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Abstract

Background: Ovarian cancer (OC) is the most deadly gynaecological cancer, contributing significantly to female
cancer-related deaths worldwide. Improving the outlook for OC patients depends on the identification of more
reliable prognostic biomarkers for early diagnosis and survival prediction. The various roles of long non-coding
RNAs (IncRNAs) in OC have attracted increasing attention. This study aimed to identify a IncRNA-based signature for
survival prediction in OC patients.

Methods: RNA expression data and clinical information from a large number of OC patients were downloaded
from a public database. These data were regarded as a training set to construct a weighed gene co-expression
network analysis (WGCNA) network, mine stable modules, and screen differentially expressed IncRNAs. The
prognostic INcRNAs were screened using univariate Cox regression analysis and the optimal prognosis IncRNA
combination was screened using a Cox-PH model. The finalised IncRNA combination was used to construct the risk
score system, which was validated and assessed for effectiveness using other independent datasets. Further
functional pathway enrichment was performed using gene set enrichment analysis (GSEA).

Results: A co-expression network was constructed and four stable modules with OC-related biological functions
were obtained. A total of 19 IncRNAs significantly related to prognosis of ovarian cancer were obtained using
univariate Cox regression analysis, and the 5 prognostic signature IncRNAs GAS5, HCP5, PART1, SNHG11, and SNHG5
were used to establish a risk assessment system. The reliability of the prognostic scoring system was further
confirmed using validation sets, which indicated that the risk assessment system could be used as an independent
prognostic factor. Pathway enrichment analysis revealed that the network modules related to the above five
prognostic genes were significantly associated with cell local adhesion, cancer signaling pathways, JAK-STAT
signalling, and endogenous cell receptor interaction.

Conclusions: The risk score system established in this study could provide a novel reliable method to identify
individuals at high risk of OC. In addition, the five prognostic INcRNAs identified here are promising potential
prognostic biomarkers that could help to elucidate the pathogenesis of OC.
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Background

Ovarian cancer (OC) is the most deadly gynaecological
cancer and a primary cause of female cancer-related
deaths worldwide, with recurrent OC being incurable in
almost all cases [1, 2]. Due to the mild or absent signs and
symptoms during early stages and the lack of reliable early
detection tests, OC is usually diagnosed at the late stages,
leading to poor prognosis and a five-year survival rate of
only 30% [3, 4]. Therefore, a deeper understanding of its
regulatory machinery at the molecular level is critical to
identify reliable prognostic biomarkers for early diagnosis
and survival prediction in OC patients.

Long non-coding RNAs (IncRNAs) are a group of
non-coding RNAs longer than 200 nucleotides. Growing
bodies of evidence have demonstrated the involvement
of IncRNAs in OC, with at least 56 OC-related IncRNAs
having been identified so far [4]. LncRNAs exhibit mul-
tiple biological functions during the various stages of
OC development, and their deregulated expression is
closely associated with OC early diagnosis, prognosis
and response to chemotherapy [4-9]. Some IncRNAs,
such as NEAT1 and GAS5, have been identified as clinical
prognostic biomarkers, and are being used as potential
therapeutic targets for OC [10-12]. Although previous
studies have made remarkable progress, the prognostic
roles of IncRNAs in OC and the related underlying mecha-
nisms remain poorly characterized. Further research ef-
forts are needed to identify, characterize, and elucidate the
detailed functions of IncRNAs at the molecular level, and
to identify more IncRNAs related to the prognosis of OC.

Recently, models for disease risk prediction and subse-
quent prognostic evaluation have attracted increasing
interest from researchers, as it has become clear that the
pathogenesis of most diseases is mediated by multiple,
rather than single genes [13-16]. Risk assessment tools
can help to estimate the probability that an individual
with a given set of risk factors will develop a disease of
interest, as well as detect high-risk populations for a
given disease [15, 16]. So far, such risk assessment tools
have been widely applied to the clinical prediction of
various cancers [15, 17, 18], resulting in the identifica-
tion of several expression-based IncRNA signatures as
risk assessment tools for OC [3, 6, 9, 19]. However, as
the risk assessment tools for OC are still limited, more
research is necessary to more exhaustively establish a set
of reliable tools for risk prediction.

