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Abstract

Background: Synonymous mutations have been identified to play important roles in cancer development,
although they do not modify the protein sequences. However, relatively little research has specifically delineated
the functionality of synonymous mutations in cancer.

Results: We investigated the nucleotide-based and amino acid-based features of synonymous mutations across 15
cancer types from The Cancer Genome Atlas (TCGA), and revealed novel driver candidates by identifying hotspot
mutations. Firstly, synonymous mutations were analyzed between TCGA and 1000 Genomes Project at nucleotide
and amino acid levels. We found that C:G→ T:A transitions were the most frequent single-base substitutions, and
leucine underwent the largest number of synonymous mutations in TCGA due to prevalent C→ T transition, which
induced the transformation between optimal and non-optimal codons. Next, 97 synonymous hotspot mutations in
86 genes were nominated as candidate drivers with potential cancer risk by considering the mutational rates across
different sequence contexts. We observed that non-CpG-island GC transition sequence context was positively
selected across most of cancer types, and different sequence contexts under which hotspot mutations occur could
be significance for genetic differences and functional features. We also found that the hotspots were more
conserved than neutral mutations of hotspot-mutation-containing-genes and frequently happened at leucine. In
addition, we mapped hotspots, neutral and non-hotspot mutations of hotspot-mutation-containing-genes to their
respective protein domains and found ion transport domain was the most frequent one, which could mediate the
cell interaction and had relevant implication for tumor therapy. And the signatures of synonymous hotspots were
qualitatively similar with those of harmful missense variants.

Conclusions: We illustrated the preferences of cancer associated synonymous mutations, especially hotspots, and
laid the groundwork for understanding the synonymous mutations act as drivers in cancer.

Keywords: Cancer, Synonymous mutations, Hotspot, Driver

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jfxia@ahu.edu.cn
†Yannan Bin and Xiaojuan Wang contributed equally to this work.
Institutes of Physical Science and Information Technology, School of
Computer Science and Technology, Anhui University, Hefei 230601, Anhui,
China

Bin et al. BMC Medical Genetics 2019, 20(Suppl 2):190
https://doi.org/10.1186/s12881-019-0926-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12881-019-0926-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jfxia@ahu.edu.cn


Background
Synonymous mutations, which occur in the gene-coding
regions without changing the encoded amino acids, have
long been supposed to be silent for the fitness of organ-
isms and neutral during evolution [1]. However, this
conservative concept begins to be rebutted by two lines
of evidence: first one is the understanding of synonym-
ous mutational effect on protein synthesis and folding;
second, codon usage bias reveals that synonymous co-
dons are under evolutionary pressure [2]. Because of the
degeneracy of the genetic codons, synonymous muta-
tions don’t changing the encoded amino acids, but
change the DNA and RNA sequence. Nevertheless, there
are growing evidences that the significant impact of syn-
onymous mutations on RNA splicing, stability and fold-
ing [3, 4], translation or co-translational protein folding
[5–8]. Chen et al. conducted a broad survey of 21,429
disease-related single nucleotide polymorphisms (SNPs)
to indicate that synonymous SNPs and non-synonymous
SNPs showed similar probability and effect size for hu-
man diseases [9]. In addition, some studies have identi-
fied that synonymous mutations frequently act as driver
mutations in human cancers [10, 11] and can affect clin-
ical outcome or treatment response [12–14].
As a complex genetic disease, cancer was affected by a

large number of variants. But to date, the targets of
drugs and treatments associated with cancer are limited
on a few genes, therefore, it is difficult to achieve cures
for cancer. Next-generation sequencing technology has
enabled the systemic analyses of huge variants in large
cohorts of cancer cases, e.g., The Cancer Genome Atlas
(TCGA) [15] and International Cancer Genome Consor-
tium [16]. Cancer genomes not only contain cancer-
causing driver mutations, but also many additional accu-
mulated passenger mutations without direct relation to
the tumor phenotype. It is a key step to identify driver
mutations for understanding cancer biology and evolving
targeted treatments. There were several methods focused
on predicting driver mutations, such as E-Driver [17],
MuSiC [18] and OncodriveCLUST [19]. Nevertheless,
those studies mainly focused on the missense mutations
and ignored the potential functions of synonymous mu-
tations. Although Silent Variant Analyzer [20] is a tool
for the annotation and prediction of pathogenic syn-
onymous mutations, the small datasets for training and
validation restrict its applicability. TCGA, using the lat-
est sequencing and analysis methods to identify somatic
variants across thousands of tumors, is found to meet
the data needs in this work [15, 21]. Additionally, more
recent studies have indicated that different substitution
types, codon usage bias and hotspot mutational positions
in base sequence could be associated with different bio-
logical processes and cancer types [2, 22, 23]. The hot-
spot mentioned in this work is not the hotspot in

protein-protein interfaces [24], and is defined as the mu-
tation that occurs significantly more frequently than the
background frequency characterized by genes, cancer
types and mutation subtypes.
In this study, we documented the full repertoire of

cancer associated synonymous mutations, especially syn-
onymous hotspot mutations, to investigate the muta-
tional signatures in cancer. To acquire insight into the
characters of pathogenic and neutral synonymous muta-
tions between cancer and benign samples, the differ-
ences of synonymous mutations at nucleotide and amino
acid levels (such as nucleotide substitutions, mutational
positions of codon and distribution of amino acids at
which synonymous mutations happened) were investi-
gated between datasets in TCGA and the 1000 Genomes
Project (1000G) (as neutral samples) [16]. And then, we
nominated synonymous hotspot mutations as candidate
drivers based on the mutational rates across different se-
quence contexts and investigated the features (such as
conservation, distribution of amino acids and protein
domains undergo mutations) of hotspots, neutral syn-
onymous mutations and non-hotspots in the hotspot-
mutation-containing-genes (HMCGs). For the compre-
hensiveness of analysis, this study not only highlights the
nucleotide level preferences, but also amino acids level,
and especially hotspot mutations. The observation could
add perspective to understand cancer-related synonym-
ous mutations. The procedure is illustrated in Add-
itional file 1: Figure S1.

