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Abstract

Background: KBG syndrome is a very rare autosomal dominant disorder, characterized by macrodontia, distinctive
craniofacial findings, skeletal findings, post-natal short stature, and developmental delays, sometimes associated
with seizures and EEG abnormalities. So far, there have been over 100 cases of KBG syndrome reported.

Case presentation: Here, we describe two sisters of a non-consanguineous family, both presenting generalized
epilepsy with febrile seizures (GEFS+), and one with a more complex phenotype associated with mild intellectual
disability, skeletal and dental anomalies. Whole exome sequencing (WES) analysis in all the family members
revealed a heterozygous SCN9A mutation, p.(Lys655Arg), shared among the father and the two probands, and a
novel de novo loss of function mutation in the ANKRD11 gene, p.(Tyr1715%), in the proband with the more complex
phenotype. The reassessment of the phenotypic features confirmed that the patient fulfilled the proposed
diagnostic criteria for KBG syndrome, although complicated by early-onset isolated febrile seizures. EEG
abnormalities with or without seizures have been reported previously in some KBG cases.

The shared variant, occurring in SCN9A, has been previously found in several individuals with GEFS+ and Dravet
syndrome.

Conclusions: This report describe a novel de novo variant in ANKRDT1 causing a mild phenotype of KGB syndrome
and further supports the association of monogenic pattern of SCN9A mutations with GEFS+. Our data expand the
allelic spectrum of ANKRDT1 mutations, providing the first Brazilian case of KBG syndrome. Furthermore, this study
offers an example of how WES has been instrumental allowing us to better dissect the clinical phenotype under
study, which is a multilocus variation aggregating in one proband, rather than a phenotypic expansion associated
with a single genomic locus, underscoring the role of multiple rare variants at different loci in the etiology of
clinical phenotypes making problematic the diagnostic path. The successful identification of the causal variant in a
gene may not be sufficient, making it necessary to identify other variants that fully explain the clinical picture. The
prevalence of blended phenotypes from multiple monogenic disorders is currently unknown and will require a
systematic re-analysis of large WES datasets for proper diagnosis in daily practice.
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Background

Whole Exome Sequencing (WES) technology introduces
a remarkable revolution in the identification of
disease-causing genes and a powerful tool for genetic
diagnosis, mainly relevant for rare diseases, which is
remarkably difficult for clinicians to be diagnosed. WES
can substantially reduce the number of cases remaining
undiagnosed for many years and has become the current
standard for the diagnosis of highly heterogeneous rare
disorders with suspected Mendelian inheritance. This
approach is leading to better dissecting the clinical
phenotype of patients, in particular, those related to
phenotypic progression in association with a single locus
and those derived from mixed phenotypes developing
from multilocus genomic variants. Recent studies
reported the presence of multiple genomic diagnoses in
a single individual in 3.2-7.2% of cases [1-3].

Molecular variants in the SCN9A gene (MIM#603415)
are responsible for a range of seizure disorders, which
are characterized by early-onset isolated febrile seizures
to generalized epilepsy with febrile seizures plus, type 7
(GEFS+), which identifies the most severe phenotype, as
well as primary erythermalgia, callousness to pain linked
to channelopathy and extreme paroxysmal pain disorder.
Patients with isolated febrile seizures frequently showed
an early onset between ages 5months to 4years and
exhibit natural remission by age 6 years, while patients
with GEFS+ persist in having various types of febrile and
afebrile crises afterwards in life [4]. The SCN9A gene
encodes for NaV1.7, a voltage-gated sodium channel
mainly expressed in the hippocampus during the embry-
onic phase, suggesting a key function in the central
nervous system [5] and in nociception signaling. SCN9A
has been proposed suggested as a genetic modifier in
SCNIA mutation linked with GEFS+ and as a potential
susceptibility gene for Dravet syndrome [6, 7].

In 1975, KBG syndrome was identified and character-
ized by specific clinical findings: macrodontia of the
upper central incisors, distinctive craniofacial signs,
short stature, skeletal abnormalities and neurological
involvement that encompasses developmental delay,
convulsions and intellectual disability [8—11].

