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Abstract

Background: The aim of this study is to identify genetic loci associated with post-bronchodilator FEV1/FVC and
FEV1, and develop a multi-gene predictive model for lung function in COPD.

Methods: Genome-wide association study (GWAS) of post-bronchodilator FEV1/FVC and FEV1 was performed in
1645 non-Hispanic White European descent smokers.

Results: A functional rare variant in SERPINA1 (rs28929474: Glu342Lys) was significantly associated with post-
bronchodilator FEV1/FVC (p = 1.2 × 10− 8) and FEV1 (p = 2.1 × 10− 9). In addition, this variant was associated
with COPD (OR = 2.3; p = 7.8 × 10− 4) and severity (OR = 4.1; p = 0.0036). Heterozygous subjects (CT genotype)
had significantly lower lung function and higher percentage of COPD and more severe COPD than subjects
with the CC genotype. 8.6% of the variance of post-bronchodilator FEV1/FVC can be explained by SNPs in
10 genes with age, sex, and pack-years of cigarette smoking (P < 2.2 × 10− 16).

Conclusions: This study is the first to show genome-wide significant association of rs28929474 in SERPINA1
with lung function. Of clinical importance, heterozygotes of rs28929474 (4.7% of subjects) have significantly
reduced pulmonary function, demonstrating a major impact in smokers. The multi-gene model is significantly
associated with CT-based emphysema and clinical outcome measures of severity. Combining genetic information with
demographic and environmental factors will further increase the predictive power for assessing reduced lung function
and COPD severity.
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Background
Chronic obstructive pulmonary disease (COPD) is a com-
mon respiratory disease caused by the interaction of gen-
etic susceptibility with environmental influences, primarily
tobacco exposure. COPD is defined as a reduced ratio of
post-bronchodilator forced expiratory volume in 1 s
(FEV1) to forced vital capacity (FVC) (post-bronchodilator
FEV1/FVC < 0.70) [1]. COPD severity is measured by the

reduction in post-bronchodilator percent predicted FEV1,
i.e., GOLD stages 1–4 (mild, moderate, severe, and very
severe COPD) have post-bronchodilator percent predicted
FEV1 ≥ 80%, ≥50%, ≥30%, or < 30%, respectively [1].
Twenty-eight genomic loci associated with baseline

FEV1/FVC or FEV1 have been identified by meta-analyses
of genome-wide association studies (GWAS) in general
populations of European descent [2–4]. A recent GWAS
comparing extremes of high and low baseline FEV1 in
subjects of European ancestry from the UK Biobank has
identified five loci (KANSL1, HLA-DQ, NPNT, TET2, and
TSEN54) in never smokers and RBM19-TBX5 in heavy
smokers [5]. HHIP, FAM13A1, CHRNA3, RIN3, MMP12,
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and TGFB2 have been associated with COPD at
genome-wide significant levels [6]. To our knowledge, no
GWAS study has been performed on post-bronchodilator
FEV1/FVC and FEV1 in smokers, which defines a diagno-
sis of COPD and determines COPD severity, respectively.
GWAS of post-bronchodilator FEV1/FVC and percent

predicted FEV1 were performed in non-Hispanic White
smokers (n = 1645, GOLD stage 0–4, smoking≥20 packs/
year) from the NHLBI-sponsored SubPopulations and
InteRmediate Outcome Measures In COPD Study
(SPIROMICS). In addition to evaluating previously re-
ported loci associated with baseline lung function in
general populations, we aimed to identify novel genes
associated with abnormal post-bronchodilator lung func-
tion in smokers enriched for COPD and develop a
model to predict lung function using multiple genes and
demographic/environmental factors.

Methods
Study subjects
SPIROMICS is a prospective cohort study that enrolled
2981 participants with the goals of identifying new
COPD subgroups and intermediate markers of disease
progression [7, 8]. SPIROMICS is a well-characterized
longitudinal cohort with comprehensive phenotyping in-
cluding measurements of lung function and quantitative
CT scan. Spirometry was performed before and after
four inhalations with 90 μg albuterol and 18 μg ipratro-
pium per inhalation according to ATS recommenda-
tions. Non-Hispanic White smokers (ever or current
smoking≥20 packs/year) with genotyping information
available were included in this analysis. Smokers with
COPD were defined as smokers (smoking≥20 packs/
year) with post-bronchodilator FEV1/FVC < 0.7 (GOLD
stage 1–4) and ‘healthy’ smoking controls were defined
as smokers (smoking≥20 packs/year) with post-broncho-
dilator FEV1/FVC ≥ 0.7 (GOLD stage 0). DNA was iso-
lated using standard protocols, and SNP genotyping
performed using Illumina HumanOmniExpressExome
BeadChip and BeadStudio (Illumina, Inc., San Diego,
CA).
Participants were recruited at each center through

physician referral, advertisement in clinical areas or
self-referral using the SPIROMICS study website
(www.spiromics.com). The research protocol was ap-
proved by the institutional review boards of all partici-
pating institutions with written informed consent from
all participants.