Material and methods
Synonymous mutation dataset
The cancer related synonymous mutations in TCGA
were downloaded from COSMIC v79 (Catalogue of
Somatic Mutations in Cancer) [25]. We got 373,434 can-
cer related synonymous mutations obtained from 5749
tumor samples across 15 types of cancer: breast cancer
(BRCA), central nervous system tumor (CNST), cervical
adenocarcinoma (CEAD), endometrial adenocarcinoma
(ENAD), haematopoietic and lymphoid tumor (HLTU),
kidney carcinoma (KICA), large intestine adenocarcin-
oma (INAD), liver carcinoma (LICA), lung adenocarcin-
oma (LUAD), ovarian carcinoma (OVCA), prostate
adenocarcinoma (PRAD), skin cancer (SKCA), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA)
and urinary tract carcinoma (UTCA).
The aim of 1000G is to discover variants with a fre-

quency of occurrence > 1% in multiple human popula-
tions worldwide. In this study, 21,121 putatively benign
synonymous mutations were derived from 1000G (the
phase 3 version 5b, 20,130,502) and this dataset will be
referred to as the neutral synonymous mutations dataset
for the comparative analysis of cancer related synonym-
ous mutations.
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Statistical analyses
The majority of statistical analyses in this work were
completed by using R (https://www.r-project.org/), e.g.,
the distributions of synonymous variants across different
cancer types, nucleotide substitutions and amino acids.
Other statistical analyses were performed by GraphPad
Prism 5 (GraphPad Software). A p-value < 0.05 was con-
sidered statistically significant.

Hotspot mutations identification
Here we used the Hot-Driver package [26] to identify
the hotspot mutations that are positively correlated with
the number of mutations across all cancer samples for
all 15 cancer types. The Hot-Driver suite assigns muta-
tions to six subtypes: AT transition (ATts), AT transver-
sion (ATtv), non-CpG-island GC transition (NC_GCts),
non-CpG-island GC transversion (NC_GCtv), CpG-
island GC transition (C_GCts) and CpG-island GC
transversion (C_GCtv). Based on mutational significance
of each mutation subtype on amino acid position, a stat-
istical method combines the significance level of differ-
ent mutation subtypes to calculate the overall p-values
(Poisson distribution and Fisher’s test). We reported hot-
spot mutations in amino acid position with adjusted p-
values < 0.05 corrected by false discovery rate. Lastly, in
this study, to avoid the bias of background number of
passenger mutations, we only selected the hotspot muta-
tions that predicted as the pathogenic mutations by
Functional Analysis through Hidden Markov Models
[25].
To further investigate the mutational signatures of

hotspot mutations, neutral synonymous mutations of
HMCGs in 1000G and the non-hotspot mutation of
HMCGs in TCGA were used as control datasets. These
three datasets were applied for the further functional
analyses, for example, conservation, amino acids and
protein domains under which mutations occurred.

Conservation comparison
The conservation of nucleotide sequence for each gene
was assessed by rejected substitution (RS) score, com-
puted by GERP++ [27]. In this work, RS scores were
extracted from the nucleotide bases that belong to
hotspot mutations, neutral synonymous mutations of
HMCGs in 1000G and non-hotspot mutations of
HMCGs in TCGA, respectively. Single-tailed unpaired
t-test was used to test significantly difference between
hotspot mutations, neutral synonymous mutations and
non-hotspot mutations.

Protein domain annotation
We mapped the hotspot mutations to conserved protein
domains obtained from Pfam-A (version 29.0), a data-
base of protein domain families [28], and manually

curated data were used in this work. Since genes that
shared a common domain are more likely to share re-
lated functions, the important mutations in certain genes
tend to cluster in close proximity within functional do-
mains [18, 29, 30].

Results and discussion
Synonymous mutation distribution across cancer types
From TCGA, we obtained 373,434 synonymous mutations
of 5749 tumor samples from 15 types of cancer. As seen in
the upper panel of Fig. 1, with regard to synonymous muta-
tion proportion (blue bar), SKCA is the largest and HLTU
the smallest. For the proportion of tumor samples (yellow
bar), BRCA is the most and UTCA the fewest. Moreover,
the average numbers of variants per sample across 15 can-
cer types are different with each other (the lower panel of
Fig. 1), and exhibit many more or many less synonymous
mutations per sample than the average number of 15 can-
cer types. Notable among these outliers are SKCA, ENAD,
STAD and LUAD, which contain more than 100 synonym-
ous mutations per sample. These larger numbers of
mutations reflect the participation of potential factors
(ultraviolet light, hyperestrogenism, Helicobacter pylori in-
fection and cigarette smoke, respectively) in the pathogen-
esis of these cancer types [22, 31–33]. Due to ultraviolet
light and deamination processes, the majority of SKCA mu-
tations are C:G→T:A transitions [22]. Additionally, it has
been reported that the mutations occur at methylated CpG
dinucleotide, majority of which are C:G→T:A transitions,
would significantly cause human genetic diseases [34].
Studies have shown that nucleotide substitutions, including
synonymous mutations, could be related to carcinogen ex-
posures and DNA repair processes [35–37].