The initial description of the KBG syndrome, named
KBG based on the initials of first affected families’
surnames, referred to 7 patients from 3 unrelated
families with a putative autosomal dominant inheritance
[8, 12, 13]. To properly diagnose KBG syndrome, 4 or
more of these 8 major criteria should be satisfied: (1)
macrodontia of the upper central incisors, observed as a
distinctive trait of KBG syndrome and reported in more
than 95% of cases; (2) distinctive facial features (presence
of at least three findings of six categories of craniofacial
shape, hair/eyebrow, eyes, ears, nose and mouth); 3)
hand abnormalities, (fifth finger clinodactyly, clinical
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brachydactyly, or short tubular bones on radiographic
exam); (4) neurological implication, with magnetic
resonance, global developmental delay, and/or a seizure
disorder; (5) bone age>2 SD below the average; (6)
costovertebral abnormalities, (abnormal curvature of the
spine, cervical ribs, or vertebral/endplate defects); (7)
postnatal short stature (as a height less than 3rd centile);
and (8) occurrence of a first-degree relative affected by
KBG syndrome.

In 2011, Sirmaci et al., [14] identified pathogenic
heterozygous variants in the ANKRDII gene (MIM#
611192). Single nucleotide mutations and small indels
represent about 83% of the pathogenic variants identi-
fied within ANKRD11 and larger copy number variants
(mostly deletions) represent about 17% [15-17].

ANKRD11 represents one of the family members of
ankyrin repeat-containing cofactors that relates with
p160 nuclear receptor coactivators (NCOA1) by recruiting
histone deacetylases to inhibit ligand-dependent transcrip-
tional activation [14, 18, 19]. ANKRD11 was also found to
localize inside the neurons nuclei and to accumulate in
distinct inclusions after their depolarization. This finding
suggests that ANKRD11 represents one of the major
players in neural plasticity [14].

Here, we report two sisters from a non-consanguineous
family, presenting generalized epilepsy with febrile
seizures plus (GEFS+; MIM#613863) associated with an
heterozygous mutation in the SCN9A gene, p.(Lys655Arg),
inherited from the father that was asymptomatic for the
crisis, and a novel de novo loss of function mutation in
the exon 10 of the ANKRDII gene, p.(Tyrl715*) in one
sister with a clinical phenotype compatible with KBG
syndrome (MIM#148050).

Case presentation

Clinical data

The reported family comes from Brazil and the two pro-
bands share a GEFS+ phenotypic spectrum. The original
purpose of our study was to find the molecular causes of
such phenotype. All members of the family were
clinically assessed and diagnosed by the respective
clinical neurologist and geneticist.

Case II-1

Female 14.5 years old. Delivered full term, by emergency
C-section, due to lack of fetal movement, weighing 2.971
Kg, 48 cm long and 33 cm head circumference. Neonatal
period had no complications. From the neonatal period
onward, she showed difficulty to breastfeed, with low
weight gain. At 9 months old, she had myoclonus-atonic
type seizures with sudden falling of the head and trunk.
Initially precipitated by fever, these seizures became
afebrile and daily, several times a day, and were
controlled after substituting phenobarbital for sodium
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valproate (VPA), in low doses. The EEG tests initially
showed focal spikes (centro-temporal regions) and only
at 4 age, one EEG test showed a theta rhythm (4-5 Hz)
in the temporo-occipital regions (T5-O1; T6-02). At the
age of 4 years and 8 months, after remission of seizures
for 3years, and normal EEG tests, VPA was suspended.
Starting from 6 years of age, the EEG tests showed per-
sistence of several bursts of irregular generalized
polyspike-wave (PSW) and spike-wave discharge (SW),
lasting 1-3s. (Fig. la-p). Despite persisting abnormal
EEGs, patient has not presented relapse of seizures and
is not on medication.

