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Abstract

Background: Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant genetic disease
characterized by intellectual and growth retardations, as well as major microcephaly, induced by missense and
splice site variants or microdeletions in the EFTUD2 gene.

Case presentation: Here, we investigate the case of a young girl with symptoms of MFDM and a normal karyotype.
Whole-exome sequencing of the family was performed to identify genetic alterations responsible for this phenotype.
We identified a de novo synonymous variant in the EFTUD2 gene. We demonstrated that this synonymous variant
disrupts the donor splice-site in intron 9 resulting in the skipping of exon 9 and a frameshift that leads to a premature

stop codon.

leading to exon skipping.
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Conclusions: We present the first case of MFDM caused by a synonymous variant disrupting the donor splice site,
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Background

Mandibulofacial dysostosis with microcephaly (MFDM)
is a rare autosomal dominant disease characterized by
malar and mandibular hypoplasia and microcephaly.
Some of its main features include conductive hearing
loss, intellectual disability, distinctive facial features and
craniofacial malformations that may include characteris-
tic external ear malformations, cleft palate, choanal atre-
sia, and facial asymmetry. In some instances, one
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observes extracranial malformations such as esophageal
atresia (~40%), congenital heart disease (~40%), and
thumb abnormalities (~ 25%). Short stature is present in
approximately one-third of individuals [1-4].

Its exact prevalence is unknown, but more than 80
cases have been described in the literature until now.
MFDM is mostly caused by de novo variants in the
EFTUD2 gene (MIM# 603892) [5]. In some rarer in-
stances, the MFDM is transmitted from a parent in an
autosomal dominant manner (19% of the cases) or due
to germline mosaicism (6% of the cases). EFTUD?2 en-
codes the U5-116kD, a highly conserved GTPase com-
ponent of the major spliceosome complex that processes
precursor mRNAs to produce mature mRNAs by
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allowing the dissociation of U4 and U6 snRNPs during
splicing in a GTP-dependent manner [6].

The EFTUD?2 gene is composed of 29 exons and pre-
sents four transcript variants encoding three different
isoforms. Seventy-six distinct single-nucleotide variants
(SNVs) and seven microdeletions in EFTUD2 involved
in MFDM have been described to date [5]. They can
alter basic, surface-forming residues that are potentially
available for protein-protein interactions in the internal
face of the protein and could conceivably affect protein
stability by several mechanisms acting on protein stabil-
ity, conformation, localization, and/or post-translational
modifications. Various types of EFTUD2-variants have
been identified, including missense, frameshift, intronic
splice site variants and deletions. However synonymous
splice site variants in the gene have never been previ-
ously implicated in this disease.

Synonymous variants initially do not appear to alter
the structure and function of the proteins. They have
long been interpreted as “silent” variants. Studies in evo-
lutionary genetics have, however, shown that not all syn-
onymous codons are used at the same frequency in the
genome and that selection pressure is exerted even on
the synonymous codons as they are used differently for
mRNA splicing, translation, and processing machinery.
The association of synonymous variants with over 50
human diseases has further confirmed the importance of
these phenomena [7].

Case presentation

Here, we report a seven-year-old female patient, who is
a native of Libya, who presents postnatal microcephaly
to -3SD, sensorineural hearing loss, and global intellec-
tual delay with difficulties of comprehension. She also
presents epileptic seizures, livedo and facial dysmorph-
isms such as micro-retrognatism, malar hypoplasia, den-
tal malocclusion, limitation of mouth opening, and large
protruding ears.