In the present study, RNA expression data and clinical
information from a large number of OC patients were
downloaded from a public database, and a co-expression
network was built to excavate network modules with OC-
related biological functions. LncRNAs in stable functional
modules were identified as important factors associated
with OC. Combined with the clinical survival and prognos-
tic information of OC samples; we identified a molecular
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IncRNA combination, which was significantly associ-
ated with OC prognosis. Based on these prognostic-
related IncRNAs, a prognostic risk assessment model
was constructed to identify significant differences be-
tween high-risk and low-risk prognostic samples. The
reliability of the model was validated using the clinical
survival and prognostic information of OC samples in
independent validation datasets.

Methods

Data sources

The mRNA-seq expression profiles of OC in the training
dataset were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/). A total of 419 ovarian
cancer samples were detected by the Illumina HiSeq
2000 RNA sequencing platform. For the validation data-
sets, we first used the key word “ovarian cancer” to
search all publicly uploaded expression data in the NCBI
GEO (http://www.ncbi.nlm.nih.gov/geo/) database. The
following criteria were then used for inclusion into the
single validation datasets: 1) all data contained gene ex-
pression profiles; 2) detection objects were solid tumour
tissues from patients with OC, exclusive of blood and
cell lines; 3) expression profiles were all from human
subjects; and 4) the sample number was no less than 40.
The two final datasets GSE32062 and GSE17260 satis-
fied all the requirements, and included 260 and 100
samples, respectively.

Data pre-processing

The downloaded data were pre-processed before further
analysis. For the data downloaded from the TCGA data-
base, normalisation was performed using the quantile
standardization method of pre-process Core version
1.40.0 package [20] in R3.4.1 language (http://bioconduc-
tor.org/packages/release/bioc/html/preprocessCore.html).
Next, IncRNAs were annotated using Ref seq and Tran-
script_ID of the annotation platform and aligned by Blast
to human genome sequences (GRCh38 version) using
Clustal2 [21] (http://www.clustal.org/clustal2/). Finally,
IncRNAs and their corresponding expression values were
calculated [19].

For the expression profiles with CEL original format,
data were converted into expression values using the oli-
goversion 1.41.1 package [22] in R3.4.1 language (http://
www.bioconductor.org/packages/release/bioc/html/oligo.
html). Missing data were supplemented with median
values, followed by background correction using MAS
methods and normalisation using quantile methods. For
the expression profiles with. TXT original format, data
were log, transformed and normalised using the median
standardization method in limma version 3.34.0 [23] in
R3.4.1 language (https://bioconductor.org/packages/re-
lease/bioc/html/limma.html).
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Selection of stable modules using WGCNA

Weighed gene co-expression network analysis (WGCNA), a
bioinformatics algorithm for construction of co-expression
networks, is commonly used to identify modules associ-
ated with diseases and consequently screen important
pathogenic mechanisms or potential therapeutic targets
[24]. A co-expression network was constructed using
the WGCNA version 1.61 package [25] in R3.4.1 lan-
guage (https://cran.r-project.org/web/packages/WGCN
A/index.html) based on the TCGA datasets.

WCGNA analysis needed to satisfy the prerequisite of
scale-independent network distribution. Hence, the ap-
propriate weight parameter  (power) of the adjacency
matrix needed to be selected to ensure the constructed
co-expression network approached the scale-free distri-
bution to the greatest extent. With 1~20 of p value
ranges, the linear model was established by logarithms
of the adjacency degree of a node (log k) and the appear-
ance probability of this node [log(p(k))]. The p parame-
ters were the square values of R coefficients. A higher R*
value indicated that the network was closer to the scale-
independent distribution. The p (power) value when R*
was approximately 0.9 for the first time was finally
chosen for further analysis. All genes were ranked ac-
cording to their expression values using a rank function.
Then, the correlation between each pair of datasets of
the three expression profiles (TCGA, GSE32062 and
GSE17260) was evaluated using the verboseScatterplot
function and RNA adjacency matrix to construct an
RNA correlation matrix. This matrix was used as the
basis to build the hierarchical clustering tree using the
criteria of a cut height of 0.99, and the involvement of at
least 200 RNAs per module. Finally, the userListEnrich-
ment function was used to identify stable modules asso-
ciated with OC using the criteria of a Z-score greater
than 5. The IncRNAs in the stable modules were defined
as those significantly associated with OC.

