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Abstract

Background: Cancer is a heterogeneous disease with many genetic variations. Lines of evidence have shown copy
number variations (CNVs) of certain genes are involved in development and progression of many cancers through
the alterations of their gene expression levels on individual or several cancer types. However, it is not quite clear
whether the correlation will be a general phenomenon across multiple cancer types.

Methods: In this study we applied a bioinformatics approach integrating CNV and differential gene expression
mathematically across 1025 cell lines and 9159 patient samples to detect their potential relationship.

Results: Our results showed there is a close correlation between CNV and differential gene expression and the
copy number displayed a positive linear influence on gene expression for the majority of genes, indicating that
genetic variation generated a direct effect on gene transcriptional level. Another independent dataset is utilized to
revalidate the relationship between copy number and expression level. Further analysis show genes with general
positive linear influence on gene expression are clustered in certain disease-related pathways, which suggests the
involvement of CNV in pathophysiology of diseases.

Conclusions: This study shows the close correlation between CNV and differential gene expression revealing the
qualitative relationship between genetic variation and its downstream effect, especially for oncogenes and tumor
suppressor genes. It is of a critical importance to elucidate the relationship between copy number variation and

gene expression for prevention, diagnosis and treatment of cancer.
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Background

Genetic structural variation in the human genome can be
present in many forms, ranging from single nucleotide
polymorphisms (SNPs) to large chromosome aberrance [1].
In the past, SNPs are regarded as the predominant form of
structural variation and account for much phenotypic vari-
ation [2, 3]. However, recent studies show the widespread
existence of copy number variation (CNV) in individuals,
and since that these observations have been extremely ap-
preciated and expanded [4—6]. In general, CNV is defined
as an amplifying or decreasing number of DNA segments
that is 1 kb or larger in the human genome [1, 4, 5], which
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accounts for an important part of genetic structural vari-
ation. Currently great efforts in science community have
been directed to catalog and characterize somatic CNV in a
comprehensive manner [7, 8], which provides key know-
ledge on how they impact biological function, evolution
and human diseases on genomic level.

It is generally accepted that somatic CNV is highly asso-
ciated with the development and progression of numerous
cancers by impacting gene expression level [9-19]. Samu-
lin Erdem et al. [13] found that Neurofascin (NFASC)
gene is significantly amplified and overexpressed in non-
small cell lung cancer (NSCLC) patients and the novel
role of NFASC is identified in the regulation of cell mo-
tility and NSCLC migration. Dong et al. [16] analyzed
the copy number alterations and differentially tran-
scribed genes in esophageal cancer and observed a
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noteworthy association between CNV and differential
gene expression for FAM60A, TFDP1, CDC25B and
MCM2. Subsequently, FAM60A was identified as a po-
tential prognostic factor with a striking correlation to
overall survival and clinical-pathological parameters.
Lines of evidence support differential gene expression
might be a vital intermediate mechanism for CNV to
exert effect on the downstream phenotype.

Despite a number of studies have explored CNV and
differential gene expression of several classical onco-
genes or tumor suppressor genes in different cancers
[12, 14, 17, 18, 20], there has been no systematic study
about the relationship between CNV and differential
gene expression across a broader spectrum of cancer
types and cell lines. It is unclear to what extent the ex-
pression level is affected by CNV for the whole genom-
ics. Previous observations from single gene or single
cancer type may not be representative for other genes or
other types of cancer. Here we aimed to systematically
investigate the specific relationship between somatic
CNV and differential gene expression across cell lines
and different cancer types for known genes. This study
may help us better understand the correlation between
CNV and differential gene expression and provide new
insights into the mechanism of development and pro-
gression of cancer.

Methods

Data sources

The copy number and mRNA expression data of
Broad-Novartis Cancer Cell Line Encyclopedia (CCLE),
NCI-60 and the Cancer Genome Atlas (TCGA) were
collected from the cBioportal for Cancer Genomics
(http://www.cbioportal.org/). The cell lines datasets of
CCLE and NCI-60 contained 966 and 59 cell lines re-
spectively and the TCGA datasets contained 31 types of
cancer of 9159 samples (see Additional file 2: Table
S1). Putative copy number calls were determined by
using GISTIC 2.0 [21], while expression levels were
quantified by RSEM [22] from RNA-Seq data for
TCGA. Another independent dataset were curated from
COSMIC Cell Lines Project (CCLP, v81, http://cancer.
sanger.ac.uk/cell_lines) containing 1020 cell lines. The
copy number was obtained from Affymetrix SNP6.0
array data with PICNIC [23].