As her karyotype was normal and her parents were both
healthy, we performed whole-exome sequencing (WES) of
the child and her parents to identify putative genetic alter-
ations responsible for this phenotype. WES was performed
on genomic DNA prepared from the patient and the parents’
blood samples. The mean coverage of the exome-wide re-
gions was 139.09, 119.25, and 148.62 reads, corresponding to
a coverage of at least 10 reads of 95.99, 95.91, and 96.08% of
the exome for the patient, mother, and father, respectively.
In our variant analysis, we prioritized variants that were rare
in the healthy population according to GnomAD v3 database
(<1%), the variants predicted to be deleterious on protein
function according to SIFT and PolyPhen tools, and trans-
mitted as compound heterozygous or arose de novo, consist-
ent with the non-consanguineous and healthy parent context
(Table S1).
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Among these pertinent variants, the only one that
could explain the patient’s phenotype was the de novo
synonymous variant ¢.702G>T (transcript NM_
004247.4) in the exon 9 of EFTUD?2 at position chrl7:
42956924 (GRCh37/hg19) in the patient (Fig. 1a). This
variant replaces a GGG codon to GGT, resulting in the
retention of glycine at amino acid residue 234
(p.G234G). According to ACMG 2015 guidelines [8],
this variant is classified as having unknown significance.
Sanger sequencing confirmed that neither parents car-
ried the variant (Fig. 1b). The variant is located in the
G-domain of the protein, which is known to bind and
hydrolyze GTP and a site of other variants of EFTUD?2
gene that are associated with MFDM (Fig. 1c). As
MFDM disease patterns seem to correspond closely to
the symptoms of the patient (Table 1), we decided to in-
vestigate the potential impact of this synonymous variant
on EFTUD?2 function.

The T allele at this position is novel in all public data-
bases, including the NHLBI Exome Sequencing Project,
the 1000 Genomes Project, and GnomAD v3, suggesting
very high conservation of the G allele in the population.
The mutated residue is the last nucleotide of exon 9, lo-
calized at the exon/intron junction adjacent to the splice
donor site GT (c.702+1 and +2). According to three
splicing prediction tools - SpliceSiteFinder-like (SSF),
MaxEntScore (MES) and Human Splicing Finder (HSF)
- our variant affects the donor splice site by creating an
alternative cryptic donor site “GT” preceding the original
one (Fig. 2a, b).

To test the prediction, we investigated the conse-
quence of the variant on the splicing of EFTUD2 gene
in vivo, in peripheral blood of the proband and her par-
ents. After RNA isolation from leukocytes, we performed
an RT-PCR and amplified 360 bases covering exon 8 to
exon 12 of EFTUD2 ¢cDNA. We observed in all three in-
dividuals the expected PCR product band of ~ 360 bp
and an additional PCR product of ~280bp in the pro-
band only (Fig. 3a). This result suggests deletion of
about 80 bp in the patient’s EFTUD2 cDNA.

The sequencing of the alternative cDNA showed complete
deletion of exon 9 (Fig. 3b and c). As the exon 9 length is
not a multiple of 3 (83 bp), its deletion would trigger a frame-
shift leading to a premature stop codon that truncates the
protein ¢.620_702del, p.His209Aspfs*25 (Supplementary
Fig. 1). This result demonstrates that the de novo synonym-
ous variant identified in EFTUD?2 is responsible for the spli-
cing defect leading to the skipping of exon 9, an exon that is
present in all splice isoforms of EFTUD2.

Patients
The patient was recruited at the “Unité de Diagnostic
Prénatal - CPDP” of the American Hospital of Paris. The
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Fig. 1 Identification of the de novo variant in the patient. a The graphs present the Whole Exome Sequencing pile-up reads of the region of
interest. The red lines highlight the identified de novo NM_004247.4 c.702G > T variant in EFTUD2 gene in the patient (Top graph) compared to
its parent. b Electropherograms from Sanger sequencing of a nucleotide change from G to T in the proband (Daughter) compared to her
parents. This variant is a heterozygous variant as both alleles harbor a different nucleotide. ¢ Schematic view of EFTUD2 protein structure, with the
location of ¢.702G > T, p.Gly234Gly and of some other variants of different types causing MFDM disease. The synonymous variant identified in our
patient is in red, missense mutations are shown in blue, truncating (nonsense and frameshift) mutations are shown in black, and the intron splice
donor mutation is shown in green
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Table 1 Detailed clinical features of our patient compared to the spectrum of clinical symptoms observed in patients with MFDM

