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Abstract

Background: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9
gene cause RHUC type 1 (RHUCT) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular
reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2
and SLCT7AT. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be
involved in insulin secretion from pancreatic 3-cells. On the other hand, a myriad of genes are responsible for the
impaired insulin secretion independently of urate metabolism.

Case presentation: \We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8—
7.0 mg/dl), 41.6 umol/l (226-416 umol/l)) and diabetes with impaired insulin secretion. His high urinary fractional
excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 ug/day) were compatible with the diagnosis of
RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates
and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the
insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found
homozygous Trp258% mutations in SLC22A12 gene causing RHUCT while concurrent mutations reported to be
associated with hyperuricemia were also discovered including ABCG2 (GIn141Lys) and SLCT7AT (Thr269lle). SLC2A9,
that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-
synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we
embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple
mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic B-cells. Among them, the
Leu80fs in the homeobox gene NKX6.1 was an unreported mutation.
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functions that deserve further scrutiny.

Conclusion: We found a case of RHUCT carrying mutations in SLC22A12 gene accompanied with compensatory
mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with
opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be
responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic {3-cell
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Background

The serum urate concentrations are tightly regulated
through multiple complex processes including hepatic
production and renal excretion as well as intestinal se-
cretion [1, 2]. The renal tubular transport of urates is
regulated bidirectionally [3]: The reabsorption is regu-
lated mainly through two major solute carrier (SLC)
transporters, SLC22A12 (also known as URAT]I, urate
anion transporter 1) [4, 5] or SLC2A9 (also known as
GLUTY, glucose transporter 9) [6—8] while several trans-
porters for excretion have been identified including
ABCG2 (ATP-binding cassette transporter G2) [9, 10],
ABCCH4 [11], SLC17A1 [12, 13] and OAT (organic anion
transporter) family members [11]. The net renal urate
excretion is largely determined by the balance of these
reabsorption and excretion. The loss of function muta-
tions in SLC22A12 and SLC2A9 causes renal hypourice-
mia (RHUC) type 1 and type 2, respectively [14]. The
SLC22A12 is expressed at the apical membrane of

proximal tubules while SLC2A9 isoforms are localized to
both the apical and basolateral membrane [11] (Fig. 1).
As exemplified by the fact that SLC2A9 facilitates the
transport of not only urates but also glucose and fructose,
urate metabolism is closely interconnected with glucose
metabolism. Indeed, both positive and negative correla-
tions between serum urates and blood glucose have been
demonstrated. Insulin resistance increases serum urate
levels independently of obesity [15]. Based on this positive
correlation, serum urate levels were proposed as a poten-
tial predictor of type 2 diabetes occurrence [16]. Despite
the accumulating observations supporting this positive
correlations, negative correlations have long been well ap-
preciated clinically as well [17, 18]. Renal urate excretion
has been known to be competed with glycosuria [19], that
might be at least in part explained by the dual transport-
ing properties of SLC2A9 for glucose and urates [20].
Moreover, SLC2A9 has been reported to be expressed in
pancreatic p-cells where SLC2A9 was proposed to

basolateral
i

Fig. 1 Schematic description of urate transport in renal tubular cells. Arrows indicate the direction of urate transport
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facilitate the glucose uptake to increase glucose induced
insulin secretion [21].

Here we report a case with severe hypouricemia ac-
companied by diabetes with impaired insulin secretion
where whole exome sequencing revealed gene mutations
responsible for these metabolic disorders.

Case presentation

A 67 year-old Japanese man was referred to our hospital
for the treatment of diabetes with the concomitant con-
cern about his severe hypouricemia. He was admitted to
our hospital and biochemical data were collected under
hospitalized conditions. On admission, his body mass
index (BMI) was 25.1 (height: 174.1 cm, weight: 76.2 kg),
excluding the possible contributions of obesity-induced
alteration of urate metabolism. Although the historical
onset and progression of his hypouricemia was unclear,
he exhibited severe hypouricemia with hyperuricosuria
(serum  urate levels: 0.7mg/dl  (3.8-7.0 mg/dl)
(41.6 pmol/l (226—416 pmol/l)), fractional excretion of
urate (FEUA) was 65.5%) without any signs of kidney
dysfunction (serum creatinine levels: 0.7 mg/dl, creatin-
ine clearance: 109.1 ml/min, estimated glomerular filtra-
tion rate (eGFR): 85.4ml/min/1.73m?). His urinary
fractional excretion of urates was elevated but relatively
modest compared to the reported cases of severe
hypouricemia [8, 22]. He did not have any past medical
history of either nephrolithiasis or exercise-induced
acute renal failure to which hypouricemia sometimes
predisposes [23].