Definition of four variation tendencies

For CCLE, NCI60 and TCGA datasets, gene-wise homo-
zygous deletion or high level amplification were regarded
as copy number amplified or deleted gene (Copy number
values: — 2 = homozygous deletion; — 1 = hemizygous de-
letion; 0 = neutral / no change; 1=gain; 2 =high level
amplification). For CCLP, copy number amplification
was obtained by the following criteria: (the average
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genome ploidy < =2.7 AND total DNA segment copy
number > =5) OR (average genome ploidy >2.7 AND
total DNA segment copy number > =9). While the cri-
teria for copy number deletion was: (the average genome
ploidy < =2.7 AND total DNA segment copy number =
0) OR (average genome ploidy >2.7 AND total DNA
segment copy number < (average genome ploidy — 2.7)).
Gene expression levels were quantified by RSEM from
RNA-Seq data and mRNA Z scores were computed
using the tumors samples that are diploid for the corre-
sponding gene. For each gene, Z score = (x-u)/o, where
u, o represent the average expression and standard devi-
ation of this gene across samples, respectively; x repre-
sents the specific expression of this gene in a specific
sample. Differentially expressed genes (DEGs) were fur-
ther filtered out as Z scores more than 2 (upregulated
genes) or less than — 2 (downregulated genes). Thus, the
four variation tendencies were defined as follows: ampli-
fied AND upregulated; amplified AND downregulated;
deleted AND upregulated; deleted AND downregulated.

Identification of amplified and upregulated genes (AUGs)

and deleted and downregulated (DDGs)

copy number amplification and expression level upregu-
lation ratio against copy number deletion and expression
level downregulation, copy number deletion and expres-
sion level downregulation ratio against copy number
amplification and expression level upregulation more
than 50 % on each gene across 9159 tumor samples were
applied to identify AUGs and DDGs with a higher p (>
0.4) and a higher number (>146.5) of copy number
amplification and expression level upregulation than the
median level of 30 most popular oncogenes (Additional
file 2: Table S4) or a higher p (> 0.41) and a higher num-
ber (>18.5) of copy number deletion and expression
level downregulation than the median level of 10 tumor
suppressor genes (Additional file 2: Table S5). AUGs
and DDGs were sorted by the amount of copy number
amplification and expression level upregulation, copy
number deletion and expression level downregulation
respectively and 31 representative AUGs and 29 repre-
sentative DDGs matched with KEGG genes were identi-
fied from top 100 highly concordant genes.

PPI network construction and functional enrichments
Search Tool for the Retrieval of Interacting Genes
(STRING, http://www.string-db.org/) was used to con-
struct the PPI network of FYTTDI1. The line thickness
indicates the strength of data support from the sources
of text mining and experiments with a cutoff value of
medium confidence (0.4). Then the functional enrich-
ment results of KEGG pathways and Gene Ontology
(GO) biological process were applied to the PPI network
with false discovery rate less than 0.05.
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Statistical analyses

R (version 3.4.2) including R packages of data.table for
data cleaning and management, survival for survival
analysis, ggplot2 for data visualization and GraphPad
Prism 7.0 were used for the statistical analysis. p is
equal to the Pearson correlation between the rank
values of those two variables to assesses how well the
relationship between two variables can be described
using a monotonic function and were calculated by the
function of cor() in R. Differences between two groups
were determined using the Welch’s t-test (significant
with p < 0.05).

Results

Differential gene expression is highly associated with CNV
across multiple cancer types and cancer cell lines

It is known that CNV is related to alteration on gene
expression. However, the correlations between CNV
and gene expression change on a global cellular scale
remain to be elucidated. To comprehensively exploit this
question, we collected available genomic datasets from the
Broad-Novartis Cancer Cell Line Encyclopedia (CCLE),
NCI-60, and the Cancer Genome Atlas (TCGA). Inte-
grated analysis of CNV and differential gene expression
was performed across 31 cancer types and 2 cancer
cell lines resources (Additional file 2: Table S1). Our
results showed an apparent effect of copy number on
gene expression (Fig. 1). Interestingly, gene-wise copy
number amplification appears to harbor a higher me-
dian Z score, indicating enhanced gene expression,
while copy number deletion usually led to decreased
gene expression among 966 cell lines for CCLE data-
sets (Fig. 1la). Even for NCI-60 project and mesotheli-
oma (MESO) in TCGA, which have smaller sample
size, this consistent tendency still is kept (Fig. la; re-
sults of other 30 cancer types in TCGA found in
Additional file 1: Figure S1 and Figure S2). For all
cancer types under study, median Z scores of gene
expression with copy number amplified were strik-
ingly higher than those with copy number deleted
(Fig. 1B). In order to further detect the relation be-
tween copy number and transcript level, the linear re-
gression model was taken for each cancer type of
TCGA datasets. Fitting results indicated gene expres-
sion level was prominently linear-correlated with copy
number (r=0.93, p<0.0001; Fig. 1c). In addition, the
spearman’s correlation coefficient (p) test and linear
regression analysis among cell lines and tumors were
implemented to uncover the close association between
differential gene expression and CNV with p ranging
from 0.075 to 0.53 (mean r=0.97; Fig. 1d), indicating
the positive correlation of differentially transcriptional
level and CNV in general.
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Most genes’ expression changes significantly correlated
with their CNVs

