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Abstract

Background: Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by congenital anomalies,
early-onset bone marrow failure, and a high predisposition to cancers. Up to know, different genes involved in the
DNA repair pathway, mainly FANCA genes, have been identified to be affected in patients with FA.

Case presentation: Here, we report clinical, laboratory and genetic findings in a 3.5-year-old Iranian female patient,
a product of a consanguineous marriage, who was suspicious of FA, observed with short stature, microcephaly, skin
hyperpigmentation, anemia, thrombocytopenia and hypo cellular bone marrow. Therefore, Next Generation
Sequencing was performed to identify the genetic cause of the disease in this patient. Results revealed a novel,
private, homozygous frameshift mutation in the FANCF gene (NM_022725: c. 534delG, p. G178 fs) which was
confirmed by Sanger sequencing in the proband.

Conclusion: Such studies may help uncover the exact pathomechanisms of this disorder and establish the
genotype-phenotype correlations by identification of more mutations in this gene. It is the first report of a mutation
in the FANCF gene in Iranian patients with Fanconi anemia. This new mutation correlates with a hematological
problem (pancytopenia), short stature, and microcephaly and skin hyperpigmentation. Until now, no evidence of
malignancy was detected.
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Background
Fanconi anemia (FA) is a clinically and genetically het-
erogeneous uncommon autosomal recessive disorder
with hallmarks of congenital malformations, early-onset
bone marrow failure, and a high susceptibility to malig-
nancies due to genomic instability [1, 2]. FA is resulted
from disease-causing mutations in FANC genes. FANC
genes encode a group of proteins, which act in the path-
way of DNA-damage repair along with other proteins.
Up to now, 22 FANC genes have been identified among
which FANCA mutations, known as hyper-mutable

genes, have been reported to be the most common gen-
etic causes of FA patients.
The confirmation of FA diagnosis in a proband should be

considered with the following examination: Firstly, cytogen-
etic examination with increased levels of chromosomal
breaks and radial formation on lymphocytes after exposure
to Diepoxybutane (DEB) or Mitomycin C (MMC) and sec-
ondly, identification of pathogenic mutations in one of the
22 FA genes [3–5].The aim of our study was to discover
the mutated genes in an affected Iranian patient with FA
using Next Generation Sequencing (NGS).

Case presentation
A 3.5-year-old girl, Caucasian, who was a product of a
consanguineous marriage (first-degree cousins, Fig. 1
(timeline of case presentation) and Fig. 2a) was regis-
tered in our department due to petechia and nose
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bleeding. She was born at 37 weeks and 5 days of normal
vaginal delivery. Her birth weight, head circumference,
and height were 2.8 kg, 32 cm, and 46 cm, respectively.
Although her development was in the normal range, the
growth chart revealed that her height and head circum-
ference were below the third percentile line, and her
weight was around the 5th percentile line. In addition,
she took zinc supplements due to her short stature. On
physical examination, short stature, poor weight gain,
microcephaly (head circumference; 46 cm) and skin
hyperpigmentation were detected. She had a history of
two-time hospital admission due to pneumonia.
Due to petechia, complete blood count was per-

formed and the results identified anemia (Hb: 7.2 g/dL),
leukopenia (WBC: 1.5 × 103/μL with an absolute neu-
trophil count of 455), and thrombocytopenia (Platelet
count: 9 × 103/μL). Other laboratory and imaging
findings, including C3, C4, ANA, dsDNA, CH50, Im-
munoglobulin level, TORCH study, metabolic panel,
biochemistry studies, abdomen and pelvic sonography,

brain MRI, lumbosacral and both hands X-ray, and
echocardiography were normal. In addition, bone mar-
row aspiration and trephine biopsy revealed presented
megakaryocyte and moderate to severe hypocellular
bone marrow.
The patient had been on irradiated packed cell and

platelet transfusion approximately every one month. She
was a candidate for allogeneic bone marrow transplant-
ation, but she did not have the HLA-match donor. She
was under regular follow-up and occasionally referred
due to epistaxis or pallor, and received irradiated packed
cell and platelet.

Next generation sequencing (NGS)
Written informed consent was obtained from the
parents. Whole blood samples were collected using
EDTA tubes. Genomic DNA was prepared from per-
ipheral leukocytes of the patient using the QIAamp
DNA Blood Mini Kit (Qiagen, Germany) and then

Fig. 1 Information from this case report organized into a timeline figure

Zareifar et al. BMC Medical Genetics          (2019) 20:122 Page 2 of 7



NanoDrop (ND1000, USA) was used to measure
DNA concentration.
NGS covering immunological and hematological disorders

was carried out on Illumina NextSeq500 machine to the se-
quence close to 100 million reads. Bioinformatics analysis of
the sequencing results was performed using BWA aligner
[6], GATK [7] and annovar [8] as well as different databases
and bioinformatics software such as REVEL, MCAP,
ESP6500,1000G, Clinvar, CADD-Phred, SIFT, PolyPhen,
GERP, PhastCons, LRT, Mutation Assessor, Mutation Taster,
phyloP46way_placental, phyloP100way_vertebrate, SiPhy_
29way, FATHMM_pred, RadialSVM, ExAC. Kaviar, GME,
gnomAD.

