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Abstract

Background: Myopia is one of most common eye diseases in the world and affects 1 in 4 Americans. It is a
complex disease caused by both environmental and genetics effects; the genetics effects are still not well
understood. In this study, we performed genetic linkage analyses on Ashkenazi Jewish families with a strong familial
history of myopia to elucidate any potential causal genes.

Methods: Sixty-four extended Ashkenazi Jewish families were previously collected from New Jersey. Genotypes
from the lllumina ExomePlus array were merged with prior microsatellite linkage data from these families.
Additional custom markers were added for candidate regions reported in literature for myopia or refractive error.
Myopia was defined as mean spherical equivalent (MSE) of -1D or worse and parametric two-point linkage analyses
(using TwoPointLods) and multi-point linkage analyses (using SimWalk2) were performed as well as collapsed
haplotype pattern (CHP) analysis in SEQLinkage and association analyses performed with FBAT and rv-TDT.

Results: Strongest evidence of linkage was on 1p36(two-point LOD =4.47) a region previously linked to refractive
error (MYP14) but not myopia. Another genome-wide significant locus was found on 8g24.22 with a maximum two-
point LOD score of 3.75. CHP analysis also detected the signal on 1p36, localized to the LINC00339 gene with a
maximum HLOD of 3.47, as well as genome-wide significant signals on 7g36.1 and 11p15, which overlaps with the
MYP7 locus.

Conclusions: We identified 2 novel linkage peaks for myopia on chromosomes 7 and 8 in these Ashkenazi Jewish
families and replicated 2 more loci on chromosomes 1 and 11, one previously reported in refractive error but not
myopia in these families and the other locus previously reported in the literature. Strong candidate genes have
been identified within these linkage peaks in our families. Targeted sequencing in these regions will be necessary
to definitively identify causal variants under these linkage peaks.
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Background

Myopia is a common, complex trait with both genetic
and environmental factors influencing risk [1, 2]. As
rates of myopia have been increasing rapidly in many
parts of the world, myopia is one of the most prevent-
able forms of blindness that imposes significant
socio-economic costs. Recent genomewide association
studies (GWAS) have identified a number of loci associ-
ated with the risk of developing refractive errors [3-9]
but so far few causal variants have been identified.
Whole exome sequencing (WES) has been used in a
number of traits to identify causal variants that modify
the risk of developing traits and diseases and although
this can be an attractive approach in phenotypes that are
relatively uncommon, the challenges for identifying
which variants are truly causal in a common trait like
myopia are much greater. Population-based designs can
be difficult to analyze and interpret for WES data and
the sample size requirements can be prohibitive, espe-
cially as the cost of sequencing remains relatively high.
Family-based study designs have several advantages over
population-based studies, especially when focusing on
rare variants, as these may be enriched within a family
even if they are rare in the population and require lower
numbers of individuals to retain sufficient power. This
approach has been used successfully to identify genes in-
creasing risk for pathogenic or “high” myopia (mean
spherical equivalent (MSE) < -6 diopters (D)) [10-12].
Family-based linkage studies using sparse panels of gen-
etic markers (microsatellites and common single nucleo-
tide polymorphisms (SNPs)) have identified regions of
the genome likely to be harboring high-risk rare variants
contributing to non-pathogenic myopia (MSE < -1D) in
highly aggregated families [13-22] but the causal
variants responsible for these results have not yet been
identified. Exome-focused arrays such as the Illumina
ExomePlus array provide an inexpensive way of survey-
ing variation in the coding regions of the genome, with
content more targeted at coding variation. This study
uses dense exome array genotype data to attempt to nar-
row in on genes with rare variants that strongly increase
risk of myopia in our highly-aggregated Ashkenazi
Jewish families from the Penn Family Study.