Statistical analysis
For quality control, subjects were removed if they 1) had
genotyping call rates< 95%, 2) were discrepant for gen-
etic sex, 3) failed the check for family relatedness, or 4)
were detected as an outlier. After subjects meeting these

criteria were excluded, SNPs were removed if 1) call
rates< 95%, 2) inconsistent with Hardy-Weinberg Equi-
librium (HWE) (p < 10− 6), or 3) minor allele frequency
(MAF) < 0.01.
A linear additive model was used for analysis of pre

−/post-bronchodilator FEV1/FVC, percent predicted
FEV1, FVC, and % change in FEV1 bronchodilator re-
sponse using PLINK software (URL: zzz.bwh.harvar-
d.edu/plink/) [9], adjusted for age, sex, current smoking
status, pack-years of cigarette smoking, and the first two
principal components from the multidimensional scaling
analysis of genotypes on the chip. Association analyses
of Pre-/Post-bronchodilator FEV1 and FVC in ml were
performed using linear regression adjusted for sex, age,
age2, height, height2, weight, current smoking status,
pack-years of cigarette smoking, and the first two princi-
pal components. Association analyses of COPD and
COPD severity were performed using logistic regression
adjusted for age, sex, current smoking status, pack-years
of cigarette smoking, and the first two principal compo-
nents. P values≤5 × 10− 8 were considered genome-wide
significant. P values ≤0.05 were considered significant
for SNP-level evaluation of previously reported candi-
date SNPs associated with baseline lung function. SNAP
software (URL: http://www.broad.mit.edu/mpg/snap/)
was used to generate the association plots [10].
Joint analysis of 10 confirmed candidate SNPs was per-

formed, in which eight subjects with homozygous TT
genotype of rs28929474 in SERPINA1 (PiZZ genotype)
were not included in joint analysis to avoid bias. Genetic
scores were defined by the number of risk alleles pre-
sented in these 10 SNPs. A linear model was used for
analysis of post-bronchodilator FEV1/FVC and percent
predicted FEV1 with genetic scores in 1632 current or
former smokers. Joint analysis of these 10 candidate
SNPs was also performed for post-bronchodilator per-
cent predicted FEV1 and percentage of subjects with se-
vere COPD (GOLD stage 3–4) in 1077 smokers with
COPD.

Results
GWAS of post-bronchodilator pulmonary function
After quality control analysis, 1645 non-Hispanic White
subjects (1086 subjects with COPD and 559 current and
former smokers with preserved lung function [8]) were
included in the analysis (Table 1). GWAS of post-bron-
chodilator FEV1/FVC and percent predicted FEV1 were
performed for 635,970 single nucleotide polymorphisms
(SNPs) with MAF ≥ 0.01 in 1645 non-Hispanic White
smokers with age, sex, current smoking status, pack-years
of cigarette smoking, and the first two principal compo-
nents as covariates in the linear additive model. Genomic
inflation factors are 1.013 and 1.017 for GWAS of
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post-bronchodilator FEV1/FVC and percent predicted
FEV1, respectively, indicating limited genomic inflation.
SNPs in nine genes previously identified for baseline

FEV1/FVC or FEV1 in general populations [2–4], extremes
of high and low baseline FEV1 [5] or COPD [6] were also
associated (p < 0.05) with post-bronchodilator FEV1/FVC
or FEV1 (Table 2). SNPs in RARB, HDAC4, CHRNA3, and
RIN3 were associated with post-bronchodilator FEV1/FVC
and FEV1. SNPs in HHIP, AGER, FAM13A1, and PID1
were only associated with post-bronchodilator FEV1/FVC.
A SNP in MMP12 was only associated with
post-bronchodilator FEV1. The associations were signifi-
cant at the SNP level with same effect direction as previ-
ous findings [2–4, 6].
rs28929474 (Glu342Lys) in alpha-1 antitrypsin member

1 (SERPINA1) was associated with post-bronchodilator
FEV1/FVC (β = − 0.087, p = 1.2 × 10− 8) and percent pre-
dicted FEV1 (β = − 13.6, p = 3.5 × 10− 8) at a genome-wide

significant level (Table 2 and Additional file 1: Tables
S1-S2). No other SNPs in the SERPINA1 region were in
strong linkage disequilibrium (LD) with rs28929474 or
strongly associated with post-bronchodilator lung function
(Figs. 1 and 2). rs4537555 in hedgehog acyltransferase
(HHAT) and rs8079868 in myosin heavy chain 3 (MYH3)
were strongly associated with post-bronchodilator FEV1/
FVC (p = 2.1 × 10− 7) and percent predicted FEV1 (p =
5.9 × 10− 7), respectively (Table 2 and Additional file 1:
Tables S1-S2).