We next analyzed the relationship between copy num-
ber and expression level at the basis of individual
gene. Remarkably, for substantial number of genes,
their copy numbers exert a positive correlation with
the corresponding gene expression level among 1025
cell lines dataset (88.11%; Additional file 1: Figure
S3A; Figure S3B) and 9159 tumor samples (94.15%;
Fig. 2a). This trend is particularly obvious for a vast
number of oncogenes (e.g. MYC, AKT1, CDK9, KRAS,
and MDM?2) and tumor suppressor genes (e.g.
CDKN2A, RBI1, PTEN, and TP53). Linear regression
was taken to explore whether copy number had a posi-
tive linear influence on gene expression. Plenty of
genes presented a high degree of fitting with r inten-
sively ranging from 0.8 to 1 (Fig. 2b; Additional file 1:
Figure S3C), genomic structural variation may gener-
ate a direct effect on gene transcriptional level for the
majority of genes. Concordantly, a recent study by
GTEx consortium also associated genetic variants with
gene expression levels across 44 human healthy tissues
and gene expression levels were found to be affected
by local genetic variation for most genes based on
eQTL analysis [24]. In addition, we selected 10 genes
with a significant correlation between CNV and differ-
ential gene expression through TCGA and cell lines
datasets and validated this relationship through litera-
ture mining. For 9 genes except the weak evidence for
NFASC, a strong correlation between CNV and differ-
ential gene expression was confirmed combining p
and Pearson’s r of fitting (Table 1), in accordance with
previous experimental findings.

Interestingly, our analysis shows a fraction of genes
present low Pearson’s r of fitting and low p
(Additional file 1: Figure S3D; Figure S3E), suggesting
stable expression of these genes despite of CNV. To
gain further insight into those genes (top 1000 genes
with Pearson’s r of fitting from the lowest to the high-
est), Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was carried out by utilizing
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [25]. Results demonstrated
a strong enrichment of retinol metabolism, olfactory
transduction, calcium signaling pathway, neuroactive
ligand-receptor interaction, etc. (Additional file 2:
Table S2; Table S3). Moreover, for a total number of
16,639 shared genes from cell lines and TCGA data-
sets, a high level of agreement on p was observed (Fig.
2c¢). Cell lines and tumors seem to exert similar trend.
Wherein, 86.42% of shared genes showed a double-
positive p among cell lines and TCGA datasets, while
genes with a double-negative p only take up 1.63% in
shared genes.
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Fig. 1 Integrative analysis of the association between CNV and differential gene expression. a. Boxplots show the relationship of Z score (y-axis)
versus copy number value (x-axis) across 966 cell lines for CCLE, 59 cell lines for NCI-60 and 87 tissue samples for MESO. b. Median Z score versus
copy number from 31 cancer types was extracted in scatter plot. P values were obtained from a Welch's t-test. *** means p < 0.0001.c. Linear
regression analysis of median Z score versus copy number within 31 tumors. d. Heat map shows the p between Z scores of gene expression and
copy number, Pearson’s r of fitting and p value of linear regression analysis on median Z score of gene expression versus copy number among
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Identification of genes with high concordance between
CNV and differential gene expression