Methods

Study design

Patient recruitment and genotyping

Genotype data were available for 527 Ashkenazi Jewish
individuals (64 extended families) selected due to their
strong information content for linkage studies of myopia
from among the 105 Ashkenazi Jewish families included
in the Penn Family Study. Details of the recruitment of
these families has been previously described [14]. This
study followed the tenets of the Declaration of Helsinki
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and informed consent was obtained from all subjects
after explanation of the nature of the study and any
potential consequences. This study was approved by the
institutional review boards of the University of Pennsyl-
vania and the National Human Genome Research
Institute. All subjects were genotyped with the Illumina
ExomePlus array by the Center for Inherited Disease
Research (CIDR) at Johns Hopkins University.

Quality control

CIDR standard quality control procedures were applied
to the entire dataset. Blind duplicates and HapMap
controls were distributed across plates for concordance
checking. Cases and controls were evenly distributed
across plates, but family members were kept on the
same plate. Samples with suspected mixtures or unusual
X and Y patterns or gender mismatch identified and
dropped before release. SNP clustering was performed
on all SNPs in project and SNP genotypes with genotype
quality (GC) score less than 0.15 recoded as missing
genotypes. Autosomal SNPs with less than 85% call rate,
cluster separation of less than 0.3 and heterozygote rate
greater than 80% were dropped. Subsets of SNPs manu-
ally reviewed are detailed in Supplementary Methods
and details of SNPs not released due to technical failure
can be found in Additional file 1: Table S1.

After receiving data from CIDR, additional quality
control measures were applied. Genotype and phenotype
data were combined and an additional 85 ungenotyped
individuals were added to the pedigrees to complete
family relationships. Detailed Mendelian error checking
was performed in Sib-pair [23], sex discrepancies were
calculated in PLINK [24] and samples which did not
appear sufficiently matched to their recorded sex were
dropped. Any unexpected duplicate samples were identi-
fied using PREST-PLUS [25] and one of the duplicate
pair dropped. SNPs with > 1 errors in blind duplicates or
HapMap controls were dropped and SNPs with >1
Mendelian error after correction of pedigree relation-
ships were also removed. Batch effects were tested for
using a homogeneity test of minor allele frequency for
each SNP on each plate compared to all other plates.
[26] We averaged these statistics over all SNPs to deter-
mine how the plates deviated from each other in [27]
PLINK. Heterozygosity rates across samples were
checked and outlier samples excluded. Examination of
samples for chromosomal abnormalities was performed
and problematic samples identified. Autosomal SNPs
with sex difference in allelic frequency > 0.2, sex differ-
ence in heterozygosity > 0.3 were also excluded. Variants
monomorphic in the study were also excluded.

We did not filter SNPs based on Hardy-Weinberg equi-
librium (HWE), instead SNPs that were not in HWE were
flagged. All significant and suggestive SNPs reported here
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were in HWE. We did initially find a single SNP that was
out of HWE at 16q22.1 that had a highly significant for
two-point logarithm of the odds (LOD) score of 7.76. This
SNP had an excess of heterozygotes (approximately 70%)
and a decrease in both homozygotes. We later found that
this SNP was within a known copy number variant
(CNV), which is responsible for the heterozygote inflation.
This SNP was removed from all analyses and is not re-
ported as significant.

Statistical analysis

Remapping and merger of the SNP and STS data sets

After cleaning, we merged the exome variant data with
older microsatellite (sequence tagged site (STS)) data
from previous linkage studies in the same population
[13, 14, 28]. All genetic markers (SNPs and STSs) were
mapped onto a common genetic map, the Rutgers Map
version 3 for GRCh37 [29]. After merging, the entire
data set consisted of 665 individuals from 64 extended
families with 67,196 markers (399 STS) for analysis.
Family-specific marker allele frequencies were estimated
using a Monte-Carlo expectation maximization algo-
rithm in sib-pair [23] and used in all linkage analyses.

Phenotype classification

A full description of the phenotyping has been previ-
ously described [14] but briefly families were eligible to
be included in the study if there was an index case with
a spherical equivalent (SpEq) of -1D or lower and no
systemic or ocular disease. All adults in the family were
classified as affected or unaffected based on these same
criteria. In children, a more stringent approach to classi-
fication was used in order to account for normal refract-
ive development. Individuals between 6 and 10 years of
age were classified as unaffected if their MSE in both
eyes was +2D or higher, and individuals whose MSE was
between +2D and -1D were designated as unknown. In-
dividuals aged 11-20 years with a minimum MSE of +
1.5D in both eyes were classified as unaffected. In this
age group, individuals with a MSE between + 1.5D and
-1D were placed in the unknown class.