Features Our patient All reported individuals Estimated penetrance (%)
Craniofacial
Micrognathia Yes 87/89 98
Small or dysplastic pinna(e) Yes 84/87 97
Malar hypoplasia Yes 78/84 93
Hearing loss Yes 69/83 83
Conductive No 32/51 63
Mixed No 13/51 25
Sensorineural Yes 7/51 12
Auditory atresia /stenosis No 47/73 64
Vestibular system abnormalities No 14/25 56
Ossicular abnormalities No 8/15 53
Facial asymmetry No 25/47 53
Preauricular tag(s) No 45/86 52
Cleft palate No 41/88 47
Choanal atresia No 27/83 33
Neonatal resuscitation No 14/46 30
Tracheostomy No 10/50 20
Limitation of mouth opening Yes 7/85 8
Extracranial
Thumb anomalies No 24/77 31
Heart defects No 28/89 31
Esophageal atresia No 23/85 27
Renal malformation No 9/85 10
Development
Developmental delay Yes 83/83 100
Microcephaly Yes 78/89 88
Congenital No 34/53 64
Postnatal Yes 19/53 36
Epileptic seizures Yes 21/77 27

parents gave their signed informed consent for the clin-
ical exome sequencing of their child and themselves.

Whole exome sequencing

Genomic DNA was isolated from peripheral blood using
standard protocols. Exome sequencing libraries were
prepared with the TruSeq Exome Kit (Illumina, San
Diego, CA, USA) following the manufacturer’s recom-
mendations. Paired-end (2 x 75 bp) sequencing was per-
formed on a NextSeq500 sequencer (Illumina, San
Diego, CA, USA).

Bioinformatic analysis

FastQ data were aligned to the GRCh37 (hgl9) reference
genome with bwa-0.7.12 [9], sorted and indexed with
samtools-1.2 [10], deduplicated with PICARD-1.110, and
base corrected and indel realigned with GATK-3.8 [11,

12]. Variant calling was done with GATK-3.8 Haplotype-
Caller in GVCF ERC mode. Variants were called individu-
ally for each sample and then combined with GATK-3.8
GenotypeVCFs to produce a combined VCF. The com-
bined VCF was then uploaded and analyzed with Ingenu-
ity Variant Analysis software. Alignments were visualized
with GenomeBrowse (Golden Helix - Massachusetts).
FastQC-0.11.5 was used to calculate quality metrics for
FastQ files and Qualimap-2.2.1 [13] was used to calculate
coverage statistics using the truseq-exome-targeted-re-
gions-manifest-vl—2.bed file. The reference file used for
alignment and variant calling was human_glk_v37 fasta
which was provided with the GATK b37 resource bundle.

RNA isolation and RT-PCR
Peripheral blood samples from the proband and her par-
ents were used for the analyses in this study. Peripheral
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blood mononuclear cells were isolated by Ficoll-Paque™
density gradient centrifugation. After total RNA extrac-
tion using Trizol, Reverse-Transcription and PCR were
performed as described in [14]. Forward and reverse pri-
mer sequences purchased from IDT were respectively:
5" GTGGAATACATGCTTATTAATCCATTGACC 3’
and 5" GAGCAAGAGAGAGGTGTAGGCATC 3'.

PCR products were analyzed on a 2% agarose gel as
described in [14]. Finally, we used PCR clean-up gel ex-
traction from Macherey-Nagel to isolate DNA bands
from the agarose gel for sequencing.

Sanger sequencing

The EFTUD? variant was validated using capillary Sanger
sequencing. Briefly, a 262 bp DNA stretch of EFTUD2 was
amplified using the Expand Long Template PCR System
(Roche, Meylan, France), following the manufacturer’s
recommendations. The PCR primer pair was 5 -TTCAAG
TTCTCTGGCTCCCA-3" (forward) and 5'-CCCTCAGT
TCACCCTACCAG-3’ (reverse). After purification with
the Exostar kit (GE Healthcare, Little Chalfont, UK), PCR
products were bi-directionally sequenced with the same
primers using Big Dye Terminator Kit v3.1 (Life

Technologies). Sequence reactions were run on an ABI
PRISM 3730xl sequencer (Life Technologies).