Synonymous mutational nucleotide substitutions
Distribution of 12 possible mutational nucleotide substi-
tution patterns of synonymous mutations across the 15
cancer types was shown in Fig. 2. The greatest frequently
occurring is C→ T transitional substitution (with aver-
age proportions of 44.01% across 15 cancer types), which
is possible to associate with the aberrant DNA methyla-
tion [38–40]. SKCA contains the largest proportion of
C→T transitions than other cancer types, owing to the
signatures of ultraviolet light exposure and deamination
processes [22]. Among transversions, the C→A substi-
tution is the most frequent one (6.18%). As a result of
signature smoke exposure, LUAD has an increased C→
A transversions [33]. At 5-methylcytosine in CpG dinu-
cleotides, C:G→ T:A transitions and C→A transversion
are associated with the most common epigenetic modifi-
cations of DNA [34, 35]. Moreover, due to the over-
abundance of synonymous sites involved in CpG
dinucleotides, the mutation rate in exons is 30~60%
higher than that in the non-coding regions [41]. It is
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found that the percentage of transitions between C and
T preceded that between A and G, which is known to be
a general property of DNA sequence change and evolu-
tion [42]. Moreover, the most frequently substituted
bases are C and G, and the most frequently mutated to
bases are T and A. Cancer associated synonymous muta-
tions have the tendency to become A/T-rich. Previous
study has proposed that special A/T-rich sequence bind-
ing protein acts as a global chromatin organizer for
metastatic activity by controlling gene expression [43].

Comparisons between TCGA and 1000G datasets
At nucleotide level, owing to the degeneracy of genetic
codons, the nucleotide substitutions of synonymous co-
dons occur at the third codon position (pos3), except
some L and R codons (only T↔C transition and A↔C
transversion) vary at the first codon position (pos1)
(Additional file 1: Table S1). Similar with the distribu-
tions of mutational types in TCGA dataset, the most
frequency mutational nucleotide changes in 1000G data-
set are also C→ T and G→A transitions (Fig. 3a).

Fig. 1 Distribution of synonymous variants, tumor samples across different cancer types. Upper panel: blue and yellow bars represent the
proportions of synonymous variants and corresponding tumor samples, respectively. Lower panel: Green bar represents the average numbers of
variants per sample. The x-axis represents the cancer types

Fig. 2 Distribution of 12 possible mutation patterns of synonymous mutations in different cancer types. The x-axis represents the cancer types
and the y-axis represents the 12 mutation patterns. Each bar represents the percentage of mutational types. ‘All’ in this figure represents the
average proportions of mutational types across 15 cancer types
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However, there are some differences for proportions of
mutational nucleotide changes between TCGA and
1000G datasets. Firstly, we investigated the differences
by performing a one-sample t-test, and the average pro-
portion of each substitution in 1000G dataset was used
as hypothetical value. A p-value < 0.05 is considered to
be significant. The distributions of single-base muta-
tional nucleotide changes in TCGA dataset are signifi-
cant different from those in 1000G datasets (p-value <
0.001) except T→G transversion at pos3 (p-value =
0.8066). The non-significant different may be due to the
less effect of T→G transversion on the transformation
between efficient codon and lower efficient codon, which
can affect protein production. Secondly, based on the
significant differences, the single-base substitutions in
TCGA dataset are apt to G:C→A:T transitions, in con-
trast, these substitutions in 1000G are T:A→C:G transi-
tions. Synonymous mutations in TCGA are prone to
become A/T-rich. In a previous study, it was reported
that A/T-rich sequence could affect gene expression and
be more important for cancer development [43].
Besides nucleotide level, the analysis of synonymous

mutations was also performed at the amino acid level.
Except Met (M) and Trp (W), all amino acids are
encoded by two or more codons. The correlation be-
tween the percentages of mutation and the codon num-
bers of amino acids in TCGA (r2 = 0.67) is stronger than
that in 1000G (r2 = 0.54) (Additional file 1: Figure S2).
DNA sequences of diverse organisms have shown that
synonymous codons of amino acids are used with un-
equal frequency [44]. The codon usage bias is related to
various biological processes, such as gene expression
level, protein structure, mutation frequency and GC

composition [45]. However, it is probable that the uses
of synonymous codons in TCGA tend to be at equal fre-
quencies, and are less affected by codon usage bias than
those in 1000G. Furthermore, the efficient codon re-
placing with a less efficient one could affect protein syn-
thesis. Because the abundance of cognate tRNAs
involved in preferred codons are available within the cell,
the use of efficient codons could increase the gene ex-
pression [6]. Therefore, it is proposed that the cancer re-
lated synonymous mutations prefer to influence the
gene expression and are more pathogenic than neutral
ones in TCGA.
In TCGA and 1000G datasets, the mutational propor-