Patient presented with recurrent otitis episodes and
developed conductive hearing loss in left ear. A
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computed tomography scan of the mastoid showed signs
of otomastoiditis in the left ear with obliteration of
Prussak’s space and cholesteatomatous process. Ortho-
dontic evaluation conducted at 8years of age showed
dolichofacial pattern, maxillary protrusion, absence of lip
seal, delayed eruption of permanent teeth, besides size
increase of upper central incisors, with extra mamelar
structures and whitish material of incisors and other
teeth, compatible with hypoplasia (Fig. 2a, b).
Cone-beam computed tomography of right oral
lower-posterior region at 14.5years of age, revealed
dental units partially erupting and the presence of
mixed-aspect images located between the dental roots,
suggesting bone dysplasia (Fig. 2). The skeletal X-ray
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Fig. 1 Electroencephalogram (EEG) and mutation status of the SCN9A gene in cases II.1 and 1.2 associated to GEFS+ phenotypic spectrum. a-p:
EEG evolution of the two sisters starting from 1 to 13-14 years of age. P: Theta rhythm (4-5 Hz) in the temporo-occipital regions (T5-O1; T6-0O2) in
case II.1, at 1 year of age. q: Pedigree of the family under study. Mutation status of the SCN9A gene is indicated beneath symbols for each subject.
Sanger sequencing of cases II.1 and I1.2: arrow indicates the presence of the ¢.1964A > G: p.(Lys655Arg) mutation
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Fig. 2 Clinical features of case II.1 carrying the ANKRDT1 mutation associated to the KBG syndrome. a and b: intra and extra oral views at 8 and
10 years, respectively. Due to the dental apparatus (an expander to enlarge the palate positioned at the age of about 8 and a half years), it was
not possible to confirm the patient’s sub-mucosal palate with magnetic resonance imaging. The clinical suspicion is based on the dentist's
assessment of the palate. ¢ X-rays view of the cervical spine presenting invasion of physiological cervical lordosis. d and e: Picture and X-rays of
patient hands demonstrating shortening of the distal phalanx of the 5th finger, clinodactyly of the 2th and 5th with a slight shortened tubular
bones Il and IV. f: Computed tomography and magnetic resonance imaging of the sacroiliac joints that allowed the display of concealed spina
bifida at L5/S1. g: Pedigree of the family under study. Mutation status of the ANKRDT1 gene is indicated beneath symbols for each subject.
Sanger sequencing of cases II.1 and I1.2: arrow indicates the presence of the c.5145C > G: p.(Tyr1745%) mutation

ANKRD11
€.5145C>G: p.(Tyr1745%)

assessment showed inversion of physiological cervical
lordosis (Fig. 2c); deviation of left dorsal axis, accen-
tuated thoracic and lumbar lordosis and concealed
spina bifida at L5/S1 (Fig. 2f). The proband has also
shortening of the distal phalanx of the 5th finger,
clinodactyly of the 2th and 5th (Fig. 2d, e); myopia;
bifid uvula with submucous cleft palate; weight and
height growth curve below percentile <5. Neuro-
psychological analysis at age 8 showed 1Q of 73.

Case II-2

Female 13 years old. Showed normal neurological devel-
opment. At 12 months, she had the first febrile seizure.
She had recurring febrile seizures kept under control
with low doses of VPA. After 3.8 years with no relapse of
seizures and normal EEGs, VPA was suspended. At age
8, the same electroencephalographic pattern observed in
her sister appeared on the EEG (Fig. 1 a-p), with persist-
ence of bursts of irregular generalized polyspike-wave
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(PSW) and spike-wave discharge (SW), less frequent and
with shorter extent, with no relapse of seizures and no
medication. She presents normal neuro-psychomotor
and weight-height development, and an absence of
dysmorphic and radiologic alterations.

Genetic analysis

Peripheral blood lymphocytes were collected from all af-
fected individuals and their parents, and genomic DNA
was extracted using a salting out procedure [20].

An array based Comparative Genomic Hybridization
(CGH) analysis was done using commercially available
Human Genome CGH Microarray (Agilent Technologies,
Waldbronn, Germany) with an estimated average reso-
lution of 13Kb (SurePrint G3 Human CGH Microarray).