Construction of the risk prediction model

The IncRNAs associated with prognosis were further
identified by univariate Cox regression analysis of the
survival package in R3.4.1 language. A P value less than
0.05 obtained by the log-rank test was chosen as the
threshold for identification. Next, the optimal combina-
tions of prognostic-related IncRNAs were screened using
the Cox-Proportional Hazards (Cox-PH) model [26] based
on L1-penalised regularization regression algorithm of the
penalised package [27] in R3.4.1 language (http://biocon-
ductor.org/packages/penalised/). The optimized parameter
“lambda” in the screening model was obtained by 1000
cyclic calculations using a cross-validation likelihood
(CVL) algorithm. Based on the regression coefficient of
each IncRNA in the optimal IncRNA combination, IncRNA
expression weighted by these coefficients was used to
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establish the risk prediction model, from which the risk
score (RS) of each sample was obtained. The RS calculation
formula was as follows:

RS = PIncRNA1 X exprlncRNA1 + -+ + BIncRNAn
x exprlncRNAn

Validation of the risk prediction model

In order to validate the risk prediction model, GSE32062
and GSE17260 were used as single validation sets. Data-
sets meeting the following criteria were selected as inde-
pendent validation datasets: 1) all data contained gene
expression profiles; 2) detection objects were solid tumour
tissues from patients with OC, exclusive of blood and cell
lines; 3) expression profiles were all from human subjects;
4) samples had prognostic clinical information and 5) the
sample number was no less than 50. This led to the
selection of the three microarray datasets GSE49997,
GSE26712, and GSE31245 containing 204, 185, and 58
samples, respectively. We also downloaded the mRNA-
seq expression profiles of cervical cancer (CESC) samples
with the corresponding clinical information data from
TCGA to further validate the efficiency of the risk predic-
tion model. Of 309 samples that were downloaded, 293
had clinical information available and were therefore used
for validation. The risk-score model was used to assess
significant prognostic differences between high and low
risk groups, with the results determining the stability of
this established model.

Analysis of important IncRNA relevant pathways

Gene sets were isolated from the modules that contained
the optimal IncRNAs significantly associated with OC prog-
nosis. The GSEA (gene set enrichment analysis) method
[28] (http://software.broadinstitute.org/gsea/index.jsp) was
then used to identify KEGG pathways enriched in these op-
timal IncRNA-related gene sets. The GSEA-based pathway
enrichment analysis was performed on each IncRNA
counter-gene in the IncRNA-mRNA network. Three key
statistical values were used in this analysis. The first of
these, the enrichment score (ES), is the original result of
the GSEA analysis, reflecting the degree of enrichment of
one functional gene set locating at the anterior or posterior
of this gene sequence after all the hybridization data are or-
dered. The fundamental calculation principle is to scan the
collating sequence; when a gene of this set is prepared, the
ES value will increase, otherwise it will decrease. The sec-
ond key statistical value is the normalised enrichment score
(NES) that results from standardized processing of ES
values. The final statistical value is the nominal P value,
which describes the statistical significance of the enrich-
ment scores of a functional gene subset; a smaller P value
indicates a better degree of gene enrichment. When the
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NES absolute value increases, the P value will spontan-
eously decrease, suggesting a higher degree of enrichment
and a higher significance of the result. In this study, a P
value less than 0.05 was chosen as the threshold to screen
KEGG pathways that were significantly enriched in the rele-
vant module genes.

Results
Screening of stable modules significantly correlated with
OC using WGCNA
One dataset from TCGA and two datasets from NCBI
GEO (GSE32062 and GSE17260) containing RNA expres-
sion data for OC were used for analysis. We identified 13,
251 mRNAs and 646 IncRNAs overlapping in the three
datasets (TCGA, GSE32062, and GSE17260). TCGA ex-
pression data was used as the training set and the
remaining two datasets were regarded as validation data-
sets. First, the consistency of the expression values of the
overlapped RNA in the three datasets was checked. The
results indicated that the correlation distribution of RNA
expression levels between each pair of datasets was higher
than 0.9 with P values less than 1le™ 2%, suggesting that all
three sets displayed significant positive correlation (Fig. 1).

WGCNA analysis was further conducted to screen
stable modules associated with OC. The 3 (power) value
of 3 was chosen as this was its value when R"2 was
approximately 0.9 for the first time (Fig. 2a). This value
of the B parameter not only ensured that the network
connection was close to the scale-free distribution, but
was also the minimum threshold to give the curve a ten-
dency to be smooth. When the § value was equal to 3,
the RNA average connection degree in the network was
3 (Fig. 2b), conforming to the small-world network
character in scale-independent networks.