Two-point linkage analyses

Two-point linkage analyses were performed using the
program TwoPointLods [30]. This is a parametric link-
age analysis program, and we assumed an autosomal
dominant model with a disease allele (D) frequency of
0.0133 and a 90% penetrance and 10% phenocopy rate
(dd/Dd/DD =0.1/0.9/0.9). Analysis was performed indi-
vidually on each family. Cumulative LOD scores and
heterogeneity (HLOD) scores were then calculated
across all families.
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SNP pruning for linkage disequilibrium

It is well-known that including markers that are in
strong linkage disequilibrium (LD) in multi-point linkage
analyses that assume linkage equilibrium can cause infla-
tion of false positive rates. Previous analyses have
allowed us to determine that even multi-point linkage
analyses that attempt to adjust for intermarker LD are
often inaccurate for very dense marker maps, so the data
were pruned. All SNPs were condensed into 1cM bins.
The SNP with the highest minor allele frequency (MAF)
in the bin was chosen to then represent the bin in the
multi-point analyses. We performed further LD analysis
on the binned SNPs in Haploview [31]. For any
SNP-pairs with an r* value greater than 0.2, one of the
SNPs in the pair was removed. Because of their high
information level, no STS markers were removed in
pruning analyses. Thus, after cleaning we were left with
3764 markers.

Multi-point linkage analyses

Multi-point linkage analyses were performed using
SimWalk2 [32—-34], with the identical models used in
the two-point analyses.

Collapsed haplotype pattern linkage analyses

A new approach to deal with intermarker LD without
pruning is the collapsed haplotype pattern (CHP)
method by Wang et al. [35] and implemented in the pro-
gram SEQLinkage. This approach generates multiallelic
pseudo-markers based on short haplotypes within speci-
fied genetic regions such as genes as determined using
physical positions from RefSeq for GRCh37. The advan-
tage of this approach it is does not require pruning as
the multipoint analysis does. We then performed two-
point linkage analysis of myopia with these pseudo-
markers using Merlin [36].

Association analyses

We also performed two types of association analyses.
The family-based association test FBAT [37, 38] was
used to examine all variants across all families. We also
used rv-TDT [39] which examines rare variants (MAF <
0.05). We chose a single trio of genotyped individuals
from each extended pedigree for this analysis.

Functional annotation and microRNA target prediction
Variants were annotated using Annovar to get the most
up to date predictions of function. Predicted microRNA
targets were identified using miRanda [40] and scored
using mirSVR [41].

Results
Four samples were not released due to poor perform-
ance on the array. After quality control, there were
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67,451 polymorphic variants and the mean call rate was
99%. Additional family members without DNA for geno-
typing were included to define family relationships. Demo-
graphic and clinical characteristics can be found in Table 1.
A summary of the four genome-wide significant chromo-
somal regions identified by either the two-point or CHP
linkage analyses can be found in Table 2. Suggestively
linked regions can be found in Additional file 2: Table S2.
Two-point parametric linkage analysis was performed
genome-wide (Fig. 1) and compared to previous multipoint
linkage analysis both study-wide and on a family-by-family
basis. Overall LOD scores and heterogeneity LOD (HLOD)
scores were calculated. Seven genome-wide significant
HLOD scores were observed for variants at chromosome
1p36.12 (max two-point LOD = 4.47). HLOD values > = 3.3
are considered significant and HLOD > = 1.9 are considered
suggestive, as advised by Lander and Kruglyak [42] Multiple
suggestive variants are also observed at 1p36 and a detailed
plot of the two-point HLOD scores on chromosome 1 is
provided in Fig. 2a. This region at 1p36.12 has previously
been linked to ocular refraction but not myopia in these
families [28] using multipoint analyses and a sparser set of
markers. There was a single significant variant at chromo-
some 8q24.22 (max two-point LOD=3.75) (Fig. 2b).
Suggestive evidence of linkage was seen on multiple chro-
mosomes, including 6 suggestive variants in the 11p15-13
region (Additional file 3: Table S3). Functional annotations
of all SNPs with HLODs over 1.9 from wANNOVAR [43-
45], along with the corresponding LODs and HLODS are
shown in Additional files 4, 5, 6 and 7: Tables S4—S7. Multi-
point linkage analyses of a pruned subset of SNPs using
Simwalk2 did not produce as strong HLOD scores at these
locations, even when specifically selecting SNPs that were
significantly linked in the two-point analysis (Fig. 3). How
much of this loss of signal is due to low information for
linkage due to the sparse map produced by LD pruning is
not clear. The significant signals on chromosomes 1 and 8