NGS panel analysis was performed by Ampliseq/Ion
Torrent technology with at least 120X using a targeted
re-sequencing of 21 genes implicated in juvenile forms of
epilepsy (ARHGEF9, KCNQ?2, PRRT2, PNKP, ST3GALS3,
SCN1A, GRIN2A, SCN8A, SLC2A1, SPTAN1, SCN2A,
ALDHTA1, PCDH19, ARX, TBC1D24, KCNT1, PLCBI,
STXBP1, PNPO, CDKL5, SLC25A22). No pathogenic
variant has been identified with this method in our
siblings.

One hundred nanograms of genomic DNA was used
for DNA library preparation and exome enrichment
using the Nextera Rapid Capture Expanded Exome Kit
(lumina) according to manufacturer instructions.
DNA1000 chips (Agilent) and Qubit dsDNA BR Assay
Kits (Invitrogen) were used to assess the quality of li-
braries. An indexed paired-end sequencing run (101 + 7
+ 101 bp) was performed on a HiSeq 2000 using SBS Kit
v3 chemistry (Illumina).

Using an analysis pipeline implemented in Orione
[21], we performed read alignment to the human refer-
ence genome (hgl9) using the Burrows-Wheeler Aligner
7 (BWA-MEM; version 0.7.5a) and GATK framework
(version 2.8.1). Using GATK Unified Genotyper and
GATK Variant Annotator modules, we annotated the
variants as known or novel based on dbSNP146 and
SnpSift/ SnpEff and KGGSeq. We used different models
(SIFT, Polyphen2, LRT, MutationTaster, MutationAsses-
sor and FATHMM) to assess the functional predictions
for the aminoacid changes. We filtered the identified
variants according to recessive/dominant/de novo pat-
tern of inheritance, gene features and MAF < 1% using
as references dbSNP138, dbSNP141, 1000 Genomes,
ESP6500, EXAC, gnomAD and EVADE, our private data-
base of about 600 exomes). Subsequently, variants were
evaluated for their phenotypic and biological impact.

The average target coverage was 93.5, 83.6, 88.1 and
78.9 for father, mother, case II-1 and case II-2, respect-
ively. The target region was covered at least 10X in 93%
for the father, 92% for the mother, 93% the older sister
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and 92% the younger. After filtering of the variants and
the quality assessment in IGV browser, we identified a
SCNYA: NM_002977:¢c.1964A > G: p.(Lys655Arg)
(rs121908919); chr2:167138296 T/C in hgl9 variant in
both cases, inherited from an unaffected father. Addition-
ally, we found a novel de novo truncating mutation in
exon 10 of the ANKRDI11 gene: NM_001256182:¢.5145C >
G: p.(Tyr1715*); chr16:89347805 G/C in hgl9 in case II-1
(Figs. 1 and 2).

Discussion and conclusions

We report here a dual diagnosis in case II-1 presenting
with ANKRDI1 and SCN9A pathogenic variants found
by WES. The variant in ANKRDI1 has never been re-
ported so far in literature. Considering that it is de novo,
we supposed a possible mosaicism in the parents but we
were not able to find any by WES analysis. The reassess-
ment of phenotypic features in case II-1 confirmed that
she fulfilled the proposed diagnostic criteria for KBG
syndrome, complicated by early-onset isolated febrile
seizures, although EEG abnormalities with or without
seizures have been reported in some KBG cases [17]. In
particular, she presented with macrodontia, hand anom-
alies, neurological involvement, costovertebral anomalies
and post-natal short stature. This is the first Brazilian
case reported so far.