An RNA adjacency matrix was constructed and a hier-
archical clustering tree was built on basis of this matrix.
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Based on the criteria of a cut height equal to 0.99 and an
involvement of at least 200 RNAs per module, six modules
were identified; M1-blue, M2-brown, M3-green, M4-grey,
M5-turquoise, and M6-yellow (Fig. 3a). The correspond-
ing modules were partitioned in the single validation data-
sets GSE32062 (Fig. 3b) and GSE17260 (Fig. 3c), based on
their inclusive RNA in the training set (TCGA) to evaluate
the stability of modules selected from the training set. The
results of the partition and correlation of modules in the
TCGA dataset are displayed in Fig. 4. It was found that
RNA in the same modules (i.e. dots with same colour)
tended to aggregate together (Fig. 4a), indicating that
RNA in the same module had similar expression. The
clustering results of module RNA in the other two data-
sets indicated that the blue, brown and green modules ex-
hibited characteristics of independent branches (Fig. 4b).

The results of stability analysis on the above six mod-
ules showed that the stability scores (preservation Z-
score) of the blue, yellow, brown and green modules
were all higher than 5, whereas those for the gray and
turquoise modules were not. RNAs included in these
four stable functional modules were likely associated
with OC pathogenesis. Table 1 lists the functional anno-
tation information of the six modules, showing that
RNAs in the top four highly stable modules were mainly
involved in cellular immune response, cell adhesion, sex-
ual reproduction, and the cell cycle.

The corresponding clinical information of samples in
the TCGA dataset was integrated and the correlation be-
tween RNA obtained by partitioning in each module and
clinical factors was calculated (Fig. 5). The results showed
that the four highly stable RNA modules brown, yellow,
blue and green were significantly correlated using OC data
including stage, grade, radiotherapy, lymph node metasta-
sis, and recurrence. Therefore, a total of 33 IncRNAs in
the four highly stable modules which were enriched for
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specific biological functions and displayed significant
relationships with clinical factors of OC were se-
lected as important OC-related factors for subse-
quent analyses.

Establishment and evaluation of risk assessment model
Selection of optimal IncRNA combinations

We used Cox univariate regression analysis (with the
regression threshold P set at 0.05) to evaluate the
expression levels of the 33 IncRNAs within the stable
modules of the TCGA dataset with regard to the OC
sample clinical prognosis information. This resulted in
the identification of 19 prognostic related-lncRNAs
(Table 2).

Next, we optimized and screened the 19 OC
prognostic-related IncRNAs using a Cox-PH model
based on an Ll-penalised regularization regression
algorithm in the penalised package, in which the
value of the “lambda” parameter was obtained by
1000 cyclic calculations using a CVL algorithm. This
resulted in an optimal prognosis combination con-
taining 5 IncRNAs: GAS5, HCP5, PART1, SNHG11
and SNHG5 (Table 3).

Construction, evaluation and selection of risk prediction
models

Based on the corresponding Cox-PH regression coeffi-
cients of the optimal combination of 5 IncRNAs

obtained in the previous section, the prediction model
of sample risk scoring was established as follows:

RS = (0.11) x ExpGAS5 + (-0.49) x ExpHCP5
+(-0.97) x ExpPART1 + (0.32) x Exp SNHG11
+(-0.27) x Exp SNHG5

The RS of each sample in the training set (TCGA) was
calculated according to the constructed model. These
samples were divided into high- and low-risk groups
based on the scoring medians. Next, Kaplan-Meier sur-
vival curve analysis was used to examine the significant
differences in survival time between the two sample
groups. The result indicated that this model had an
excellent distinguishing effect on the sample groups
(p value <0.01) (Fig. 6 and Fig. 7); therefore we used
this model for subsequent analyses.