We also assessed his glucose metabolism biochem-
ically. On admission, he was treated with 25 units of in-
sulin degludec with 1500 mg of metformin, 20 mg of
teneligliptin and 20 mg of tohogliflozin with 8.9% of gly-
cated hemoglobin (HbAlc) levels. Fasting and postpran-
dial serum C-peptide levels-blood glucose levels were
0.09 ng/ml - 5.67 mmol/l, 1.45ng/ml - 13.0 mmol/], re-
spectively while his urinary excretion of C-peptide was
25.7 pg/day, indicating impaired insulin secretion. Glu-
tamate decarboxylase (GAD) auto-antibody was nega-
tive, and he did not have any medical histories of
autoimmune diseases, excluding the possibility of auto-
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Table 1 Summary of the whole exome sequencing in this

study

Count
Total reads 64,961,412
Mapped reads 62,114,227
Not mapped reads 2,847,185
Reads in pairs 61,126,090
Broken paired reads 088,137

Discussion and conclusions

Considering the complex web of interconnections be-
tween urate and glucose metabolism, we attempted to
delineate the molecular basis behind the coprevalence of
diseases observed in this case by taking advantage of
whole exome sequencing. We extracted genomic DNA
from his peripheral blood mononuclear cells using the
QIAamp DNA Blood Maxi Kit (QIAGEN) and the se-
quencing library was produced by SureSelectXT Reagent
Kit/SureSelectXT Human all Exon Kit V6 (Agilent Tech-
nologies). The captured DNA was sequenced using the
Hlumina HiSeq2500 platform with paired-end reads of
100bp according to the manufacturer’s instructions.
Data analysis was performed using the CLC Genomics
Workbench (CLC Bio) and non-synonymous single nu-
cleotide variants (SNVs) were identified following the
standard workflow (Table 1). He provided written in-
formed consent and this study was approved by the Uni-
versity of Tsukuba Hospital Ethics Committee with the
protocol number H30-329.

Firstly, we found homozygous Trp258* mutations in
SLC22A12 gene (rs121907892), that is the most com-
monly observed dysfunctional mutation in Japanese
hypouricemic subjects (Table 2, Fig. 2a) [24, 25]. Inter-
estingly, we additionally found novel heterozygous
Glull0Lys mutation in SLC22A12 gene (Fig. 2b). This
mutation may be a C to T transition that occurred de
novo, which is most frequently encountered in both the
CpG and non-CpG context, typically being caused by
deamination of methylated cytosines [26]. The
GlullOLys mutation would not influence the urate
transport activity of SLC22A12 in this case since the
SLC22A12 with Glull0Lys mutation is truncated and

immune diabetes. inactivated by the Trp258* mutation. However,
Table 2 Representative gene mutations involved in urate metabolism found in this case

Gene Zygosity Read count Read coverage Mutation Amino acid change SNV
SLC22A12 Heterozygous 49 109 G>A Glu110Lys

SLC22A12 Homozygous 129 129 G>A Trp258* rs121907892
SLC2A9 Heterozygous 19 34 C>T Gly25Arg 152276961
SLC2A9 Heterozygous 84 190 C>T Arg265His rs3733591
ABCG2 Heterozygous 35 83 G>T GIn141Lys 152231142
SLC17A1 Homozygous 26 26 G>A Thr269lle 151169288
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Fig. 2 Hypouricemia associated genes. SLC22A12 and SLC2A9 mutations observed in this case. a SLC22A12 Trp258* mutation. b SLC22A12
Glu110Lys mutation. ¢ SLC2A9 Gly25Arg mutation. d SLC2A9 Arg265His mutation




Sekiya et al. BMC Medical Genetics (2020) 21:91

considering the fact that SLC22A12 is a urate-anion ex-
changer [4], charged residues would be playing funda-
mental role in the substrate recognition or maintenance
of the structural integrity. The mutation of an acidic
amino acid to a basic residue would significantly alter
ionic properties of SCL22A12 molecule. Whether
Glull0Lys mutation on its own is sufficient to cause
functional alteration of SLC22A12 and can be a risk al-
lele for dysregulation of urate metabolism in general
population awaits further investigation. On the other
hand, we found two non-synonymous mutations in
SLC2A9 gene, Gly25Arg (rs2276961) and Arg265His
(rs3733591), that are not causative for hypouricemia
(Fig. 2¢, d). Although the correlation between Arg265His
mutation and hyperuricemia remains enigmatic [6,
27-31], this mutation might play a compensatory role
in this hypouricemic case toward raising the serum
urate levels. We further examined other genes known
to be involved in urate metabolism. We found the
heterozygous ABCG2 GInl41Lys mutation (rs2231142)
[9, 10, 32, 33] that has been firmly established to be
associated with hyperuricemia as well as homozygous
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SLCI7A1 Thr269lle mutation (rs1165196) [12, 13]
also reported to be associated with hyperuricemia
(Fig. 3a, b). These mutations in two genes may con-
tribute to maintain his serum urate concentrations in
the presence of hypouricemia-prone mutations (Fig. 1).
Notably, ABCG2 has been reported to control serum
urate levels at the level of intestine [34, 35], therefore
excretion of urates into urine are increased while that
into intestine may be decreased in this case. This
study represents the first report showing RHUCI1 gene
mutations in the presence of hyperuricemia-prone
gene mutations. Since the net effect of multiple gene
mutations determines the serum urate levels, focused
sequencing approaches for limited genes may cause
some pitfalls and comprehensive cataloguing of gene
mutations linked to urate levels would offer a promise
to better understand the biochemical kinetics of urate
metabolism in human subjects, which is critically im-
portant since urate metabolism in humans is un-
equivocally different from that in animal models [36].
Although nephrolithiasis and exercise-induced acute
kidney failure, two major complications in RHUC,