tions of 18 amino acids with two, three, four or six-fold
degenerate codons are different with each other (Fig.
3b). In 1000G, Ala is the most frequently mutated amino
acid due to G→A transition. And this transition is asso-
ciated with two of four Ala’s codons, but independent of
the transformation between optimal and non-optimal
codons [10]. In TCGA, synonymous mutations are dom-
inated by Leu (L) due to prevalent C:G→ T:A transi-
tions. It is similar with the character of pathogenic
missense mutations, the substitutions under L are also
the most frequent [46]. It is notable that among the
three amino acids with six synonymous codons, Arg (R)
shows the fewest number of mutations not only in
TCGA but also in 1000G, which may be associated with
the synonymous codon usage bias (R has only one opti-
mal codon while Ser and L both have two optimal co-
dons). In summary, it is possible that synonymous
mutations under L may have more important effect on
gene expression and protein production than the muta-
tions of other amino acids during biological processes.

Fig. 3 Mutational signatures of synonymous mutations in TCGA and 1000G. a Distribution of synonymous mutations for the 12 mutation patterns
at pos1 and pos3 of codons in TCGA and 1000G. b Proportions of 18 amino acids with two, three, four or six-fold degenerate codons under
which synonymous mutations occurred. Orange bar represents the proportion of mutations in TCGA and grey bar represents that in 1000G. 2, 3,
4, and 6 codon represent the numbers of synonymous codons, respectively
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Synonymous hotspot mutations for cancer
In this work, the hotspot mutation is defined as the mu-
tation that occurs significantly more frequently than the
background frequency characterized by genes, cancer
types and mutation subtypes. In this study, we identified
97 hotspot mutations in 86 HMCGs associated with 14
cancer types (Additional file 1: Table S2). There is none
hotspot mutation in HLTU due to the lowest mutation
frequency (Fig. 1). To investigate the differences across
cancers, we compared the number of synonymous hot-
spot mutations in different cancer types. From the distri-
bution of hotspot mutations across cancers (Additional
file 1: Figure S3A), it was found that the number of hot-
spot mutations varies largely from one cancer to an-
other, many more or many fewer mutations than
average. For example, INAD has the largest number of
hotspots (39 hotspots), but ENAD and STAD only have
13 hotspots with the smallest number, and HLTU has
none. The enrichment of hotspot mutations reflects the
genetic heterogeneity of INAD, which has been dis-
cussed in previous research [47]. And heterogeneity may
affect the progression of INAD from the early to the ad-
vanced stages, drive phenotypic variations and present a
significant challenge to personalized medicine. By con-
trast, HLTU has none hotspot and THCA has only one
hotspot mutation in ILF3 (N192). In addition, to esti-
mate the important synonymous mutations for pan-
cancer, the distribution of hotspot mutations across dif-
ferent genes was analyzed (Additional file 1: Figure S3B).
T125 in TP53 is the most prevalently occurred mutation
in nine different cancer types. It has been identified to
be pathogenic for its detrimental role in TP53 splicing
[48]. It is also found that most hotspots are unique for
only one cancer type. The common and diverse

mutational signatures of hotspots across different cancer
types may promote the understanding of the positive se-
lection in the human genome, and facilitate the cancer
target therapy [26].
The mutational characters of 97 hotspot mutations

across 14 cancer types were also investigated under dif-
ferent sequence contexts, including ATts, ATtv, C_GCts,
C_GCtv, NC_GCts and NC_GCtv six subtypes. From
the distribution of hotspot mutations under different
subtypes of sequence contexts (Fig. 4a), the number of
hotspot mutations under NC_GCts sequence context
(consists of C:G→ T:A transitions) is the largest one
compared with the other types, and that under ATtv
(consists of A:T→C:G and A↔T transversions) is the
least one. This phenomenon is due to the most fre-
quency of C→T and G→A transitions and least fre-
quency of A:T→C:G and A↔T transversions (Fig. 3a),
which correspond to the NC_GCts and ATtv sequence
contexts, respectively. As seen in Fig. 4b, the most wide-
spread sequence context undergoes hotspots is NC_
GCts sequence context, which presents in 14 cancer
types. And it is also the most prevalent sequence con-
text in nine cancer types (CEAD, CNST, ENAD,
INAD, KICA, PRAD, SKCA, STAD and THCA).
Moreover, in CEAD and THCA, the hotspots are only
enriched in NC_GCts. However, in LUAD, the hot-
spot mutations are enriched in NC_GCtv sequence
context. In LICA, OVCA and UTCA, the sequence
contexts under which hotspot mutations occur are
equal. In summary, NC_GCts sequence context is
positively selected across most cancer types, and dif-
ferent sequence contexts on which hotspots happen
are significant for considering their genetic differences
and functional features.