Sanger sequencing
To confirm the novel identified mutation, we performed
Sanger sequencing of the genomic DNA from the pro-
band. For this test, PCR was carried out for the patient’s
DNA using the following primers: F-FANCF: CGCT
GGGAGATTGACATG and R-FANCF: GACCCCAGT
CTGTTAGCA (PCR product: 978 bp) to amplify a

mutated region of FANCF. Then, Sanger sequencing was
used to sequence amplified DNA with both forward and
reverse primers using ABI BigDye Terminator Cycle Se-
quencing Kit (Applied Biosystems®, USA). The analysis of
Sanger sequencing data was performed with NCBI BLAST
and Codon Code Aligner software. Multiple sequence
alignment analysis was performed using the SIB BLAST+
Network Service From (https://web.expasy.org/blast/) to
compare the amino acid sequence of human FANCF pro-
teins with other proteins across different Kingdoms.
STRING (STRING: functional protein association net-
works, https://string-db.org), tool and KEGG database
(KEGG: Kyoto Encyclopedia of Genes and Genomes,
http://www.genome.jp/kegg/) were also used to explain
the FA pathway and its protein network.

Cytogenetic examination
Owing to suspicion to inherited bone marrow failure,
chromosomal study with MMC on the peripheral blood
lymphocyte culture of the proband was requested. To
evaluate the types and rates of breakages and rearrange

Fig. 2 a: Pedigree, b: NGS data on IGV, and c: Sanger sequencing chromatogram. In the pedigree, proband is shown as a product of
consanguineous marriage and the first case affected by FA in this family. Bam file data of the patient show the homozygous deletion (left).
Sanger sequencing and NCBI blast confirmed this homozygous deletion (right)
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ments in the chromosomes of the cells in the proband,
GTG banding and the chromosome breakage test were
performed on the patient’s blood sample. The blood
sample was then cultured and treated with different con-
centrations of MMC.
NGS revealed a novel, private, homozygous, frame-

shift deletion mutation in the FANCF gene (FANCF-201,
ENST00000327470.4, NM_022725: exon1, c. 534delG, p.
G178 fs, position 22,625,277 on chromosome 11). Using
Sanger sequencing, the mutation was confirmed in the
proband as homozygous (Fig. 2b and c). The identified
mutation has not been reported yet in any database of
genomic variants including ESP6500, 1000 Genome Pro-
ject, ExAC, Kaviar, GME, gnomAD, and our internal
database (Bayan Gene), confirming the novelty of
mutation. This is the first report of FANCF mutation in
Iranian patient affected with autosomal recessive FA,
complementation group F.
The comparative amino acid alignment of FANCF pro-

tein across most kingdoms was also carried out. As
shown in Fig. 3, most of the residues were highly con-
served during evolution, and any frame shift mutations
could be deleterious.
In the cytogenetic study, 100 metaphase spreads were

studied from cultures prepared by adding MMC and
compared to age-related control. The chromosomal
breakage scoring was performed on 5 different slides
(one untreated with MMC, one with 150 nM MMC

concentration, one with 300 nM MMC concentration
and one normal control sample treated with these 2 con-
centrations of MMC). 25 metaphases were evaluated on
each slide for chromosomal aberration (gaps or breaks
or radial formations). The results showed about 7–8
breaks/cell on average. In comparison to normal control
sample which showed 0.3–0.5 breakages/cell. There was
no radial formation in the normal control sample. The
study showed 46, XX with multiple breaks and radial
formation (quadri and triradial), compatible with Fan-
coni Anemia (Fig. 4, Additional file 1).