Association of SERPINA1 with lung function, COPD, and
COPD severity
Pre−/post-bronchodilator lung function was stratified by
genotypes of rs28929474 (Table 3). rs28929474 was associ-
ated in a stepwise fashion with pre−/post-bronchodilator
FEV1/FVC ratio (0.39, 0.54, and 0.61 for genotype TT, CT,
and CC, respectively; p = 1.2 × 10− 8). rs28929474 was

Table 1 Demographics (Mean ± SD) of Non-Hispanic White Subjects in SPIROMICS

Cases Controls P value

All Current smokers Former smokers All Current smokers Former smokers

n 1086 325 761 559 210 349 NA

Age at enrollment, years 66.2 ± 7.6 62.9 ± 8.1 67.7 ± 6.9 63.6 ± 9.0 58.0 ± 9.1 66.9 ± 7.0 < 0.0001

Female, n (%) 437 (40) 137 (42) 300 (39) 294 (53) 122 (58) 172 (49) < 0.0001

Body mass index 27.4 ± 5.1 25.7 ± 4.9 28.1 ± 5.0 28.6 ± 5.0 27.5 ± 5.1 29.2 ± 4.8 < 0.0001

Current smokers, n (%) 325 (30) 325 (100) 0 (0) 210 (38) 210 (100) 0 (0) 0.0019

Pack-years of cigarette smoking 55.0 ± 25.7 52.6 ± 24.7 56.0 ± 26.1 46.3 ± 27.3 45.3 ± 31.1 46.9 ± 24.8 < 0.0001

Post-bronchodilator FEV1/FVC 0.52 ± 0.13 0.55 ± 0.11 0.50 ± 0.13 0.77 ± 0.05 0.78 ± 0.05 0.77 ± 0.05 < 0.0001

Post-bronchodilator FEV1, % predicted 60.1 ± 22.5 63.6 ± 19.7 58.6 ± 23.5 94.4 ± 13.9 93.4 ± 13.2 95.0 ± 14.3 < 0.0001

Subjects with available GWAS genotyping information available at current stage were included; Cases: GOLD stage 1–4; Controls: GOLD stage 0

Table 2 Association Results of the Top SNPs (P < 10− 6) and Candidate Lung Function and COPD SNPs (P < 0.05)