Fig. 4 Mutational signatures of synonymous hotspot mutation in 15 cancer typers. a Histogram of the number of hotspot mutations under
different sequence contexts. b Bar diagram where the value 100% represents the total number of mutations under different sequence contexts
distributed in each cancer type. ATts, AT transition (coral bar in a and b); ATtv, AT transversion (blue bar in a and b); C_GCts, CpG-island GC
transition (yellow bar in a and b); C_GCtv, CpG-island GC transversion (rose bar in a and b); NC_GCts, non-CpG-island GC transition (green bar in
a and b); NC_GCtv, non-CpG-island GC transversion (grey bar in a and b)
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Conservation comparison
It is customary for mutations with important functional
and evolutionary implications located in highly conser-
vative region and protein domains. To evaluate the con-
servation of hotspot mutations, neutral synonymous
mutations of 86 HMCGs in 1000G (235 neutral syn-
onymous mutations were shown in Additional file 2:
Table S3) and non-hotspot mutations of HMCGs in
TCGA (1358 non-hotspot mutations were shown in
Additional file 3: Table S4), we computed their RS
scores to estimate the evolutionary constraints across
different genome sites. As shown in Fig. 5, the RS scores
of hotspot mutations are significantly higher than those
of neutral synonymous mutations in 1000G (p-value <
2e-16). In contrast, there is no significantly different be-
tween hotspot and non-hotspot mutations (p-value =
0.93), it is possible that the non-hotspot in TCGA might
influence cancer processes, but their harmfulness is less
than that of hotspots. The result suggests that the sites
which hotspots occur on are more conservative than
those of neutral synonymous mutations. As potential
driver mutations, these hotspots may be more important
for cancer development.

Amino acids analysis
To further investigate the difference among hotspot mu-
tations, neutral synonymous mutations and non-hotspot
mutations of HMCGs, the distributions of amino acids
under which the mutations occurred were investigated
(Fig. 6). There is none synonymous mutation under Met
and Trp due to the lack of synonymous codons. Clearly,

the distributions of amino acids are different for the
three synonymous mutation datasets. In hotspot muta-
tion dataset, L and Phe (12.37 and 11.34%, respectively)
are the most mutated amino acids due to prevalent C→
T transition, which is involved the transformation be-
tween optimal and non-optimal codons. As an important
amino acid of leucine-rich repeats, L is associated with a
versatile structural framework for the formation of
protein-protein interactions [49]. However, for neutral
mutation dataset, the most frequent substitutions are
under Ala (14.44%), which is largely tolerated outside
functional site as the smallest residues can be fitted into
structures easily. Among non-hotspot mutations, the
most frequent substitutions are under L (14.51%). The
distributions of the hotspot and neutral synonymous
mutations are quantitatively similar to those of missense
mutations published previously [46].

Domain characterization
We also investigated the domain compositions of the
proteins, under which hotspot mutations, neutral syn-
onymous mutations of HMCGs in 1000G and non-
hotspot mutations of HMCGs in TCGA occurred.
Thirty-five different Pfam domains were detected in the
proteins under which the hotspot mutations occurred,
whereas 29 and 91 protein domains under which neutral
synonymous and non-hotspot mutations happened, re-
spectively. It is found that nine domain types are com-
mon to hotspot, neutral synonymous and non-hotspot
mutations (Fig. 7a), including 7 transmembrane receptor
domain (7tm_1, PF00001), cytidine and deoxycytidylate
deaminase zinc-binding region domain (dCMP_cyt_
deam_1 domain, PF00383), nucleotide-binding domain
(cobW domain, PF02492), Hsp70 protein domain
(HSP70 domain, PF00012), ion transport protein domain
(Ion_trans domain, PF00520), immunoglobulin I-set do-
main (I-set domain, PF07679), laminin N-terminal do-
main (Laminin_N domain, PF00055), membrane-bound
O-acyltransferase family domain (MBOAT domain,
PF03062) and transmembrane protein 67 domain
(Meckelin domain, PF09773). The functions of these do-
mains are different from each other. As rhodopsin-like
receptor, 7tm_1 domain comprises the group of G
protein-coupled receptor and encompasses a wide range
of functions such as various autocrine, paracrine, and
endocrine processes. dCMP_cyt_deam_1 domain is the
cytidine and deoxycytidylate deaminase zinc-binding
region, which is associated with the catalytic activity of
cytidine deaminase. cobW domain contains a
nucleotide-binding loop and a histidine-rich region that
plays an important role in metal binding. HSP70 domain
is strongly upregulated by heat stress and toxic chemi-
cals, particularly heavy metals. Ion_trans domain con-
tains sodium, potassium and calcium ion channels, and

Fig. 5 Comparison of RS scores between the datasets of hotspots
and neutral synonymous mutations, non-hotspots. Hotspot
represents hotspot mutations; 1000G represents neutral synonymous
mutations of HMCGs in 1000G dataset; Non-hotspot represents non-
hotspot mutations of HMCGs in TCGA dataset. The RS score of
hotspot mutation dataset is significant higher than that neutral
synonymous mutation dataset (p-value <2e-16). But there is no
significant different between hotspot and non-hotspot datasets (p-
value = 0.93) for RS score
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a loop flanked by two helices determines ion selectivity.
I-set domain is not only frequent in cell adhesion pro-
tein, but also appears in many other types of proteins
[50]. Laminin_N domain is extracellular matrix molecule
and MBOAT domain contains various acyltransferase
enzymes. Then we analyzed the distributions of hotspot,
neutral synonymous and non-hotspot mutations under
the nine common protein domains. Among these nine
domains, the Ion_trans domain is the most frequent one
(28 items), but the proportion of hotspots is less than
those of neutral synonymous mutations and non-
hotspots (Fig. 7b). As an important target for tumor
therapy [51], Ion_trans domain is critical for cell-to-cell
communication and regulates multiple biological pro-
cesses. However, the analysis of synonymous mutation

distribution in Ion_trans domain is opposite with the
previous analysis of missense mutations [46], which may
be due to the different pathogenic mechanisms of syn-
onymous and non-synonymous mutations. 7tm_1 do-
main is the highest proportion of hotspot mutations and
consists of the group of G protein-coupled receptor,
which could promote cancer metastasis [52].