As shown in Fig. 7, the prediction model also dis-
played significant differentiation effects on samples of
the GSE32062 and GSE17260 datasets included in the
WGCNA analysis (P value <0.05). The stability of this
model was further validated by the independent valid-
ation datasets GSE49997, GSE26712, and GSE31245, as
well as the CESC data from TCGA exclusive of any
processing (including module discovering and survival
analysis). The model displayed significant differentiation
effects for all these validation sets, indicating a high ro-
bustness of this prediction model. Taken together, the
above results show that the 5 IncRNAs comprising the
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Table 1 Statistical information of module stability (preservation) and annotation in TCGA, GSE32062 and GSE17260 datasets

Module Color Module size mRNA INncRNA Preservation Z-score Module annotation
Module 1 blue 517 503 14 40.5499 Immune response
Module 2 brown 368 361 7 404322 Cell adhesion

Module 3 green 214 210 4 22.0548 Sexual reproduction
Module 4 grey 1990 1982 8 28158 lon transport

Module 5 turquoise 920 915 5 46453 RNA metabolic process
Module 6 yellow 255 247 8 9.6416 Cell cycle

The first column is the number of module, the second column is the color corresponding to each module, the third column is the number of RNA in each
module, the fourth column is the number of mRNA in each module, the fifth column is the number of IncRNA in each module and the sixth column is the
preservation z-score corresponding to the stability of each module. The higher the z-score, the higher the stability of the module. Z-score between 5 and 10
means the module has stability and z-score > 10 means the module has high stability. The seventh column is the GO functions of each module

key components of this risk prediction model (GASS5,
HCP5, PART1, SNHG11, and SNHGS5), were signifi-
cantly associated with OC prognosis, and form a stable
combination for distinguishing high- and low-risk prog-
nostic samples, as well as other unprocessed samples.

Network construction and functional pathway analysis

The previous analysis identified the 5 important OC-
related IncRNAs; GAS5, HCP5, PART1, SNHGL11, and
SNHGS5. These five IncRNAs were distributed in the
blue, green, and yellow stable modules discovered by the
WGCNA method. The mRNAs closely related to the
expression of these five IncRNAs can be found in these

modules, and may be the target genes of these key
IncRNAs (Fig. 8).

GSEA was used to perform pathway enrichment analysis
of these mRNAs. This showed that the network modules
related to the 5 prognostic genes were significantly
associated with cell local adhesion, cancer signalling
pathways, JAK-STAT signalling, and endogenous cell
receptor interaction (Table 4).

Discussion

OC is the most deadly gynaecological cancer and a pri-
mary cause of female cancer-related deaths worldwide,
yet the regulatory machinery underlying OC develop-
ment remains unclear. Increasing evidence has identified
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Table 2 List of prognostic related IncRNAs obtained by COX
univariate regression analysis

LncRNA p value Module color
MYCNOS <001 yellow
SNHG11 <001 blue
PART1 <001 green
SNHG5 <001 yellow
FAM182B <001 brown
DSCR9 0.01 brown
GAS5 0.01 yellow
FAM182A 0.01 brown
KCNQ1DN 0.01 blue
SNHG1 0.02 blue
HCG27 0.03 green
RFPL1S 0.03 blue
SNHG7 0.04 blue
DLEU2 0.04 brown
HOTAIR 0.04 blue
HCP5 0.04 blue
DLEU1 0.05 brown
SNHG9 0.05 yellow
MIAT 0.05 yellow
LOH12CR2 0.05 yellow

IncRNAs in multiple biological functions at various
stages of OC development, and deregulated expression
of IncRNA is closely associated with OC early diagnosis,
prognosis, and response to chemotherapy [4-9]. To
identify a novel IncRNA-based signature for predicting
prognosis of OC patients, RNA expression profiling data
and clinical survival prognosis information from a large
number of OC patients were downloaded from the pub-
lic database. A co-expression network was subsequently
constructed and modules with OC-related biological
functions were excavated.

As a bioinformatics algorithm for construction of co-
expression networks, WGCNA is commonly used to iden-
tify modules associated with diseases and consequently
screen important pathogenic mechanisms or potential
therapeutic targets [24]. So far, gene modules associated

Table 3 Coefficients of optimal prognostic related IncRNA

LncRNA Coef Hazard ratio p value Module color
GAS5 0.109959 1538315 0.038 yellow

HCP5 —0492573 0.875803 0.021 blue

PART1 -0.966947 0.839052 0.016 green
SNHG11 0319810 127635 0.005 blue

SNHG5 —0.272969 0.943449 0.015 yellow

Note: Coef was the coefficient value calculated by Cox-PH regression model
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with several cancers have been identified and validated
through co-expression network analysis [29-31]. In the
present study, six modules were obtained in the training
set, four of which (blue, yellow, brown, and green) displayed
high stability. The results of functional annotation analysis
showed that RNAs in these four highly stable modules were
mainly involved in cellular immune responses, cell adhe-
sion, the cell cycle, and sexual reproduction, indicating their
likely association with OC pathogenesis.