A
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Fig. 3 Hyperuricemia associated genes. a ABCG2 GIn141Lys mutation. b SLCT7AT Thr269lle mutation
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Fig. 4 Mutations in HNF1A gene observed in this case. a lle27Leu, b Ser487Asn, ¢ Leu551Ser, d Ser581Gly
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Table 3 Representative gene mutations associated with diabetes found in this case

Gene Zygosity Read count Read coverage Mutation Amino acid change SNV

ABCCS8 Heterozygous 43 105 C>T Val1573lle 158192690
ABCC8 Heterozygous 33 60 C>A Ala1369Ser 1757110
HNFTA Heterozygous 72 156 G>A Ser487Asn 152464196
HNFTA Homozygous 130 131 T>C Leu551Ser rs1169304
HNFIA Homozygous 30 30 A>G Ser581Gly rs587778398
HNFTA Heterozygous 61 125 A>C lle27Leu 151169288
KCNJT1 Heterozygous 31 69 C>T Val250lle 155215
KCNJT1 Heterozygous 50 108 T>C Lys23Glu rs5219
MTNR1B Heterozygous 12 33 G>C Ala107Pro

NKX6.1 Heterozygous 14 42 Cinsertion Leu80fs

PAX4 Homozygous 31 31 T>C *341Trp rs712700
PAX4 Homozygous 13 13 T>G His319Pro 15712701
PCK1 Homozygous 53 53 G>C Val52Leu rs707555
TCF7L2 Heterozygous 73 143 C>A His475GIn Rs77961654
WFST Homozygous 200 200 G>A Val333lle rs1801212
WFST Homozygous 153 153 G>A Arg611His 15734312

have been reported to be observed mostly in RHUC2
[8, 37], these complications can be seen in RHUC1
with SLC22A12 Trp258* mutations as well [25]. The
patient did not have any past history of these compli-
cations, which might be in part explained by the pres-
ence of the compensatory and adaptive mutations.
While dysfunction of SLC2A9 has been implicated in
both hypouricemia [7, 8] and impaired insulin secretion
[21], we could not find either dysfunctional SCL2A9 mu-
tations or other gene mutations causative for both of
these two disorders. Therefore, we decided to search for
independent gene mutations that could explain his im-
paired insulin secretion. Among the mutations found in
genes associated with diabetes, the most promising was

HNFIA gene (Maturity onset diabetes of the young 3,
MODY3) [38, 39] where we found as many as four non-
synonymous mutations accumulated in this patient:
Mle27Leu (rs1169288) [40-42], Serd87Asn (rs2464196)
[40, 41], Leu551Ser (rs1169304) and Ser581Gly
(rs587778398) (Fig. 4a-d). Since it was reported that mu-
tations in exons 8-10 present only in the longest iso-
form of HNFIA gene are associated with a later onset of
MODY [43, 44], the latter two mutations may be of rele-
vance to phenotypic manifestations in this case. We add-
itionally found gene mutations in other genes associated
with diabetes (Table 3) among which heterozygous
Leu80fs in NKX6.1 was an unreported mutation of po-
tential interest (Fig. 5). The critical role of NKX6.1 in

419,120
|
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TGCGGGGGGCTGCCGAGGGATGAGAGNCCCCCCCGTGGCCGGGGGCTTCAGGCC
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGC(C
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC
TGCGGGGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC

52

Fig. 5 The novel mutation observed in NKX6.1 gene
A

14 GGGGCTGCCGAGGGATGAGAGCCCCCCCCGTGGCCGGGGGCTTCAGGCC
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insulin secretion from pancreatic -cells has been dem-
onstrated [45, 46] and this frame-shift mutation was
inserted way upstream of the DNA binding domain of
NKX6.1. Functional characterization of the mutant
NKX6.1 protein and whether this can be a risk allele for
diabetes in a large cohort deserve further investigation.
Collectively, accumulation of these gene mutations, ra-
ther than monogenic mutations, presumably contributed
to his impaired insulin secretion.

Analysis of genetic inheritability was very limited in
this study since he had only a child alive in his family
members to whom we were not able to reach. Analysis
with larger sample sizes or family-based linkage analysis
would help to resolve some questions raised in this
study.

In conclusion, we analyzed the genome from a patient
showing severe hypouricemia with diabetes with im-
paired insulin secretion using whole exome sequencing.
Interestingly he carried hypouricemic mutations in
SLC22A12 gene as well as hyperuricemia-prone muta-
tions. Although preceding studies have been sequencing
the mutations in specific genes of interest, it would be
helpful to sequence the genome in an unbiased manner
to better understand urate metabolism especially from a
kinetic point of view. The impaired insulin secretion
may be at least in part attributed to the multiple muta-
tions in HNFIA gene. We also identified novel muta-
tions in SLC22A12 and NKX6.1 genes that deserve
further scrutiny. This case study has instructive implica-
tions about how combined mutations in several genes
affecting pathophysiology could present clinical traits in
a body.
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