Based on two variation trend of copy number (amplifica-
tion and deletion) and expression level (upregulation
and downregulation), we divided variant trend into four
classes: copy number amplification and expression level
upregulation, copy number amplification and expression
level downregulation, copy number deletion and expres-
sion level downregulation, copy number deletion and ex-
pression level upregulation (see Methods). We analyzed
the frequencies of four variant trends across 24 primary
sites of cell lines in CCLE database and 31 cancer types
in TCGA. Intriguingly, the amount of copy number
amplification and expression level upregulation, copy
number deletion and expression level downregulation,

representing our so-called highly concordant genes on
CNV and differential gene expression, occupied 15 and
20% of the total variant copy number count on average
for cell lines and tumor samples, respectively. Neverthe-
less, the mean proportion of copy number amplification
and expression level downregulation, copy number dele-
tion and expression level upregulation count only took
up 0.7 and 0.5% for both cell lines and tumor samples
(Additional file 1: Figure S4A and S4B), which indicated
that the copy number amplification barely causes gene
expression downregulation and the copy number dele-
tion hardly promotes gene expression upregulation. It is
obvious that the frequency of copy number amplification
and expression level upregulation totally exceeded copy
number deletion and expression level downregulation
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Fig. 2 Most genes’ expression changes significantly correlated with their copy number variations. a. Genes were sorted according to p on Z
score versus copy number across 9159 tumor samples from TCGA, green representing a positive p and red meaning a negative one,
representative oncogenes and tumor suppressor genes next to the corresponding points. b. Histograms present the distribution of r for each
genes based on the linear fitting results of median Z score with each variable copy number in TCGA datasets, the majority of Pearson’s r of fitting
distributed ranging from 0.8 to 1. c. A high level of agreement on p for 16,639 shared genes between cell lines dataset and TCGA dataset, y-axis
for TCGA dataset and x-axis for cell lines dataset. p: spearman’s correlation coefficient

p (Cell lines)

for both cell lines and tumor samples (Fig. 3a and b),
which may be a result of selection on deletions [1].

Gene names in literature were transformed into official
symbols. p: spearman’s correlation coefficient.

In order to identify highly concordant genes on CNV
and differential gene expression, the sum of copy num-
ber amplification and expression level upregulation, copy
number deletion and expression level downregulation
for all genes across 9159 tumor samples in TCGA were

Table 1 Correlation validation of genes with a significant
correlation between CNV and differential gene expression in
literature

Official symbol — p r o r TCGA  Reference
Cell lines  Cell lines  TCGA

PRAME 0.12 0.83 0.10 0.96 [9]
NPM1 0.29 0.90 045 0.98 [10]
SOX2 0.19 0.82 0.20 0.65 [12]
NFASC 0.08 0.32 0.05 0.24 [13]
MYCN 0.14 0.68 0.12 0.76 [14]
EHF 0.14 0.83 0.13 0.92 [15]
FAM60A 0.51 0.99 0.36 091 [16]
CD274 0.12 0.83 0.26 0.82 [17]
FGFR1 0.16 0.90 0.20 0.90 [18]
STK11 0.39 1.00 042 0.96 [19]

counted (Fig. 3c). The red points close to x-axis owning
a high count of copy number amplification and expres-
sion level upregulation and a low count of copy number
deletion and expression level downregulation are prefer-
entially defined as copy number amplified and expres-
sion level upregulated genes (AUGs), while the blue
points close to y-axis owning a high count of copy num-
ber deletion and expression level downregulation and a
low count of copy number amplification and expression
level upregulation are regarded as copy number deleted
and expression level downregulated genes (DDGs).
Moreover, we observed that a majority of genes (83%,
ratio < 0.1) belongs to AUGs (Fig. 3d). It may be caused
by unknown selective pressures on amplification [1]. We
attempt to revalidate the ten highly concordant genes
through literature mining (9 AUGs, 1 DDG; shown in
Table 2). Nine AUGs obtained preponderant count of
copy number amplification and expression level upregu-
lation compared to copy number deletion and expres-
sion level downregulation across 9159 tumor samples,
while the only DDG (STK11) showed an overwhelming
degree of copy number deletion and expression level
downregulation (73%) against copy number amplifica-
tion and expression level upregulation, in accordance
with previous reports in literature (Table 2).

Gene names in literature were transformed into official
symbols. A&U represents the frequency of a gene with
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count across each primary site of cell lines in CCLE. CNS: central nervous system; HLT: haematopoietic and lymphoid tissue; UAT: upper
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expression level downregulation (Green) of the total variant copy number count across each cancer type of TCGA. c. Scatter plot shows the
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of copy number deletion and expression level downregulation (y-axis) among 9159 tumor samples in TCGA. The color represents the count ratio
of copy number deletion and expression level downregulation against copy number amplification and expression level upregulation, blue
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downregulation against copy number amplification and expression level upregulation among 9159 tumor samples in TCGA. A&U: copy number
amplification and expression level upregulation. D&D: copy number deletion and expression level downregulation

copy number amplified and expression level upregulated
across 31 cancer types in TCGA, while D&D represents
the frequency of a gene with copy number deleted and
expression level downregulated. 7 means the gene with
copy number amplification and expression level upregu-
lation in tumor, AUG; | means the gene with copy num-
ber deletion and expression level downregulation in
tumor, DDG.