Prognostic genes are informative for cancer prognosis
and treatment because of their potential as biomarkers,
and can help to predict patients’ survival, as well as
providing insights into the molecular mechanisms of
tumour progression [31-35]. In the present study,
WGCNA analysis identified a total of 33 IncRNAs in the
four stable modules with relevant biological functions
and correlation with specific clinical factors of OC.
Based on the expression level of these 33 IncRNAs in
the TCGA dataset and the clinical prognostic informa-
tion of the samples, a short-list of 19 IncRNAs were
screened using univariate Cox regression analysis. Fi-
nally, an optimal prognosis combination containing 5
IncRNAs (GAS5, HCP5, PART1, SNHG11, and SNHG5)
was identified using a Cox-PH model. Considering that
risk assessment tools can help to detect high-risk popu-
lations for a disease [15], the present study establishes a
new risk assessment system based on the above prog-
nostic gene signature. The effectiveness of the RS model
was tested in both the training set and validation sets,
and the results indicated that the risk assessment tool
could successfully distinguish a population at high risk
of future OC development. This method is simple and
inexpensive enough to be used in normal clinical prac-
tice and mass screening. Compared with the previous
IncRNA signatures and RS models for OC [3, 6, 9, 19],
the present prognostic IncRNA combination and RS
model may be more reliable because they were screened
based on the WGCNA analysis instead of single differ-
ential gene analysis.

The five prognostic genes have all been reported to be
associated with human cancer, and three (GAS5, HCP5,
and SNHG11) have reported associations with OC. GAS5
(growth arrest-specific transcript 5) was originally isolated
from NIH 3 T3 cells using subtraction hybridization [36].
The latest studies demonstrated that GAS5 usually func-
tions as a tumour suppressor to control apoptosis of vari-
ous cancer cells, including breast cancer, prostate cancer,
renal cell carcinoma, and ovarian cancer [12, 37-39]. Fur-
thermore, GAS5 acts as tumour suppressor and has been
suggested as a potential target for diagnosis and therapy of
OC [12]. HCP5 (HLA Class I Histocompatibility Antigen
Protein P5) is localised in the major histocompatibility
complex (MHC) class I region and has involvement in the
development of various tumours including OC [40—-43].
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Table 4 KEGG pathways significantly related to blue, green and yellow modules

Module/IncRNA Name ES NES NOM p-val  FDR g-val  Gene
Yellow/GAS5, SNHG5  Pyrimidine Metabolism -0461 —1.349 <0.001 <0.001 TYMP UPP1, RRM2, NME4, NME5
Regulation Of Actin 0.365 1.167 0.002 0.006 WAS, VAVI1, ITGB2, ITGAL, NCKAPIL, ITGBe,
Cytoskeleton MVYLPF, [TGA7
Fc Gamma R Mediated 0388 1153 <0001 0.006 WAS, VAV1, FCGR3A, INPP5D, PTPRC,
Phagocytosis FCGR2A, FCGR2B,
JAK STAT Signaling Pathway 0.404 1.153 <0.001 0.008 CSF3R, IL2RG, IL6R, IL4R, ILTORA, OSM,
OSMR, IL2RB
Ribosome -0971 -1.156 <0.001 0.028 RPS17, RPL39, RPL27A, RPL22L1, RPS20
Blue/HCP5 SNHG11 Endocytosis -0328 -1593 <0001 <0.001 HLA-B, HLA-C, HLA-A, HLA-F, TFRC, IL2RG, LDLR,
HLA-G, IL2RB, SMAP2
Antigen Processing and -0271 -1695 <0.001 < 0.001 CTSS, HLA-B, HLA-C, HLA-A, HLA-F, HLA-DMA,
Presentation B2M, HLA-DPA1, HLA-DRB5, TAP2, TAPI,
HLA-DPBI1, HLA-DRA, HLA-DRB1
Lysosome -0664 -1846 <0001 < 0.001 CTSS, TCIRGT, LAMP3, LAPTM5, CD68
Pathways in Cancer 0488 1653 <0001 < 0.001 CSF3R, RASSF5, FZD3, CDKN2B, MIMP9, BIRC3
Focal Adhesion 0435 1432 <0001 <0.001 VAV1, MYLPF, ITGB6, ITGA7, BIRC3
Fc Gamma R Mediated -0324 -1.127 <0001 0.049 WAS, FCGR3A, INPP5D, RAC2, PTPRC, FCGR2A,
Phagocytosis FCGR2B VAV
JAK STAT Signaling Pathway 0418 1222 <0.001 0.002 CSF3R, IL2RG, IL6R, IL4R, ILTORA, OSM,
OSMR, IL2RB
Pyrimidine Metabolism -0497 -1451 <0.001 <0.001 TYMP, UPP1, RRM2, NME4, NME5
Green/PART1 Pyrimidine Metabolism -0.530 -1.520 0.001 0.004 RRM2, NME4, NME5, TYMP UPP1
Fc Gamma R Mediated 0402 1239 0003 0012 VAV1, PTPRC, WAS, FCGR3A, FCGR2A,
Phagocytosis INPP5D, FCGR2B
B Cell Receptor Signaling 0469 1186 0.007 0.016 VAVI, BLNK, INPP5D, FCGR2B
Pathway
T Cell Receptor Signaling Pathway 0528  1.117 0015 0.033 VAVI, PTPRC, CD3E, CD3D, TNF, CD8A, LCP2