Conclusions
In this study, we not only investigated the distribution
and mutational nucleotide changes of synonymous mu-
tations across 15 cancer types, but also made the com-
parison of synonymous mutational signatures between
TCGA and 1000G at nucleotide and amino acid levels.
Meanwhile, we nominated 97 hotspot mutations in 86

Fig. 6 Radar diagrams showing the distributions of amino acid at which mutations occurred. a Hotspot mutations; b Neutral synonymous
mutations of HMCGs in 1000G dataset; c Non-hotspot mutations of HMCGs in TCGA dataset

Fig. 7 Analysis of mutation distribution in protein domains. a Venn diagram showing the number of domain types for the multiple intersections
among hotspot mutations, neutral synonymous mutations and non-hotspot mutations. b Bar diagram where the value 100% represents the total
number of mutations in the nine protein domains common to hotspot, neutral synonymous and non-hotspot mutations. Blue, salmon and green
sections on the bar represent which proportions of the total mutations are hotspot, neutral synonymous and non-hotspot mutations,
respectively. PF00001, 7tm_1 domain; PF00383, dCMP_cyt_deam_1 domain; PF02492, cobW domain; PF00012, HSP70 domain; PF00520, Ion_trans
domain; PF07679, I-set domain; PF00055, Laminin_N domain; PF03062, MBOAT domain; PF09773, Meckelin domain
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genes in TCGA as potential drivers by considering their
mutational rates across different mutational subtypes.
And the common and diverse mutational signatures
among hotspot mutations, neutral synonymous muta-
tions of HCMGs in 1000G and non-hotspot mutations
of HCMGs in TCGA were also detected. The result indi-
cated that there were significant differences in conserva-
tion, amino acids and domain characterization between
hotspots and neutral synonymous mutations. But there
are some limitations in this study. Firstly, it needs more
experimental work to investigate the effects of these hot-
spots on protein folding, RNA splicing, stability and
folding, and whether they are drivers in cancers, and the
relationship with cancer clinical outcome or treatment
response. Secondly, the consistent patterns and specifi-
city of hotspots in individual cancer are important and
should be explored. But in this study, we just performed
a pan-cancer analyzed of the hotspots. We will attack
these problems in our further work. In summary, the
present study would help to better understand the func-
tion of synonymous mutations in different cancer types
and depicting their roles in carcinogenesis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12881-019-0926-4.

Additional file 1: Figure S1. Illustration of analysis procedure of cancer
associated synonymous mutations. Figure S2. Correlation between
percentages of synonymous mutations and codon numbers of amino
acids in TCGA and 1000G. Figure S3. Distribution of synonymous
hotspot mutations across cancer types and genes. Table S1.
Synonymous codons of amino acids with optimal and non-optimal co-
dons for human genome. Table S2. Hotspot synonymous mutations
across different cancer types in TCGA dataset.

Additional file 2: Table S3. List of neutral synonymous mutations of
HMCGs in 1000G dataset.

Additional file 3: Table S4. List of non-hotspot synonymous mutations
of HMCGs in TCAGA dataset.

Abbreviations
1000G: 1000 Genomes Project; ATts: AT transition; ATtv: AT transversion;
BRCA: Breast cancer; C_GCts: CpG-island GC transition; C_GCtv: CpG-island
GC transversion; CEAD: Cervical adenocarcinoma; CNST: Central nervous
system tumor; ENAD: Endometrial adenocarcinoma; HLTU: Haematopoietic
and lymphoid tumor; HMCGs: Hotspot-mutation-containing-genes;
INAD: Large intestine adenocarcinoma; KICA: Kidney carcinoma; LICA: Liver
carcinoma; LUAD: Lung adenocarcinoma; NC_GCts: Non-CpG-island GC
transition; NC_GCtv: Non-CpG-island GC transversion; OVAD: Ovarian
carcinoma; pos1: The first codon position; pos3: The third codon position;
PRAD: Prostate adenocarcinoma; RS: Rejected substitution; SKCA: Skin cancer;
SNPs: Single nucleotide polymorphisms; STAD: Stomach adenocarcinoma;
TCGA: The Cancer Genome Atlas; THCA: Thyroid carcinoma; UTCA: Urinary
tract

Acknowledgements
The authors thank all members of our laboratory for their valuable
discussions.

About this supplement
This article has been published as part of BMC Medical Genetics Volume 20
Supplement 2, 2019: Proceedings of the 2018 International Conference on

Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical
Informatics (ICBI) 2018 conference: medical genetics. The full contents of the
supplement are available online at https://bmcmedgenet.biomedcentral.
com/articles/supplements/volume-20-supplement-2.

Authors’ contributions
YB performed the analysis and drafted the manuscript. XW, LZ and PW
helped perform the analysis. JX designed the study, performed the analysis,
and drafted the manuscript. All authors read and approved the final
manuscript.