Thus, to identify AUGs and DDGs, the criteria applied
in this work is the copy number amplification and ex-
pression level upregulation ratio against copy number

deletion and expression level downregulation, copy
number deletion and expression level downregulation
ratio against copy number amplification and expression
level upregulation with the cutoff value of 50 %. Further
by filtering parameter included a higher p and a higher
number of copy number amplification and expression
level upregulation than the median level of 30 most
popular oncogenes (Additional file 2: Table S4) or a
higher number of copy number deletion and expression
level downregulation than the median level of 10 tumor
suppressor genes (Additional file 2:Table S5), which
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Table 2 Variation tendency revalidation of genes with a
significant correlation between CNV and differential gene
expression in literature

Official symbol  A&U

D&D  Variation tendency in literature Reference

PRAME 9 0 1 9

NPM1 0 0 1 [10]
Sox2 33 0 1 [12]
NFASC 4 0 1 [13]
MYCN 2 0 1 [14]
EHF 2 0 1 [15]
FAMGOA % 0 1 [16]
CD274 8 0 1t [17]
FGFRI 13 0 1 [1g]
STKI1 12033 | [19]

ultimately led to 560 AUGs such as DERL1, DVL3,
FADD and 365 DDGs (e.g. MTAP, KLHL9, PTEN)
(complete list in Additional file 2: Table S6). For repre-
sentative AUGs and DDGs matched with KEGG
pathway-related genes, their aberrant rate of copy num-
ber amplification and expression level upregulation, copy
number deletion and expression level downregulation in
corresponding tumor samples across 31 cancer types
were analyzed and shown in Fig. 4a and Fig. 4b, respect-
ively. Taken the AUG DERLI as an example, this gene is
amplified and overexpressed in a number of cancers,
such as breast invasive carcinoma (BRCA, 16.84% pa-
tients), esophageal carcinoma (ESCA, 12.02% patients),
liver hepatocellular carcinoma (LIHC, 10.17% patients),
uterine carcinosarcoma (UCS, 10.71% patients), uveal
melanoma (UVM, 16.25% patients), especially in ovarian
serous cystadenocarcinoma (OV) with copy number
amplification and expression level upregulation rate
reaching 32.67% in 300 OV patients (Fig. 4a). Previous
studies demonstrate DERL1 overexpression is signifi-
cantly related to cancer cell proliferation, invasion and
poor prognosis [26, 27]. Our study suggests this dysregu-
lation may be driven by copy number amplification
based on the extreme concordant correlation between
copy number and gene expression. Figure 4b shows the
distribution of copy number deletion and expression
level downregulation rate across 31 cancers of 38 repre-
sentative DDGs involving in many known tumor sup-
pressor genes such as MTAP, KLHL9, PTEN, SMAD4,
RB1, etc.

Additionally, we analyzed the distribution of AUGs
and DDGs across 22 chromosomes (Additional file 2:
Table S7). The maximal proportion of highly concordant
genes of AUGs and DDGs (21.62%) were located in
chromosome 8, followed by chromosome 1 (16.54%),
which is in coherence with the previous finding pub-
lished on nature that chromosome 1 possesses the
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largest number of genes exerting a strong relevance to
numerous diseases such as cancer, Alzheimer’s disease,
Parkinson’s disease [28]. As expected, the smallest
chromosome 21 acquired the fewest percentage of highly
concordant genes with 0.11%.

AUGs and DDGs involved in proteolysis dysfunction in
tumor
To gain further insights into the function of AUGs and
DDGs identified in this work, pathway enrichment ana-
lysis was performed on AUGs and DDGs by using DA-
VID. According to KEGG enrichment analysis results, a
large proportion of AUGs were affiliated with metabolic
pathways related to Oxidative phosphorylation and
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
(Fig. 5a), which manifest well-known gained function of
metabolism-related proteins in tumors. In contrast,
DDGs were significantly related with ubiquitin mediated
proteolysis, wnt signaling pathway (Fig. 5a), whose dys-
function tend to lead to tumorigenesis [29], metastasis
[30], resistance [31], etc. Interestingly, both AUGs and
DDGs are remarkably enriched in the ubiquitin-
proteasome system, which has been increasingly re-
ported to be highly related to cancer recently [32, 33].