Table 1 Sample Demographics

Characteristics Participants

N 665
Genotyped 582
Affection Status
Affected 441
Unaffected 138
Unknown 86

Spherical Equivalent

Mean —3.46

Standard Deviation 329
Sex

Male 343

Female 322
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were no longer even suggestive. The two-point linkage
signals are however still considered to be significant evi-
dence of replication for a locus, by classic thresholds [42],
although this cannot be considered a true replication of the
1p36.12 region linkage since this locus has been seen before
in this dataset, albeit in a different but related trait and with
a different set of markers.

Collapsed haplotype pattern (CHP) linkage analysis of
these data using SEQLinkage and Merlin identified three
genome-wide significant genes. The first significantly
linked gene was LINC00339 (Fig. 4), in the 1p36.12
region (max HLOD 3.49, a = 0.48), which overlaps with
the two-point linkage results seen above. This was the
only significant gene found in the 1p region by the CHP
analysis. The other two significant linkage signals were
unique to this analysis. One was from the SSPO gene on
chromosome 7q36.1 (max HLOD 3.92, a=1), which
does not overlap with the published chromosome 7p15
myopia locus MYP17, which is on the opposite chromo-
somal arm. The third significant linkage was to the
NCR3LGI1 gene on chromosome 11p15.1 (max HLOD
3.66, a=0.57). This latter linkage is within the same
region as the suggestive 11p linkage observed in the
two-point linkage analysis above. NCR3LGI is about 14
kb from PAX6. PAXG6 itself did not have any HLOD
scores above 0.6 in the CHP analysis (although there
was one suggestive two-point linkage to one PAX6
variant with a maximum HLOD = 2.01). Suggestive CHP
linkage was found at 11p14.1 (BDNF, maximum HLOD
2.50) and 11pl15.2 (PDE3B, maximum HLOD =2.32).
(Additional file 3: Table S3). Individual plots of the CHP
HLODs scores along chromosomes 1, 7, and 11 can be
found in Fig. 5.

The association analyses using FBAT and rv-TDT
found no genome-wide significant signals.

Discussion

Here we report significant linkage with myopia at
1p36.12, 8q24, 7q36.1, and 11p15.1. The loci on chromo-
somes 1 and 11 are replications, while the loci on chro-
mosomes 8 and 7 are novel. All of these linkage signals
are cumulative effects across families. However, the
families do not share identical linked haplotypes; if they
did we should have seen significant association within
these regions as well. This suggests that several different
causal variants may exist across the linked families, with
these causal variants possibly all being in the same gene
(allelic heterogeneity).

Our strongest signals occurred in the 1p36.12 region,
identified as significant in both the two-point and CHP
analyses. Linkage of refractive error (but not myopia) to
markers on 1q36 [28] has been reported before in this
population, and is therefore not a true replication. It
now appears that this region did not exhibit significant
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Table 2 HLOD Scores for Genome-wide Significant Chromosomal Regions

Chr ™M Highest SNP (TP)  Max LOD Max HLOD  Alpha for Max Multipoint HLOD  Alpha for Max CHP HLOD  Alpha for
or Gene (CHP) Score Score HLOD near this location Multipoint HLOD  at this location ~ CHP HLOD