Pathways in Cancer 0320 1247 0004 0013 CDKNZ2B, CSF3R, MMP9, RASSF5, BIRC3
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SNHGI11 (small nucleolar RNA host gene 11) is an
obesity-associated IncRNA, and is involved in positive
regulation of cell proliferation in OC [44]. PART-1 (pros-
tate androgen regulated transcript 1) is a gene known to
be predominantly expressed in the prostate- and
androgen-regulated. Its aberrant expression has been
associated with poor prognosis of prostate cancer, non-
small cell lung cancer, and colorectal cancer, leading to
the suggestion of its use as a novel tumour marker
[45-47]. SNHG5 (small nucleolar RNA host gene 5)
has been strongly implicated in cancer-related pro-
cesses, such as cell differentiation, cell proliferation,
and metastasis [48—50]. The strong evidence of the
association of all five IncRNAs with cancer and/or OC
supports the conclusion that this study identified po-
tential biomarkers for predicting the prognosis of OC
patients, which should also help future research into
the pathogenesis of OC.

It has been demonstrated that IncRNAs play import-
ant roles in a variety of biological processes by regulat-
ing target genes at transcriptional, posttranscriptional
and epigenetic levels [51, 52]. Therefore, we investi-
gated the target genes regulated by the 5 prognostic
IncRNAs to decipher their potential biological function
in the pathogenesis of OC. The result of pathway en-
richment analysis showed that the network modules re-
lated to the five prognostic genes were significantly
associated with cell local adhesion, cancer signalling
pathways, JAK-STAT signalling, and endogenous cell
receptor interaction. According to functional analyses
of IncRNA regulators, it was found that low expression
of GAS5 could promote proliferation, metastasis, and
infiltration of OC cells, and as a result, was considered
to be associated with poor prognosis of OC [11, 12].
Most of the mRNAs in the regulated pathway are asso-
ciated with the development of OC. For example, up-
regulation of RASSF5 expression can inhibit the growth
of OC cells [53], over-expression of FZD3 can increase
the survival time of OC patients [54], and inhibition of
MMP9 gene expression can block metastasis of ovarian
cancer cells [55]. Therefore, the five prognostic-related
IncRNAs identified in the present study may play roles
in the initiation and development of OC by regulating
genes involved in cell adhesion and the JAK-STAT
signalling pathway.

Although the independent validation performed in this
study and the results of previous reports both indicate
that the present model should be effective, there are lim-
itations of the present study. Primarily, as this was an
extensive bioinformatics study based on previously pub-
lished data, our results should be further validated using
in vitro and in vivo models. However, our results form a
strong basis for other researchers to carry out the rele-
vant future research.
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Conclusions

In conclusion, our study constructed a co-expression net-
work and excavated four modules with specific biological
functions related to OC. A risk assessment tool for pre-
dicting prognosis of OC was further identified and vali-
dated based on the expression of 5 prognostic genes. The
present risk assessment tool could provide a novel reliable
method to identify individuals at high risk of OC, and the
5 prognostic genes could be promising prognostic bio-
markers for OC.
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