Funding
Publication costs are funded by the grants from the National Natural Science
Foundation of China (61672037 and 21601001), the Anhui Provincial
Outstanding Young Talent Support Plan (gxyqZD2017005), the Young
Wanjiang Scholar Program of Anhui Province, the China Postdoctoral Science
Foundation Grant (2018 M630699) and the Anhui Provincial Postdoctoral
Science Foundation Grant (2017B325).

Availability of data and materials
The datasets supporting the conclusions of this article are included within
the article and its additional files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 9 December 2019

References
1. Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF. DNA sequence

evolution: the sounds of silence. Philos T R Soc B. 1995;349:241–7.
2. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous

mutations to human disease. Nat Rev Genet. 2011;12:683–91.
3. Parmley JL, Chamary J, Hurst LD. Evidence for purifying selection against

synonymous mutations in mammalian exonic splicing enhancers. Mol Biol
Evol. 2005;23:301–9.

4. Chamary J, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at
synonymous sites in mammals. Nat Rev Genet. 2006;7:98–108.

5. Nackley AG, Shabalina S, Tchivileva I, Satterfield K, Korchynskyi O, Makarov S,
Maixner W, Diatchenko L. Human catechol-O-methyltransferase haplotypes
modulate protein expression by altering mRNA secondary structure.
Science. 2006;314:1930–3.

6. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous
protein expression. Trends Biotechnol. 2004;22:346–53.

7. Soussi T, Taschner PE, Samuels Y. Synonymous somatic variants in human
cancer are not infamous: a plea for full disclosure in databases and
publications. Hum Mutat. 2017;38:339–42.

8. Diederichs S, Bartsch L, Berkmann JC, Frose K, Heitmann J, Hoppe C, Iggena
D, Jazmati D, Karschnia P, Linsenmeier M, et al. The dark matter of the
cancer genome: aberrations in regulatory elements, untranslated regions,
splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med.
2016;8:442–57.

9. Chen R, Davydov EV, Sirota M, Butte AJ. Non-synonymous and synonymous
coding SNPs show similar likelihood and effect size of human disease
association. PLoS One. 2010;5:e13574.

10. Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous
mutations frequently act as driver mutations in human cancers. Cell. 2014;
156:1324–35.

11. Gartner JJ, Parker SCJ, Prickett TD, Dutton-Regester K, Stitzel ML, Lin JC,
Davis S, Simhadri VL, Jha S, Katagiri N, et al. Whole-genome sequencing
identifies a recurrent functional synonymous mutation in melanoma. P Natl
Acad Sci Usa. 2013;110:13481–6.

12. Ma F, Sun T, Shi Y, Yu D, Tan W, Yang M, Wu C, Chu D, Sun Y, Xu B, et al.
Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell

Bin et al. BMC Medical Genetics 2019, 20(Suppl 2):190 Page 9 of 10

https://doi.org/10.1186/s12881-019-0926-4
https://doi.org/10.1186/s12881-019-0926-4
https://bmcmedgenet.biomedcentral.com/articles/supplements/volume-20-supplement-2
https://bmcmedgenet.biomedcentral.com/articles/supplements/volume-20-supplement-2


lung cancer patients treated with Gefitinib. Lung Cancer-j Iaslc. 2009;66:114–
9.

13. Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C,
Pages G. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an
AU-rich mRNA-binding protein, affects translation efficiency and response
to Herceptin treatment in breast cancer patients. Hum Mol Genet. 2011;20:
4556–68.

14. Schutz FA, Pomerantz MM, Gray KP, Atkins MB, Rosenberg JE, Hirsch MS,
McDermott DF, Lampron ME, Lee GS, Signoretti S, et al. Single nucleotide
polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort
study. Lancet Oncol. 2013;14:81–7.

15. Cancer Genome Atlas Research Network. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways.
Nature. 2008;455:1061–8.

16. Genomes Project Consortium. A map of human genome variation from
population scale sequencing. Nature. 2010;467:1061–73.

17. Porta-Pardo E, Garcia-Alonso L, Hrabe T, Dopazo J, Godzik A. A pan-cancer
catalogue of cancer driver protein interaction interfaces. PLoS Comput Biol.
2015;11:e1004518.

18. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC,
Mooney TB, Callaway MB, Dooling D, Mardis ER. MuSiC: identifying
mutational significance in cancer genomes. Genome Res. 2012;22:1589–98.

19. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP,
Jene-Sanz A, Santos A, Lopez-Bigas N. IntOGen-mutations identifies cancer
drivers across tumor types. Nat Methods. 2013;10:1081–2.

20. Buske OJ, Manickaraj A, Mital S, Ray PN, Brudno M. Identification of deleterious
synonymous variants in human genomes. Bioinformatics. 2013;29:1843–50.

21. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q,
McMichael JF, Wyczalkowski MA, et al. Mutational landscape and
significance across 12 major cancer types. Nature. 2013;502:333–9.

22. Sanchez MI, Grichnik JM. Melanoma's high C>T mutation rate: is
deamination playing a role? Exp Dermatol. 2014;23:551–2.

23. Cheung LWT, Yu S, Zhang D, Li J, Ng PKS, Panupinthu N, Mitra S, Ju Z, Yu Q,
Liang H, et al. Naturally occurring neomorphic PIK3R1 mutations activate
the MAPK pathway, dictating therapeutic response to MAPK pathway
inhibitors. Cancer Cell. 2014;26:479–94.