Discussion and conclusion
To date, 22 FANC genes have been identified to be mu-
tated in FA patients. The most common genes involved
in FA are BRCA2 (FA-D1, ~ 3%), BRIP1 (FA-J, ~ 2%),
FANCA (FA-A, 60–70%), FANCB (FA-B, ~ 2%), FANCC
(FA-C, ~ 14%), FANCD2 (FA-D2, ~ 3%), FANCE (FA-E,
~ 3%), FANCF (FA-F, ~ 2%), FANCG (FA-G, ~ 10%) and
FANCI (FA-I,~ 1%). However, less common genes are
ERCC4 (FA-Q), FANCL (FA-L), FANCM (FA-M),
MAD2L2 (FA-V), PALB2 (FA-N), RAD51 (FA-R),
RAD51C (FA-O), RFWD3 (FA-W), SLX4 (FA-P), UBE2T
(FA-T), XRCC2 (FA-U) [2, 5, 9–12],MAD2L2 (REV7,
FANCV) [13], andRFWD3 [14].
Although FA Proteins do not have similar se-

quences, they are correlated with their association
and interactions in a common multi subunit protein

Fig. 3 Multiple protein sequence alignment of FANCF across different kingdoms
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complex. As shown in Fig. 5, which were extracted
from STRING (STRING: functional protein associ-
ation networks, https://string-db.org) tool and KEGG
database (KEGG: Kyoto Encyclopedia of Genes and
Genomes, http://www.genome.jp/kegg/), different
genes are involved in and interact with FA pathways.
It can be expected to identify new genes involved in

this disorder as the list of its corresponding genes is
growing. Since the FA pathway and its components
play a vital role in repairing DNA damage, any im-
pairments of these proteins result in life-threatening
abnormalities and hypersensitivity to DNA cross-
linking agents, leading to a high frequency of chromo-
somal instability [1].

Fig. 4 Comparison of GTG binding between blood cultures, exposure to mitomycin C from the proband and normal control without exposure to
this agent

Fig. 5 FA Protein network and its association with other proteins extracted from STRING (left) and FA pathway and different involved genes
provided from the KEGG database (right)
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In our study, we identified, for the first time, a novel,
private, homozygous frame-shift deletion mutation in
FANCF in an Iranian patient with FA. This gene, located
on 11p14.3, is one of the rare genes without intron in
the human genome and encodes a DNA repair protein
(374 amino acids, 42,254 Da) [15]. The Pfam database
indicates that amino acids 1–354 are considered as
FANCF domain, while ProDom reported amino acids 1–
355 as this domain (https://www.ensembl.org). There-
fore, most of the amino acids are essentials for proper
function of the protein.
The FANCF gene is the only rarely mutated in FA. At

present, 14 different pathogenetic mutations of FANCF
account for approximately 2 to 3% of the affected indi-
viduals. Disease-associated mutations have been re-
ported throughout the single coding exon of the FANCF
gene. The most commonly seen FANCF mutations are
short deletions, resulting in frame-shifts and premature
termination of the protein. In the study by Nicchia et al.
FANCF loss-of-function mutation was associated with a
severe phenotype characterized by multiple malforma-
tions. FANCF and FANCD2 have been found to be in-
volved in drug-resistant multiple myeloma, ovarian
cancer, non-small-cell lung cancer, and head and neck
cancer [16–18].
The following evidence can confirm that the identified

mutation causes FA in our patient: 1- NGS only identi-
fied this mutation to be impaired in the proband and
Sanger sequencing confirmed it as homozygous. 2- The
novel identified mutation is a frame-shift deletion after
the position of 178 in a 374 amino acid protein, coding a
fully non-functional truncated protein since most of the
amino acids of the FANCF are included in the FANCF
domain of this protein. 3- Multiple sequence alignment
revealed the conservation of more amino acids of the
FANCF during evolution.
FANCF in complex with three FANC proteins, includ-

ing FANCA, FANCG, and FANCL, interacts with HES1
that is proposed to play a key role in the stability and
nuclear localization of the FA core complex proteins. A
study conducted by De Winter et al. (2000) [19] identi-
fied that FANCF was located primarily in the nucleus,
wild-type cells, and a protein complex containing
FANCA, FANCC, and FANCG, indicating its role in the
maintenance of genomic integrity.
A report of any novel mutation in FANCF and other

related FA genes can help shed light on the path mecha-
nisms of this disorder and therapeutic strategies, and
establishment of genotype-phenotype correlations. A
novel, private, homozygous frameshift mutation in the
FANCF gene (NM_022725: c. 534delG, p. G178 fs) in
our patient correlated with hematological problem (pan-
cytopenia), short stature, microcephaly, and skin hyper-
pigmentation. Until now, no evidence of malignancy was

detected. The authors of this article intend to do more
family and functional study on the proband’s relatives.
We should also follow the patient for any further som-
atic mutations or incidence of any type of cancer. If this
mutation is reported again in the databases we can make
a group and work on genotype-phenotype correlations
more practically.

Additional files

Additional file 1: (Graphical abstract): This image describe and
summarize the article in picture version. (TIF 1096 kb)

Additional file 2: (Consent form): Written informed consent form was
signed by the patient’s father. (JPG 1497 kb)
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