1p36.12° 4764  rs12748456° 4.47 4.47 1 1.21 0.15 3.49 048

802422 14750 1s72731540° 3.75 3.75 1 1.07 0.15 043 0.12

11p15.1 43074  NCR3LGI 127 2.78 0.55 0.27 0.05 3.66 0.57

7q36.1 161.66 SSPO 040 040 1 0.90 0.15 3.92 1

2 Multiple genome-wide significant two-point scores around this location. Also contained a single significant CHP variant, the LINC00339 gene

® Intergenic variant located between LINC00339 and CDC42
¢ Coding variant in WISP1

9 Multiple suggestive CHP scores in addition to the significant CHP score at this location

This table describes the four chromosomal regions that contained at least one significant HLOD score in either the two-point or CHP linkage analyses. Column 1
shows the chromosomal region that was found to be significant and column 2 shows the position of the region in centimorgans. Column 3 reports the location of
the highest HLOD score in the region. If the highest HLOD was in the two-point (TP) analysis, a SNP rsID is reported; if the highest HLOD occurred in the CHP
analysis, a gene name is reported instead. Columns 4-6 report the maximum cumulative LOD score, HLOD score and associated alpha for the two-point analysis,
columns 7-8 show the maximum multipoint HLOD closest to this location and its associated alpha, and columns 9-10 display the maximum CHP HLOD at this
location and its associated alpha. The overall highest HLOD score for each region is shown in bold

linkage with myopia in previous analyses due to prior
insufficient marker information at this location to detect
linkage to the binary trait of myopia affection. The
1p36.12 region contained the highest overall two-point
and CHP HLOD scores, both located either in or near
LINC00339, a long non-coding RNA gene known to be
associated with endometriosis [46—48] but with no pub-
lished role in ocular disease. CDC42, a GTPase directly
downstream of LINC00339, contained three significant
variants in the two-point analysis, but has not previously
been implicated in myopia either. However, one of its
activation targets, LAMAI, has been found to cause my-
opia in the presence of other phenotypes [49]. Slightly
further upstream at 1p36.2, the genes FRAPI and
PDGFRA (both located on 1p36.2) have both been found
to be associated with corneal curvature and eye size in
Asian and European populations [50, 51]. Neither gene
was found to be even suggestively linked to myopia in
this study.

We report the discovery of a novel locus linked to
myopia on 7q36.1, distinct from another known
chromosome 7 locus, MYP17 [52-54], located on the

opposite arm at 7pl5. This locus was only detected
by the CHP analyses and localized to the SCO-spon-
din gene (SSPO). The subcommissural organ (SCO) is
one of the circumventricular organs, a set of brain
structures that form the linkage between the central
nervous system and the peripheral blood stream. It is
one of the first differentiated brain structures to form
and its function is largely unknown. SCO-spondin is
a large glycoprotein from the thrombospondin. This
protein is highly expressed during CNS development
and is believed to be important in cellular adhesion,
axonal pathfinding and homeostasis. The Pax6 muta-
tion which causes a small eye and is known as Sey
also causes abnormalities in the SCO [55]. Homozy-
gous Sey/Sey mice die at birth with numerous defects
including an inability to properly form the SCO and
Sey/+ mice demonstrate a mosaic of SCO cells, some
of which are not expressing the Reissner’s fiber, a fi-
brous aggregation of the secreted molecules of the
SCO and is formed by secretion of SCO-spondin, and
other abnormalities related to normal development of
this important brain region. This admittedly tenuous
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link to PAX6 is an intriguing addition to the complex
story of myopia and its relationship to early brain
development.