In addition, we found 9 highly concordant genes with
a strong relation to patient overall survival including 5
AUGs and 1 DDG (Table 3). For examples, the copy
number amplification and expression level upregulation
of FYTTD1 and CTTN would remarkably cause a poor
prognosis in tumor patients of ESCA and head and neck
squamous cell carcinoma (HNSC) respectively (Fig. 5b),
while the copy number deletion and expression level
downregulation of MTAP was significantly associated
with a worse prognosis (Fig. 5b). Wherein, it has been
widely reported in literatures that five of these highly
concordant genes are highly related with the deve-
lopment and progression of numerous cancers (See
Additional file 2: Table S8 references) but FYTTDI.
Thus, we used STRING platform [34] to analyze the
protein-protein interaction (PPI) relationships of
EYTTD1 (Fig. 5¢). By integrated the functional enrich-
ment results of KEGG pathways and Gene Ontology
(GO) biological process of the PPI network (Fig. 5d), we
found FYTTD1 plays an important role in RNA splicing
in close relation to tumorigenesis, which may be a po-
tential prognostic marker in ESCA.

Validation studies of correlation between CNV and
differential gene expression on another independent
dataset, the COSMIC cell lines project (CCLP)

To validate our previous findings, the copy number and
gene expression profiles were integrated across 1020 cell
lines from CCLP, an independent dataset. Although CCLP
utilized a different algorithm to calculate copy number
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variation, it still showed a positive correlation between
copy number and expression level (Fig. 6a) by using a lin-
ear regression fitting on median Z score versus copy num-
ber (r=0.89, p=9.08%-6; Additional file 1: Fig. S5). In
addition, gene expression levels with gene-wise copy num-
ber amplification exhibited a significant higher Z score
than those with copy number deletion (Fig. 6b), in accord-
ance with our results. Similarly, the amount of copy num-
ber amplification and expression level upregulation, copy
number deletion and expression level downregulation oc-
cupied 28% of the total variant copy number count, while
the proportion of copy number amplification and

expression level downregulation, copy number deletion
and expression level upregulation count only took up 1%.
Thus, we counted the sum of copy number amplification
and expression level upregulation, copy number deletion
and expression level downregulation for the copy number
aberrant genes among 1020 cell lines. Concordantly, most
genes showed an overwhelming level of either copy num-
ber amplification and expression level upregulation or
copy number deletion and expression level downregula-
tion (93%, ratio > 0.9). Very fewer genes were with both
high level of copy number amplification and expression
level upregulation, copy number deletion and expression
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level downregulation (Fig. 6¢). In addition, we overlapped
the AUGs and DDGs identified by the ratio of copy
number amplification and expression level upregulation
versus copy number deletion and expression level down-
regulation between CCLP and TCGA respectively. Quite a
number of highly concordant genes of AUGs (e.g. CTTN,
GRB7, NSMCE2, KIAA0196, etc.) and DDGs (e.g. KLHLY,
PTEN, PLAA, SMADA4, etc.) were shared within these two
independent datasets. Collectively, these data suggested
the close correlation between CNV and differential gene
expression for most genes.

Discussion

In this study, we provided strong evidences to support
the high correlation between CNV and differential gene
expression. This finding reveals the qualitative relation-
ship between genetic variation and its downstream ef-
fect, especially for oncogenes and tumor suppressor
genes, which is of a critical importance for prevention,
diagnosis and treatment of cancer. First, by integrated
analysis of CNV and differential gene expression of
CCLE, NCI-60 and TCGA, it revealed a positive associ-
ation between copy number and expression level with
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Table 3 Nine highly concordant genes of 5 AUGs and 1 DDG
show the strong association with clinical overall survival (OS) in
corresponding cancer patients

Cancer Official symbol Class P value
ESCA FYTTD1 AUG 0.0035
ESCA CTTN AUG 0.0104
ESCA PPFIAT AUG 0.0307
ESCA PIGX AUG 0.0354
ESCA FADD AUG 0.0391
HNSC CTTN AUG 0.0039
HNSC FADD AUG 0.0087
HNSC PPFIA1 AUG 0.0230
MESO MTAP DDG 0.0032

high Pearson’s r of fitting, positive p and significant p
values. Besides, not only in cell lines but in patients copy
number amplification strikingly harbored a higher
expressed level compared to copy number deletion. Sec-
ondly, we investigated every gene over the relationship
of CNV and differential gene expression across 9139
tumor samples and 1025 cell lines respectively. Our re-
sults showed the majority of genes the copy number dis-
played a positive linear influence on gene expression,
indicating that genetic variation generated a direct effect
on gene transcriptional level. In addition, we validated
10 genes with a significant correlation between CNV
and differential gene expression through literature
(Table 1). A strong correlation was confirmed
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combining p or Pearson’s r of fitting for 9 genes except
the weak evidence for NFASC, possibly due to the differ-
ence of analytical method.