SNP Gene Chr Location Minor (Effect)/
Major Allele

Minor
AlleleFrequency

Post-bronchodilator
FEV1/FVC

Post-bronchodilator
% predicted FEV1

β P value β P value

rs28929474 SERPINA1 14 coding T/C 0.029 −0.087 1.2 × 10−8 −13.6 3.5 × 10− 8

rs4537555 HHAT 1 intron G/A 0.11 − 0.044 2.1 × 10− 7 − 6.3 4.1 × 10− 6

rs8079868 MYH3 17 3’ C/T 0.12 − 0.034 3.5 × 10− 5 −6.7 5.9 × 10− 7

rs1980057 HHIP 4 5’ T/C 0.37 0.011 0.049 1.4 0.13

rs2070600 AGER 6 coding A/G 0.047 0.026 0.047 3.4 0.10

rs2869967 FAM13A1 4 intron C/T 0.41 −0.014 0.016 −1.4 0.12

rs1435867 PID1 2 3’ C/T 0.075 0.021 0.043 1.9 0.26

rs12477314 HDAC4 2 3’ T/C 0.21 0.014 0.033 2.3 0.035

rs1529672 RARB 3 intron A/C 0.15 0.026 5.1 × 10−4 3.4 5.0 × 10− 3

rs12914385 CHRNA3 15 intron T/C 0.43 −0.014 0.014 −2.2 0.014

rs10498635 RIN3 14 intron T/C 0.18 0.021 2.6 × 10−3 3.7 1.5 × 10− 3

rs615098 MMP12 11 3’ A/C 0.18 0.013 0.056 2.4 0.034

Association analyses of Post-bronchodilator % predicted FEV1 and FEV1/FVC were performed using linear regression adjusted for age, sex, current smoking status,
pack-years of cigarette smoking, and the first two principal components
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associated with pre−/post-bronchodilator FEV1 (33.5,
61.3, and 72.5 or 1210, 1841, and 2115 ml for genotype
TT, CT, and CC, respectively; p = 2.1 × 10− 9). Pre−/post-
bronchodilator lung function was significantly different
between CTand CC or TT and CC genotype groups, how-
ever differences between TT and CT genotype groups
were not as marked. rs28929474 was associated with
post-bronchodilator FEV1/FVC (β = − 0.060, p = 1.1 × 10− 5)
and percent predicted FEV1 (β = − 8.73; p = 2.6 × 10− 4) in
subjects with COPD (GOLD stage 1–4), but not in subjects
without COPD (GOLD stage 0; data not shown). Thus, the
association of rs28929474 with lung function was driven by
subjects with COPD.
Additional COPD-related phenotypes were analyzed

for association with rs28929474 (Table 3). rs28929474
was also associated with COPD status (odds ratio =
2.3, p = 7.8 × 10− 4) and COPD severity (odds ratio =
4.1, p = 0.0036) (Table 3). The percentage of subjects
with COPD or severe COPD was significantly higher
in subjects with CT genotype than CC genotype.
rs28929474 was a less common SNP with minor allele
frequency (MAF) of 0.029 in SPIROMICS (Additional
file 1: Table S3). Homozygous risk genotype TT was
present only in subjects (n = 8) with severe COPD
(GOLD stage 3–4).

Prediction of post-bronchodilator pulmonary function
Joint analysis of the most consistently associated 10 SNPs,
based on our analyses and previous findings was per-
formed. Genetic scores (the number of risk alleles) and
pack-years of cigarette smoking were significantly associ-
ated with post-bronchodilator FEV1/FVC and percent pre-
dicted FEV1 (Table 4). Age at enrollment and sex were
significantly associated with post-bronchodilator FEV1/
FVC but not associated with percent predicted FEV1. In
1632 SPIROMICS non-Hispanic White smokers (GOLD
stage 0–4), genetic score, age, sex, and pack-years of
cigarette smoking explained 3.6, 1.5, 1.9, 3.0%, and to-
gether 8.6% of the variance of post-bronchodilator FEV1/
FVC (Table 4). Genetic score and pack-years of cigarette
smoking explained 3.0, 2.9%, and together 5.8% of the
variance of post-bronchodilator percent predicted FEV1

(Table 4). In 1077 SPIROMICS non-Hispanic White
smokers with COPD (GOLD stage 1–4), post-broncho-
dilator FEV1 decreased significantly with the increase in
the number of risk alleles, from 65.4 to 54.0 (p = 1.2 × 10− 5)
and the percentage of subjects with severe COPD (GOLD
stage 3–4) increased significantly from 25.6 to 48.3% (p =
5.5 × 10− 5) (Fig. 3).
Joint analysis of the top 10 SNPs associated with

post-bronchodilator % predicted FEV1 in this study was

Fig. 1 Association plot of SERPINA1 region with post-bronchodilator FEV1/FVC. Negative logarithm-transformed P value (left) and recombination
rate (right). Red color scale represents the strength of linkage disequilibrium of SNPs with rs28929474
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also performed (Additional file 1: Table S2). In 1634
SPIROMICS non-Hispanic White smokers (GOLD stage
0–4), genetic score, age, sex, and pack-years of cigarette
smoking explained 7.5, 1.4, 1.9, 3.1%, and together 12.8%
of the variance of post-bronchodilator FEV1/FVC
(Additional file 1: Table S4). Genetic score and
pack-years of cigarette smoking explained 9.9, 3.0%, and
together 12.9% of the variance of post-bronchodilator
percent predicted FEV1 (Additional file 1: Table S4).
Increase in the number of risk alleles from 4 to 6 to 11–
13 was associated with significant decrease in post-bron-
chodilator FEV1 from 69.4 to 45.6 (p < 2.2 × 10− 16) and
with a significant increase in the percentage of subjects
with severe COPD (GOLD stage 3–4) from 21.4 to
57.9% (p = 2.2 × 10− 12) (Fig. S1).