24. Xia JF, Zhao XM, Song J, Huang DS. APIS: accurate prediction of hot spots
in protein interfaces by combining protrusion index with solvent
accessibility. BMC Bioinformatics. 2010;11:174.

25. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding
M, Bamford S, Cole C, Ward S. COSMIC: exploring the world's knowledge of
somatic mutations in human cancer. Nucleic Acids Res. 2014;43:D805–D11.

26. Chen T, Wang Z, Zhou W, Chong Z, Meric-Bernstam F, Mills GB, Chen K.
Hotspot mutations delineating diverse mutational signatures and biological
utilities across cancer types. BMC Genomics. 2016;17:249–62.

27. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S.
Identifying a high fraction of the human genome to be under selective
constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025.

28. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC,
Punta M, Qureshi M, Sangrador-Vegas A. The Pfam protein families
database: towards a more sustainable future. Nucleic Acids Res. 2016;44:
D279–D85.

29. Deng SP, Huang DS. SFAPS: an R package for structure/function analysis of
protein sequences based on informational spectrum method. Methods.
2014;69:207–12.

30. Huang D-S, Zhao X-M, Huang G-B, Cheung Y-M. Classifying protein
sequences using hydropathy blocks. Pattern Recogn. 2006;39:2293–300.

31. Zanetta GM, Webb MJ, Li H, Keeney GL. Hyperestrogenism: a relevant risk
factor for the development of cancer from endometriosis. Gynecol Oncol.
2000;79:18–22.

32. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer
in people with CagA positive or CagA negative helicobacter pylori infection.
Gut. 1997;40:297–301.

33. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez
C, Greulich H, Muzny DM, Morgan MB, et al. Somatic mutations affect key
pathways in lung adenocarcinoma. Nature. 2008;455:1069–75.

34. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic
disease. Hum Genet. 1988;78:151–5.

35. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P.
Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-
associated cancers. Oncogene. 2002;21:7435.

36. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light.
Mutat Res. 2005;571:19–31.

37. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K,
Jones D, Hinton J, Marshall J, Stebbings LA. Mutational processes molding
the genomes of 21 breast cancers. Cell. 2012;149:979–93.

38. Tao MH, Freudenheim JL. DNA methylation in endometrial cancer.
Epigenetics. 2010;5:491–8.

39. Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali
S, Hamlat A, Riffaud L, Menei P, et al. DNA methylation in glioblastoma:
impact on gene expression and clinical outcome. BMC Genomics. 2010;11:
701.

40. Deng SP, Cao S, Huang DS, Wang YP. Identifying stages of kidney renal cell
carcinoma by combining gene expression and DNA methylation data. IEEE/
ACM Trans Comput Biol Bioinform. 2017;14:1147–53.

41. Subramanian S, Kumar S. Neutral substitutions occur at a faster rate in
exons than in noncoding DNA in primate genomes. Genome Res. 2003;13:
838–44.

42. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in
the control region of mitochondrial DNA in humans and chimpanzees. Mol
Biol Evol. 1993;10:512–26.

43. Li Q, Chen Z, Xu J, Cao X, Chen Q, Liu X, Xu Z. Overexpression and
involvement of special AT-rich sequence binding protein 1 in multidrug
resistance in human breast carcinoma cells. Cancer Sci. 2010;101:80–6.

44. Plotkin JB, Kudla G. Synonymous but not the same: the causes and
consequences of codon bias. Nat Rev Genet. 2011;12:32–42.

45. Wan X, Xu D, Kleinhofs A, Zhou J. Quantitative relationship between
synonymous codon usage bias and GC composition across unicellular
genomes. BMC Evol Biol. 2004;4:1–11.

46. Schaafsma GC, Vihinen M. Large differences in proportions of harmful and
benign amino acid substitutions between proteins and diseases. Hum
Mutat. 2017;38:839–48.

47. Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral
genetic heterogeneity during colorectal cancer progression. Carcinogenesis.
2005;26:916–22.

48. Soussi T. Locuss-pecific databases in cancer: what future in a post-genomic
era? The TP53 LSDB paradigm. Hum Mutat. 2014;35:643–53.

49. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif.
Curr Opin Struc Biol. 2001;11:725–32.

50. Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W. The
crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a
zipper mechanism for neural cell adhesion. Cell. 2000;101:425–33.

51. Becchetti A, Munaron L, Arcangeli A. The role of ion channels and
transporters in cell proliferation and cancer. Front Physiol. 2013;4:312.

52. Tang X, Jin R, Qu G, Wang X, Li Z, Yuan Z, Zhao C, Siwko S, Shi T, Wang P,
et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast
cancer metastasis via the Galphaq-p63RhoGEF-rho GTPase pathway. Cancer
Res. 2013;73:6206–18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Bin et al. BMC Medical Genetics 2019, 20(Suppl 2):190 Page 10 of 10


	Abstract
	Background
	Results
	Conclusions

	Background
	Material and methods
	Synonymous mutation dataset
	Statistical analyses
	Hotspot mutations identification
	Conservation comparison
	Protein domain annotation

	Results and discussion
	Synonymous mutation distribution across cancer types
	Synonymous mutational nucleotide substitutions
	Comparisons between TCGA and 1000G datasets
	Synonymous hotspot mutations for cancer
	Conservation comparison
	Amino acids analysis
	Domain characterization

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

