-
ated with the progression of GBM multiforme [27].
According to our results, altered expression of
CLDN16 might be also related to the development of

Fig. 6 Graphic demonstrations of DEGs between high and low risk subgroups of training set by the eight-mRNA signature. a, volcano plot of
effect size (log2FC) and -log10(FDR) of the 266 DEGs. Blue and black spots represent significant DEGs and non-DEGs, respectively. b, risk score and
expression levels of DEGs for patients in the high- and low-risk subgroups

Gong et al. BMC Medical Genetics           (2020) 21:56 Page 9 of 13



GBM, and the dysregulation might indicate prognosis
of the disease.
HAPLNs are involved in forming and controlling peri-

neuronal matrix in the adult brain, thus regulating neur-
onal function and plasticity [28]. HAPLN4 is obviously
decreased in the parenchyma of malignant gliomas, and
HAPLN4 expression promotes glioma cell adhesion and
migration [29]. KRT13 encodes keratin 13 that is a type
I cytokeratin (CK), and it is also named as CX13. Report-
edly, 4% of GBM patients are estimated to be immuno-
reactive for cytokeratin, the reaction, however, is
normally weak [30]. Although there is evidence that ex-
pressions of other CK members including CK34BE12,
CK5, CK6, CK7, CK8, CK14, CK18, CK19 and CK20 are

absent in GBM [31], there are rare reports on the roles
of CK13 in GBM. Sclerostin encoded by SOST is pro-
duced primarily by osteocyte, and may be implicated in
promoting tumor growth, bone metastasis and osteolysis
in breast cancer [32]. Sclerostin is emerging as a poten-
tial target to treat cancer-related bone diseases [33].
Tensins localized in the cytoplasmic tails of integrins at
focal adhesions are critical for cell adhesion, migration
and invasion [34]. TNS4 plays an important part in sta-
bility of receptor tyrosine kinase, thus regulating survival
and proliferation of carcinoma cells [35]. High expres-
sion of TNS4 is associated with a poor prognosis in
many cancer types, such as gastric cancer and lung
adenocarcinoma [36, 37]. However, studies on this gene

Table 4 Significant GO biological processes and KEGG pathways

Category Term Count of genes P-value

Biology Process Cellular metal ion homeostasis 12 6.570 × 10− 05

Metal ion homeostasis 12 9.840 × 10−05

Cellular cation homeostasis 13 1.590 × 10−04

Cellular calcium ion homeostasis 11 1.760 × 10− 04

Calcium ion homeostasis 11 2.200 × 10−04

Cellular di-, tri-valent inorganic cation homeostasis 12 2.410 × 10−04

Di-, tri-valent inorganic cation homeostasis 12 3.740 × 10−04

Cell-cell signaling 20 4.350 × 10−04

Cation homeostasis 13 4.710 × 10−04

Regulation of system process 13 9.290 × 10−04

Ectoderm development 10 1.434 × 10−03

Cellular ion homeostasis 13 4.521 × 10− 03

Cellular chemical homeostasis 13 5.122 × 10−03

Chemical homeostasis 15 8.944 × 10−03

Ion homeostasis 13 8.989 × 10−03

Response to wounding 15 1.186 × 10−02

Cellular homeostasis 13 2.288 × 10−02

Behavior 13 2.390 × 10− 02

Multicellular organism reproduction 13 3.075 × 10−02

Reproductive process in a multicellular organism 13 3.075 × 10−02

Defense response 15 3.669 × 10−02

Gamete generation 11 3.984 × 10−02

Homeostatic process 17 4.436 × 10−02

G-protein coupled receptor protein signaling pathway 23 4.513 × 10−02

Transmission of nerve impulse 10 4.589 × 10−02

KEGG Pathway Neuroactive ligand-receptor interaction 9 7.151 × 10−04

Tight junction 4 1.892 × 10−02

Wnt signaling pathway 4 2.391 × 10−02

Calcium signaling pathway 4 3.157 × 10−02

Cytokine-cytokine receptor interaction 5 3.380 × 10−02

Count of genes, the total number of genes significantly involved in a GO biological process or pathway; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes pathway enrichment
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in GBM have not been reported. Lipocalins are small
extracellular proteins that participate in cell regulation,
differentiation and proliferation [38]. Downregulation of
LCN2 involves in the chemoresistance in GBM cells
[39]. However, studies on the role of LCN9 in cancers
are rare.. Our results might provide a hint for the future
studies on the above genes. To gain insights into the
functional roles of the eight prognostic mRNAs in the
molecular mechanisms of GBM, GO function and
KEGG pathway enrichment analyses were carried out
for the DEGs between the predicted high-risk and low-
risk groups of the training set by the eight-mRNA signa-
ture. The results suggested that these genes were func-
tionally associated with cellular metal ion homeostasis,
cellular calcium ion homeostasis, calcium signaling path-
way, neuroactive ligand-receptor interaction pathway,
and Wnt signaling pathway. Increasing evidence has in-
dicated that neuroactive ligand-receptor interaction
pathway may play an important role in the biology of
GBM [40, 41]. Oncogenic roles of Wnt signaling path-
way in GBM has been demonstrated previously, and the
pathway is also involved in GBM stem cell maintenance
and invasion [42]. Calcium signaling is closely related to
tumorigenesis and progression of GBM [43]. These find-
ings collectively suggest the eight genes might be im-
portant regulators in GBM progression and might
function via the involvement of the above processes and
pathways. Further functional characterization of the
eight-mRNA signature would be beneficial to unraveling
the underlying mechanism of GBM.
LncRNAs are research hotspots currently, and several

lncRNAs are identified as potential prognostic factors in
GBM or glioma, such as TP73-AS1 [44], LINC00599 [45]
and HOXA11-AS [46]. However, due to heterogeneity of
the disease, it is insufficient to use a single lncRNA bio-
marker. A panel of ten-lncRNA signature relating to
prognosis was identified in our study. Among them,
LGALS8 is reported to promote cell proliferation in a
GBM model [47]; VAV3 is highly expressed in breast
cancer and GBM, and the overexpression indicates a
poor prognosis of breast cancer [48]; LINC00311 is over-
expressed in ankylosing spondylitis and promotes the
proliferation and differentiation of osteoclasts [49, 50].
The remaining lncRNAs are rarely reported in previous
studies. Our findings using them as a whole panel might
provide novel insights into prognostic prediction of
GBM. Interestingly, based on our study, the performance
of the predictive prognosis with the ten-lncRNA signa-
ture was inferior to that using the eight-mRNA
signature.
Although we have identified novel signatures for the

prediction of GBM prognosis, and validated the accuracy
using these predictive models in the validation set, sev-
eral limitations remained in the study. First, the sample

size was small in both of the training set and validation
set, making a relatively weak statistic power. In addition,
the prognostic value of these signatures needs to be vali-
dated in the GBM patients. Nevertheless, our study has
predictive values and provides a foundation for future
studies.

Conclusion
We develop an eight-mRNA and a ten-lncRNA prognos-
tic signatures that are able to classify GBM patients into
subgroups with different prognostic risks. The eight-
mRNA signature is superior to the ten-lncRNAs signa-
ture for prognostic risk classification of GBM patients.
These findings would aid in improving outcome of GBM
patients. Further validation of this eight-mRNA signa-
ture on large cohorts of GBM patients is warranted prior
to clinical application.
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