Discussion and conclusions

The increased access to next-generation sequencing for
clinical purposes has allowed the identification of thou-
sands of novel pathogenic variants in different individ-
uals. One of the main challenges in clinical genetics is
the interpretation of pathogenicity from a sea of variants
that remain largely of unknown significance.

Synonymous variants are often interpreted by default
as being silent and benign given their predicted null im-
pact on the protein sequence. However, there is evidence
for some synonymous SNVs to affect RNA splicing, ex-
pression, folding and ultimately function, and, in doing
so, contribute to the pathophysiology of many diseases
[15-17].

In this case study, we report a synonymous ¢.702G > T
variant in the EFTUD?2 gene. This variant has not previ-
ously been reported in the literature and is absent from
large population databases (GnomAD, 1000 Genomes);
without further analysis, our initial classification would
have been of uncertain significance. However, in silico
analysis predicted the disruption of normal splice site,
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Fig. 3 NM_004247.4 (EFTUD2): c.702G > T variant induces exon skipping. a Electrophoresis gel of EFTUD2 cDNA obtained after amplification of the
variant region from the proband and its parents. The proband displays two bands, one at 360 bp and one at 280 bp. b Electropherogram from
Sanger sequencing 360 bp and 280 bp bands from the electrophoresis gel in A. The exon 8 is highlighted in red, the exon 9 in green and the
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prompting in vitro investigation of its biological signifi-
cance. The sequencing of the whole exome did not iden-
tify other deleterious variants that could be of clinical
interest. Although we cannot exclude the presence of
relevant deleterious variations in the non-coding regions,
the strong correlation between the patient’s phenotype
and the clinical consequence of heterozygous alteration
of EFTUD?2 was sufficient to assume its implication in
the disease.

The synonymous variant modifies the consensus se-
quence between exon 9 and intron 9 from GGG|gt to
GGT|gt. In contrary to in silico prediction tools that pre-
dicted the creation of an additional GT donor site (Fig. 2),
the study of cDNA from blood showed that this variant
disrupts the recognition of the donor site by the splicing
machinery and results in complete skipping of exon 9.
This result could give a hint to the limitations of predict-
ive splicing tools that do not predict the disruption of the
splice site induced by this variant. Our study is the first
description of synonymous SNV of EFTUD?2 in an MFDM
patient. Studying cDNA from blood can have some limita-
tions mostly if the gene of interest has different transcripts
with a tissue-specific expression; however, we ensured that
the EFTUD?2 gene is ubiquitously expressed and that the
different transcripts do not present differences such as al-
ternative splicing in the region of interest.

Some exonic regions are involved in splicing regula-
tion in highly conserved sites called exonic splice en-
hancers (ESEs) [18]. In 80% of splicing consensus sites,
the last nucleotide of the exon is a “G” which is highly
important for the recognition by the splicing machinery
[19]. Recently, Savisaar et al. showed that ESEs are under
strong selection pressure at synonymous sites, suggesting
that synonymous variants in these sites may be a com-
mon cause of single-locus genetic diseases [20]. A dele-
terious missense variant in the last G nucleotide
resulting in exon skipping has already been reported in
BRCAI in 2 patients who developed breast cancer at a
young age [21] and in a patient with retinitis pigmentosa
[22]. To our knowledge, our study is the first to report a
deleterious synonymous variant in the final nucleotide of
an exon that results in exon skipping.

In conclusion, synonymous variants should not be dis-
regarded especially when they are predicted to affect
splicing according to in silico tools. This study provides
important evidence for the classification of such
variants.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512881-020-01121-y.

Additional file 1: Supplementary Fig. 1. mRNA sequence of the WT
allele versus the mutant allele. The exon 9 skipping in mutant allele is
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predicted to cause a frameshift, leading to a premature codon stop. The
exon 8 is in red, exon 9 in green and exon 10 in blue.

Additional file 2: Table S1. Number of prioritized variants during the
WES data filtering analysis.
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