The KBG syndrome is very rare, with about 100 indi-
viduals reported so far in literature [15, 16]. Probably it
is underdiagnosed due to the clinical features that can
be mild and common to other diseases. ANKRD11 mu-
tations have been found in patients identified in a large
number of subjects with characteristics consistent with
Cornelia de Lange syndrome (see, for example, CDLS1
MIM#122470), thus showing phenotypic overlap be-
tween the two disorders. As previously reported [22, 23],
some KBG patients could be recognized by gestalt,
others may look like Cornelia de Lange syndrome
(CDLS). CDLS and KBG represent two rare and distinct
syndromes, but they have clinical aspects that overlap
such as cognitive deficit, growth retardation and certain
craniofacial abnormalities (brachycephaly, wide eyebrows
and nostrils anti-vertite). Other common features are
limb abnormalities such as small hands and feet, clino-
dactyly of the fifth finger and syndactyly of the second
and third toes. Five different genes associated with the
cohesin complex and its regulation (NIPBL, SMCIA,
SMC3, HDACS8 and RAD21I), showed heterozygous mu-
tations identified in patients with CDLS. The cohesin
complex regulate gene expression mediating transcrip-
tional activation and repression [23]. The main function
of ANKRD11 is to suppress transcriptional activation of
the target genes of nuclear receptors by enrolling
deacetylase at different promoters [18]. It is reasonable
to assume that dysregulation of functionally correlated
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genes by cohesin complex deficiency or ANKRD11 may
result in overlapping phenotypic characteristics [23].

The shared variant p.(Lys655Arg), occurring in
SCNO9A, has been previously found in several individuals:
one with GEFS+ and two with Dravet syndrome.
Additionally, one of these individual also possesses a de
novo SCN1A mutation [6] and another affected by
atypical benign partial epilepsy (ABPE) of childhood,
harbored variants in in the CPA6 and SCNMI1 genes
associated with epilepsy [24]. Although already shown to
play important pathogenic roles in epilepsy and pre-
dicted to significantly alter protein function, the
p-(Lys655Arg) variant was detected in asymptomatic
parents and has been found with extremely low fre-
quency in control cohorts (NHLBI GO Exome Sequen-
cing Project and ExAC Browser).The SCN9A
p.Lys655Arg variant found in our sisters seems to be as-
sociated with an early-onset isolated febrile seizures.
Other subjects showing febrile seizures or GEFS+, that
possess SCN9A mutations were sporadic and cannot
offer powerful evidence for a specific role of SCN9A in
seizure disorders that is presently under debate. There-
fore, this report would further support that SCN9A mu-
tations are linked to a monogenic pattern.

The 39-year-old father, carrier of the same SCN9A
variant, has not reported any history of seizures. Consid-
ering that most febrile seizures would naturally remit
with age, we reinvestigated the family but we did not
find evidence of history of seizure disorders in the
father. However, he has had attention-deficit hyperactiv-
ity disorder since childhood and his family history shows
neuropsychiatric disorders (dementia, schizophrenia,
personality disorder, panic disorder, depression, delayed
development, intellectual disability and autism spectrum
disorder).

The phenotype of patients with GEFS+ combine
febrile seizures, absence seizures, partial seizures, myo-
clonic seizures, or atonic seizures, with a variable degree
of severity [25]. In a recent paper [7], none of the GEFS
+ families analyzed could be completely clarified by high
penetrance of SCN9A mutations. Moreover, it is not sur-
prising to identify a non-penetrant individual because
they are commonly identified in autosomal dominant
diseases and well documented in pedigrees of febrile
crises (60—80% of penetrance [6]).

This study provides an example of how WES has been
instrumental allowing us to dissect the clinical pheno-
type, which is a multilocus variation aggregating in one
proband. The successful identification of causal variant
in a gene may not be sufficient, making it necessary to
identify other variants that can fully explain the clinical
picture. In several series of studies, the presence of
multiple molecular diagnoses in a single individual has
been described in 3.2-7.2% of cases that underwent
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molecular analysis, but large cohorts of patients and its
associated clinical studies [3] are lacking to clearly define
this phenomenon. This report emphasizes the critical
role of the clinician in diagnostic genomic analyses and
highlights the advantages of WES technology in the
genetic dissection of a heterogeneous phenotype.

In our study, we prove that apparent phenotypic
expansion may represent blended phenotypes resulting
from pathogenic variation at more than one locus, so
allowing a dissection of genotype—phenotype relation-
ships. Due to the lack of the prevalence of blended
phenotypes from multiple monogenic disorders, a
systematic re-analysis of WES data sets is needed to a
proper diagnosis in daily practice.
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