A recent study by GTEx consortium associated genetic
variants with gene expression levels across 44 human
healthy tissues and gene expression levels are found to be
affected by local genetic variation for most genes based on
eQTL analysis [24]. Meanwhile, it was reported that copy
number and expression levels had a strong positive correl-
ation for 99% abundantly expressed human genes by inte-
grating predicted copy number and corrected expression
level from 77,840 expression profiles [35]. Moreover, it
has been widely reported that copy number is remarkably
correlated with expression of protein in literature such as
FGFRI1 [36], HER2 [37, 38], MET [39], FADD [40], EGFR
[37]. Message RNA, as intermediates between genes and
functional proteins, plays a vital role in proteins produc-
tion. Thus, we speculated gene expression might be cor-
related with protein expression as well for the high
correlation and concordance between CNV and differen-
tial gene expression across cell lines and TCGA datasets
and between CNV and differential protein expression of
these five genes in literature (Additional file 2: Table S9,
Table S10). Notably, FGFR1, known as fibroblast growth
factor receptor 1, has been discovered that its copy num-
ber amplification is strikingly correlated with FGFR1 gene
upregulation and FGFR1 protein upregulation in tumor
samples [18, 36]. It indicated that the dysregulation of pro-
tein might attribute to original copy number aberrance
through the concordant differential gene expression.
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Fig. 6 Validation studies of correlation between CNV and differential gene expression on CCLP. a. Boxplots show the relationship of Z score (y-
axis) versus copy number value (x-axis, processed by PICNIC) among 1020 cell lines. b. The significant difference between Z scores of copy
number amplified genes versus copy number deleted genes. c. Scatter plot shows the distribution of genes based on the frequency of copy

number amplification and expression level upregulation (x-axis) and the frequency of copy number deletion and expression level downregulation
(y-axis). The color represents the count ratio of copy number deletion and expression level downregulation against copy number amplification
and expression level upregulation, blue representing higher ratio of copy number deletion and expression level downregulation, red representing
higher ratio of copy number amplification and expression level upregulation. A&U: copy number amplification and expression level upregulation.
D&D: copy number deletion and expression level downregulation
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However, a fraction of genes’ expression level did have
nothing to do with copy number keeping in a stable ex-
pression level over various copy number. We think these
genes might be involved in the maintenance of the basal
cellular function such as metabolism and signal trans-
duction by the results of significant KEGG pathway
enrichment including retinol metabolism, olfactory
transduction, calcium signaling pathway, neuroactive
ligand-receptor interaction, etc. (Additional file 2: Table
S2 and Table S3). Otherwise, it has been well docu-
mented that 24% of the 575 housekeeping (HK) genes
accounted for the metabolic proteins and 19% for RNA-
interacting proteins [41]. Thus, we focus on the whole
small nucleolar RNAs and found most genes were in-
deed expressed very stably versus CNV (Additional file
2: Table S11 and S12). Third, our results revealed the lit-
tle existence of highly inconsonant genes of copy num-
ber amplification and expression level downregulation,
copy number deletion and expression level upregulation
(Additional file 1: Figure S4), which indicated that the
copy number amplification barely causes gene expres-
sion downregulation and the copy number deletion
hardly promotes gene expression upregulation. Other-
wise, among the highly concordant genes with copy
number amplification and expression level upregulation,
copy number deletion and expression level downregula-
tion, the frequency of copy number amplification and
expression level upregulation evidently exceeded copy
number deletion and expression level downregulation
(Fig. 3b) possibly as a result of selection on deletions for
it is unknown of the selective pressures on amplification
[1]. We attempt to revalidate the ten highly concordant
genes in literature (9 AUGs, 1 DDG; Table 2), whose re-
sults was highly consistent with the variation trend in
literature.