Joint analysis of 10 SNPs with emphysema, clinical
symptoms, and exacerbation
Joint analysis of 10 candidate SNPs was further per-
formed on quantitative Computed Tomography (CT)
evidence of emphysema (TLC % area < − 950 HU) and
airtrapping (RV % area < − 856 HU), BODE index,
COPD Assessment Test (CAT) score, St. George’s Re-
spiratory Questionnaire (SGRQ) total score, 6-Minute
Walk Distance (6MWD), and exacerbations requiring

ED visit or hospitalization in last 12 month (Table 5). In
general, with the increase of genetic scores, emphysema
(p < 0.0001) and airtrapping (p < 0.0001) increased, BODE
index (p < 0.0001) and SGRQ total score (p = 0.0044) in-
creased, 6MWD (p = 0.0086) decreased, and the percent-
age of subjects with exacerbations (p = 0.001) increased.
Two extreme genetic score groups (8 to 11 risk alleles vs.
16 to 18 risk alleles) showed statistical and clinical differ-
ence for emphysema (5.54 vs. 12.5 of TLC % area < − 950
HU), airtrapping (21.8 vs. 33.9 RV % area < − 856 HU),
BODE index (1.15 vs. 2.21), SGRQ total score (30.4 vs.
35.5), 6MWD (416 m vs. 390 m), and percentage of exac-
erbations (7.5% vs. 14%).

Discussion
In this study, we performed GWAS of post-bronchodilator
FEV1/FVC and percent predicted FEV1, and identified
rs28929474 in SERPINA1. In 1963, Laurell and Eriksson
identified the connection between alpha 1-antitrypsin
(A1AT) deficiency and degenerative pulmonary disease
[11]. The SERPINA1 gene on chr14q32 encodes A1AT pro-
tein. The most common variant of SERPINA1 causing
A1AT deficiency is the Z allele (rs28929474: Glu342Lys),
which is a missense mutation of glutamic acid to lysine at
position 342 of A1AT protein. The homozygous TT

Fig. 2 Association plot of SERPINA1 region with post-bronchodilator percent predicted FEV1. Negative logarithm-transformed P value (left) and
recombination rate (right). Red color scale represents the strength of linkage disequilibrium of SNPs with rs28929474
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Table 3 Association Results of rs28929474 in SERPINA1 with Lung Function, COPD, and COPD Severity

Phenotype CC (n = 1559) CT (n = 78) TT (n = 8) TT vs. CT vs. CC CT vs. CC TT vs. CT TT vs. CC

β or
OR

P value β or
OR

P value β or
OR

P value β or
OR

P value

Age at enrollment,
years

65.4 ± 8.2 64.5 ± 8.1 53.7 ± 3.9 −2.38 0.0029 −0.92 0.33 −10.8 3.6 × 10−4 −11.7 5.7 × 10−5

Sex (Female vs.
Male), n

696 vs. 863 33 vs. 45 2 vs. 6 0.83 0.35 0.91 0.69 0.46 0.35 0.41 0.28

Pack-years of cigarette
smoking

52.3 ± 26.6 48.9 ± 26.4 35.2 ± 13.4 −3.97 0.12 −3.10 0.3 −6.62 0.52 −12.3 0.19

Post-bronchodilator
FEV1/FVC

0.61 ± 0.16 0.54 ± 0.18 0.39 ± 0.09 −0.087 1.2 × 10−8 − 0.077 2.3 × 10− 5 −0.090 0.21 −0.23 3.2 × 10− 5

Pre-bronchodilator
FEV1/FVC

0.59 ± 0.15 0.52 ± 0.17 0.37 ± 0.09 −0.081 9.9 × 10− 8 −0.069 1.7 × 10− 4 − 0.086 0.22 −0.22 3.5 × 10− 5

Post-bronchodilator
% predicted FEV1

72.5 ± 25.6 61.3 ± 26.4 33.5 ± 7.89 −13.6 3.5 × 10− 8 − 11.4 9.1 × 10− 5 −22.5 0.037 −38.1 2.2 × 10− 5

Post-bronchodilator
FEV1, ml

2115 ± 888 1841 ± 860 1210 ± 240 − 439 2.1 × 10−9 − 329 1.4 × 10− 4 − 1066 1.5 × 10− 4 − 1395 1.4 × 10−7

Pre-bronchodilator
% predicted FEV1

65.6 ± 26.1 54.8 ± 26.9 30.2 ± 7.57 −12.9 8.3 × 10− 7 −10.9 5.0 × 10− 4 −17.5 0.12 −34.7 1.6 × 10− 4

Pre-bronchodilator
FEV1, ml

1916 ± 883 1629 ± 833 1091 ± 240 − 426 1.1 × 10− 8 − 339 1.2 × 10− 4 − 924 8.1 × 10− 4 − 1263 2.9 × 10− 6

% change in FEV1
(BDR)

13.6 ± 13.5 17.1 ± 18.1 11.6 ± 9.75 2.08 0.13 3.49 0.030 −3.56 0.65 −2.77 0.57

Post-bronchodilator
% predicted FVC

90.7 ± 17.7 86.9 ± 17.2 71.5 ± 21.1 −5.23 0.0024 −3.83 0.060 −18.0 0.019 −17.0 0.0070