A second novel locus discovered by two-point analysis
on chromosome 8q24 has not been previously reported
and the variant with the strongest two-point LOD score
is located in the WNTI-inducible pathway protein 1
(WISPI). This gene is a member of the WNTI-inducible
signaling pathway family of genes, all of which belong to
the connective tissue growth factor family. It is a down-
stream regulator in the Wnt/Frizzled signaling pathway,
is associated with cell survival by attenuating p53-medi-
ated apoptosis in response to DNA damage through ac-
tivation of AKT kinase and is widely expressed in many
tissues. No prior eye disease associations currently exist
for this gene, but the Wnt pathway is important in de-
velopment of the eye. Significant linkage was only
reported on a single variant in the two-point analysis,
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and this region was not significantly linked to myopia in
either the multipoint or the CHP analyses. Thus it is
possible that this is a false-positive two-point signal.
However, linkage for this variant is driven by three fam-
ilies with LOD scores of 1.5, 1.0, and 0.76 and in each of
those families the variant is part of a small linked haplo-
type across the 8q24 region, making it less likely that the
signal is a false positive (Fig. 6). The variant itself has
not been well studied; it does not have an rs ID and does
not have any frequency information in 1000Genomes or
ExAC for any population. In our dataset, the variant has
a frequency of 0.047 and is nonsynonymous exonic.
Another replicated locus on 11pl5 was present at a
suggestive level in the two-point analysis but at the
genome-wide significant level in the CHP analysis. This
is a true replication as this signal has not been previ-
ously seen in this population and adds to the body of
evidence that some genomic feature in this location
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appears to be actively modulating the risk of developing
myopia and refractive errors. This signal overlaps with
the MYP7 locus [56] which spans 11p13-p15.4 and there
is suggestive evidence of linkage in the two-point ana-
lyses of a 3" UTR variant in PAX6. The role of PAXS,
long postulated as a potential modifier of myopia risk,
remains murky, with evidence both supporting and
rejecting its involvement [17, 22, 57-66]. It remains to
be seen whether repeated detection of signals in this
location by multiple studies will turn out to be from
PAX6 or another nearby gene. The CHP analyses of
these data by contrast localized the signal to another
gene, NCR3LGI which is considerably upstream of
PAX6 but still within the linkage region originally identi-
fied by Hammond [17]. NCR3LG1 is a natural killer
(NK) cell cytotoxicity receptor ligand and when it inter-
acts with NKp30 results in NK activation and cell death.
It interacts exclusively with NCR3 but not with other
NK cell activating receptors. It has only been reported as
expressed in tumor tissues. None of these facts make
NCR3LGI a particularly attractive candidate for myopia
development however, and there are many other candi-
date genes in the region that, based on biological func-
tion, may be more likely to be causal genes (Additional
file 3: Table S3).

Although they did not reach genome-wide signifi-
cance, it is interesting to note that several loci did meet
the criteria for suggestive evidence of linkage, including
7pl4 close to the MYPI17 locus at 7p15 [52-54].

It is unfortunate but not surprising that none of the
association analyses were able to detect associations in
the regions found in the linkage analyses. Family-based
association analysis relies on risk alleles being shared
across families either identical by state (IBS) or identical
by descent (IBD). Linkage by contrast tracks the
co-segregation of haplotypes and the trait within a
pedigree, but is not concerned with whether those segre-
gating haplotypes contain alleles IBS across different
families. Using a founder population such as the Ortho-
dox Ashkenazi Jewish families in this analysis increases
the likelihood that there may be shared risk alleles across
linked families, but this is not guaranteed. Therefore,
this result, combined with the annotation of the signifi-
cantly linked variants/genes discussed above, suggests
that even using the exome-targeted array, we have likely
not genotyped the actual causal allele(s) and instead are
only able to detect its presence via linkage to specific
haplotypes in each linked family.

Conclusions

This study found significant linkage to myopia in
Ashkenazi Jewish families at four chromosomal loci -
1p36.12, 8q24, 7q36.1, and 11p15.1. The signals at 7q
and 8q were novel, while the signals at 1p and 11p are
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replications of previously identified signals, albeit ones
where the causal genes have yet to be identified. We
were able to identify several potential causal genes, in-
cluding WISPI on 8q and SSPO on 7q, though with our
limited exome-based array we were unable to resolve the
signal further than the chromosomal regions. We plan
to perform either targeted sequencing on the regions of
interest or whole genome sequencing (WGS) on the
most highly linked families to unequivocally identify the
causal variants that account for the linkages to myopia
detected here.
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