Note that although the sample sizes of CCLE, NCI-60
and 31 cancers in TCGA were discrepant (Additional file
2: Table S1), they still showed a similar tendency of the
association between CNV and differential gene expres-
sion (Fig. 1a; Additional file 1: Figure S1 and Figure. S2).
Moreover, we observed a high level of agreement be-
tween cell lines and TCGA datasets which showed a
consistent distribution of genes in Fig. 2a and Additional
file 1: Fig. 3a including the p for 16,639 shared genes
from (Fig. 2c) and a comparable Pearson’s r of fitting
(Fig. 2b; Additional file 1: Figure S3C and Figure S3D).
Our results suggested that this phenomenon was well
conserved within cell lines and tissues.

In total, we identified 925 highly concordant genes in-
cluding 560 AUGs and 365 DDGs. For examples, nu-
merous studies reported that DERL1 overexpression was
significantly related to cancer cell proliferation [26], in-
vasion [42, 43] and poor prognosis [27], which might be
driven by copy number amplification for DERLI1
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obtained the majority of copy number amplification and
expression level upregulation in many cancers (Fig. 4a).
Obviously, CNV-driven differentially expressed genes
(DEGSs) might broaden our insights into the mechanism
of tumorigenesis, migration, resistance, poor prognosis,
etc. for the increasing studies on CNV-driven DEGs [16,
44, 45]. In our study, a large proportion of AUGs were
affiliated with metabolic pathways especially in terms of
Oxidative phosphorylation and GPI-anchor biosynthesis
(Fig. 5a), which suggested the gained function of
metabolism-related proteins in tumors to provide more
energy for cancer cells [46—48]. In contrast, DDGs were
significantly related with ubiquitin mediated proteolysis
and wnt signaling pathway (Fig. 5b), whose dysfunction
tend to lead to tumorigenesis [29], metastasis [49], re-
sistance [31], etc. With respect to wnt signaling, lost
function of DDGs such as inhibitory SMAD4 and APC
would definitely enhance the function of wnt signaling
leading to tumorigenesis [50-57], while attenuated func-
tion of ubiquitin mediated proteolysis facilitate prolifera-
tion [58]. Wherein, we found 10 highly concordant
genes with a strong relation to patient overall survival
including 5 AUGs and 1 DDG (Table 3), while FYTTD1
has been hardly reported to be associated with cancer.
By further integrated analysis of CNV and differential
gene expression of FYTTD1 in ESCA patients, we ob-
served that 24.73% patients showed a high level of copy
number amplification with a median Z score of 4.15
which means FYTTD1 was strikingly overexpressed
(Additional file 1: Figure S6). Wherein, AU patients oc-
cupied an overwhelming part among these 48 copy
number amplified patients (84.44%) indicating global ef-
fect of CNV on FYTTDI1 gene expression, which may be
a potential driver gene or prognostic marker in ESCA.
Therefore, highly concordant genes of AUGs and DDGs
may provide new insights into the development and pro-
gression of cancer.

Additionally, we utilized another independent dataset
(CCLP) to revalidate the relationship between CNV and
differential gene expression. Although CCLP applied a
different algorithm to calculate copy number variation,
it also showed a positive correlation between copy
number and expression level (Fig. 6a). Our results dem-
onstrated that gene expression levels of copy number
amplification substantially surpassed gene expression
levels of copy number deletion (Fig. 6b). Besides, copy
number amplification and expression level downregula-
tion, copy number deletion and expression level upreg-
ulation versus copy number aberrant counts took up
the smallest part (1%). Concordantly, most genes
showed an overwhelming level of either copy number
amplification and expression level upregulation or copy
number deletion and expression level downregulation
(93%, ratio >0.9), and it was hardly existed of genes
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with both high level of copy number amplification and
expression level upregulation, copy number deletion
and expression level downregulation (Fig. 6¢).

Conclusions

In conclusion, this study demonstrated the close correl-
ation between CNV and differential gene expression.
Moreover, this trend is consistent across cell lines and pa-
tient samples. For the majority of genes, copy number
shows a positive linear influence on gene expression (copy
number amplification and expression level upregulation,
copy number deletion and expression level downregula-
tion), while copy number amplification barely causes gene
expression downregulation and the copy number deletion
hardly promotes gene expression upregulation. Further-
more, both AUGs and DDGs are remarkably enriched in
the ubiquitin-proteasome system. In addition, we identified
amplification and overexpression of FYTTD1 is highly re-
lated with poor prognosis in ESCA, which may be a poten-
tial prognostic marker in ESCA. Whereas, more in-depth
studies are needed to further reveal molecular mechanisms
between CNV and differential gene expression. Overall, it
is of a critical importance to elucidate the relationship be-
tween copy number variation and gene expression for pre-
vention, diagnosis and treatment of cancer.
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