Post-bronchodilator
FVC, ml

3518 ± 1011 3482 ± 1036 3365 ± 1015 − 236 4.6 × 10− 4 − 162 0.042 − 661 0.023 − 822 7.1 × 10− 4

Pre-bronchodilator
% predicted FVC

84.4 ± 19.4 78.9 ± 18.6 68.7 ± 21.7 −6.07 0.0018 −5.55 0.017 −12.6 0.13 −14.2 0.038

Pre-bronchodilator
FVC, ml

3274 ± 1032 3145 ± 1015 3240 ± 1071 −277 2.0 × 10− 4 − 249 0.0046 − 434 0.16 − 683 0.011

COPD (GOLD stage
2–4 vs. 0), n

803 vs. 539 53 vs. 20 8 vs. 0 2.31 7.8 × 10−4 1.91 0.019 NA NA NA NA

COPD severity (GOLD
stage 3–4 vs. 1), n

331 vs. 217 32 vs. 5 8 vs. 0 4.08 0.0036 3.79 0.0081 NA NA NA NA

Association analyses of age or sex were performed using linear or logistic regression without adjustment. Association analyses of Pre-/Post-bronchodilator FEV1
and FVC in ml were performed using linear regression adjusted for sex, age, age2, height, height2, weight, current smoking status, pack-years of cigarette smoking,
and the first two principal components. Association analyses of Pre-/Post-bronchodilator FEV1, FVC, and FEV1/FVC, and % change in FEV1 were performed using
linear regression adjusted for age, sex, current smoking status, pack-years of cigarette smoking, and the first two principal components. Association analyses of
COPD and COPD severity were performed using logistic regression adjusted for age, sex, current smoking status, pack-years of cigarette smoking, and the first
two principal components

Table 4 Prediction Models for Post-bronchodilator Lung Function

Post-bronchodilator FEV1/FVC Post-bronchodilator % predicted FEV1

β R2 P value β R2 P value

Genetic Score (8–18)a − 0.018 0.0363 8.6 × 10− 15 −2.6 0.0296 2.7 × 10− 12

Age at enrollment, years −0.0024 0.0145 1.1 × 10− 6 − 0.042 0.000176 0.59

Sex (Male = 0, Female = 1) 0.044 0.0186 3.1 × 10− 8 1.88 0.000132 0.14

Pack-years of cigarette smoking − 0.0011 0.0304 1.3 × 10− 12 −0.017 0.0294 3.2 × 10− 12

All NA 0.0859 < 2.2 × 10− 16 NA 0.0583 < 2.2 × 10− 16

aGenetic scores (the number of risk alleles) of 10 candidate SNPs (rs28929474 in SERPINA1, rs1980057 in HHIP, rs2869967 in FAM13A1, rs2070600 in AGER,
rs1435867 in PID1, rs12477314 in HDAC4, rs1529672 in RARB, rs12914385 in CHRNA3, rs10498635 in RIN3, and rs615098 in MMP12). 1632 SPIROMICS non-Hispanic
White smokers (GOLD stage 0–4) were included. Eight subjects with TT genotype of rs28929474 in SERPINA1 (PiZZ genotype) were excluded
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genotype of rs28929474 (PiZZ genotype) is consistently as-
sociated with emphysema, decreased lung function, and
COPD [12, 13].
Previous GWAS of COPD, emphysema, and lung

function did not identify rs28929474 in SERPINA1 [2–6,
14]. There are several potential reasons for missing this
association. rs28929474 is relatively rare in the general
population, for example, approximately 2 and 0.01% of
the population in the United States are heterozygous or
homozygous for the T allele, respectively [15]. The lar-
gest meta-analyses of GWAS of baseline lung function
in general populations of European descent [2–5] have
included tens of thousands subjects, however very few
subjects may have been homozygous for the T allele and
more importantly these studies did not ascertain

subjects with a significant history of cigarette smoking, a
necessary environmental exposure. Thus, these studies
in general populations have limited power to identify the
association between rs28929474 and lung function. In
this study, we performed GWAS of post-bronchodilator
lung function in heavy smokers enriched for COPD. As
expected the number of subjects with homozygous TT
genotype was rare (n = 8 in 1645 or 0.49%) but the het-
erozygous CT genotype was more common (n = 78 or
4.74%). In addition, rs28929474 is not included in the
previously designed GWAS chips nor are there other
SNPs in strong LD (r2 > 0.5) with rs28929474, preventing
the identification of association with COPD and
emphysema [6, 14]. The Illumina OmniExpressExome
BeadChip used in this study includes exonic markers

Fig. 3 Joint analysis of 10 candidate SNPs in 1077 SPIROMICS non-Hispanic White smokers with COPD. 10 SNPs include rs28929474 in SERPINA1,
rs1980057 in HHIP, rs2869967 in FAM13A1, rs2070600 in AGER, rs1435867 in PID1, rs12477314 in HDAC4, rs1529672 in RARB, rs12914385 in CHRNA3,
rs10498635 in RIN3, and rs615098 in MMP12. Blue bars represent post-bronchodilator percent predicted FEV1, and red bars represent percentages
of subjects with severe COPD (GOLD stage 3–4)

Table 5 Joint analysis of 10 SNPs with emphysema, clinical symptoms, and exacerbation

Genetic Scorea 8–11 (n = 228) 12–13 (n = 643) 14–15 (n = 612) 16–18 (n = 149) P valueǂ

CT Evidence of Emphysema (TLC % Area < − 950 HUb) 5.54 ± 6.59 7.60 ± 9.84 8.67 ± 10.4 12.5 ± 12.4 < 0.0001

CT Evidence of Airtrapping (RV % Area < − 856 HUb) 21.8 ± 18.1 24.0 ± 20.6 27.6 ± 21.0 33.9 ± 23.2 < 0.0001

BODE Index 1.15 ± 1.62 1.33 ± 1.75 1.61 ± 1.98 2.21 ± 2.41 < 0.0001

COPD Assessment Test (CAT) 12.7 ± 8.0 13.0 ± 8.0 14.0 ± 8.2 13.5 ± 7.9 0.07

St. George’s Respiratory Questionnaire (SGRQ) Total Score 30.4 ± 19.7 30.3 ± 19.6 32.9 ± 20.0 35.5 ± 20.6 0.0044

6-Minute Walk Distance (6MWD, meters) 416 ± 114 415 ± 111 418 ± 124 390 ± 126 0.0086

Exacerbations requiring ED Visit or Hospitalization in last
12 months (% Yes)

7.5% 6.5% 11% 14% 0.001

aGenetic scores (the number of risk alleles) of 10 candidate SNPs (rs28929474 in SERPINA1, rs1980057 in HHIP, rs2869967 in FAM13A1, rs2070600 in AGER,
rs1435867 in PID1, rs12477314 in HDAC4, rs1529672 in RARB, rs12914385 in CHRNA3, rs10498635 in RIN3, and rs615098 in MMP12). 1632 SPIROMICS non-Hispanic
White smokers (GOLD stage 0–4) were included. Eight subjects with TT genotype of rs28929474 in SERPINA1 (PiZZ genotype) were excluded. b CT scan-based
measures of emphysema (− 950 Hounsfield Units or less [%Bilateral Lung Area ≤ − 950]) and airtrapping (− 856 Hounsfield Units or less [%Bilateral Lung
Area ≤ − 856]) measures log-transformed for analysis and adjusted by study site, age, sex, height, BMI, and pack-year smoking history. ǂGeneralized linear
model was used with adjusted of age, sex, current smoking status, and pack-years of cigarette smoking. In generalized linear models, CT evidence of
emphysema and airtrapping were natural logarithm transformed; 6MWD was logarithm (base 10) transformed
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identified from exome and whole genome sequencing
projects. rs28919474 (exm1124179) was directly geno-
typed. This study found rs28929474 in SERPINA1 to be
associated with pre- and post-bronchodilator FEV1/FVC
and FEV1 at a genome-wide significant level (Table 3).
Although the function of homozygous TT has been

known for a long while, the effect of heterozygous CT is
more controversial and has been questioned in
candidate-gene studies in the past [16–18]. For example,
in a general population (n = 4600), baseline FEV1/FVC
and FEV1 were not significantly different between PiMM
and PiMZ [17]. In a case-control study (834 COPD cases
and 835 controls), post-bronchodilator FEV1/FVC and
FEV1 were not significantly different between PiMM and
PiMZ [16]. In a small study composed of mainly healthy
subjects, post-bronchodilator FEV1/FVC (0.77 or 0.71
for PiMM or PiMZ) and percent predicted FEV1 (96.4 or
84.6 for PiMM or PiMZ) were significantly different in
ever-smokers but not in never-smokers [18]. In a recent
candidate-gene study (5518 non-Hispanic Whites and
2753 African Americans with ≥10 pack-years of smok-
ing), subjects with PiMZ had significant lower lung func-
tion than subjects with PiMM in both Whites and
African Americans [19]. In the current study, subjects
with CT genotype had intermediate values for lung
function between subjects with TT and CC genotype
(Table 3). Subjects with CT genotypes had significantly
lower post-bronchodilator FEV1/FVC and percent pre-
dicted FEV1, and higher percentage of COPD and more
severe COPD than subjects with CC genotype. Thus,
SERPINA1 CT heterozygosity has important functional
effects on COPD and lung function. All subjects in-
cluded in our study had a history of tobacco smoking
with at least a 20-pack-years. Association results were
unaffected by the number of pack-years of cigarette
smoking in our study. Compared with results from
COPDGene study [19], this study included heavier
smokers, and thus had lower lung function. More im-
portantly, this study is a hypothesis-free GWAS study,
which identified association of rs28929474 with lung
function at genome-wide significant level for the first
time. More than a hundred common and rare variants
exist in the SERPINA1 gene. Thun et al. have identified
synthetic association between common variants in SER-
PINA1 and serum A1AT levels, suggesting A1AT levels
are causally determined by rare variants such as Z allele
and S allele (rs17580) [20]. Cho et al. have identified
rs45505795 in SERPINA10 with MAF of 0.04 (not in
strong LD with rs28929474: r2 = 0.295) associated with
emphysema [14]. We found no SNP other than
rs28929474 in SERPINA1 region to be strongly associ-
ated with lung function (Figs. 1 and 2).
To develop a multi-gene predictive model for lung

function, genes associated with lung function and COPD

in previous published studies were evaluated. We identi-
fied the association of HHIP, FAM13A1, AGER, PID1,
HDAC4, RARB, CHRNA3, RIN3, and MMP12 with
post-bronchodilator lung function at the SNP level
(Table 2). In a previous study, we have showed that
HHIP, FAM13A1, AGER and RARB associated with
pre-bronchodilator lung function in subjects with
asthma [21]. The lung expression quantitative trait locus
(eQTL) analysis has identified cis-eQTL SNPs in HHIP,
FAM13A1, and AGER [22]. All the evidence indicates
rs1980057 in HHIP, rs2869967 in FAM13A1, and
rs2070600 in AGER are functionally relevant SNPs im-
portant for lung function in the general population and
in subjects with COPD or asthma. rs4537555 in HHAT
was strongly associated with post-bronchodilator FEV1/
FVC (Table 2). HHAT is a hedgehog acyltransferase
which catalyzes N-terminal palmitoylation of sonic
hedgehog (SHH). Hedgehog interacting protein (HHIP)
and patched homolog 1 (PTCH1) are the other two
genes involved in hedgehog signaling pathway and asso-
ciated with lung function [2–4, 21], indicating the im-
portance of this pathway in lung development and
function. Independent replication and functional study
of HHAT are warranted.
Since each of these variants alone had smaller effects,

we performed a joint analysis of 10 confirmed candidate
SNPs. This analysis explained 3.63 and 2.96% variance of
post-bronchodilator FEV1/FVC and percent predicted
FEV1, respectively (Table 4). In contrast, pack-years of
cigarette smoking explained 3.04 and 2.94% variance of
post-bronchodilator FEV1/FVC and percent predicted
FEV1. A genetic score using these 10 candidate SNPs, age,
sex, and pack-years of cigarette smoking together ex-
plained 8.59 and 5.83% variance of post-bronchodilator
FEV1/FVC and percent predicted FEV1. In addition, joint
analysis of 10 confirmed candidate SNPs (with Z allele ho-
mozygotes removed) was performed on CT evidence of
emphysema and airtrapping, BODE index, COPD, CAT
score, SGRQ total score, 6MWD, and exacerbations
(Table 5) in all heavy smokers (Gold stage 0–4). Statistical
and clinical significant difference was shown between two
extreme genetic score groups (8–11 vs. 16–18) for emphy-
sema, airtrapping, BODE index, SGRQ total score,
6MWD, and exacerbations, indicating the potential useful-
ness of genetic information to distinguish clinical sub-
groups of heavy smokers. It will be important to evaluate
the power of this model to predict decline in lung function
and progression of COPD severity longitudinally in clin-
ical settings.
In summary, rs28929474 in SERPINA1 is clearly asso-

ciated with post-bronchodilator FEV1/FVC and FEV1

among heavy smokers. This study is the first to show
genome-wide significant association of rs28929474 with
lung function. In addition, rs28929474 is associated with
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COPD and COPD severity. While well-established rare
ZZ homozygotes have severe COPD and emphysema,
this study establishes that more common heterozygotes
(4.7% of subjects) at this locus lead to pulmonary abnor-
mality in smokers and COPD. Thus, in future clinical
studies, this largely ignored heterozygotes group should
be carefully examined. A joint genetic model combined
with environmental factors is associated with reduced
lung function, emphysema, exacerbation, and clinical
symptoms. The models should be tested in other popu-
lations as well as longitudinally to evaluate potential
value of predicting COPD progression and severity.
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