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S100B polymorphisms are associated with
age of onset of Parkinson’s disease
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Abstract

Background: In this study we investigated the association between SNPs in the S100B gene and Parkinson’s disease (PD)
in two independent Swedish cohorts. The SNP rs9722 has previously been shown to be associated with higher S100B
concentrations in serum and frontal cortex in humans. S100B is widely expressed in the central nervous system and has
many functions such as regulating calcium homeostasis, inflammatory processes, cytoskeleton assembly/disassembly,
protein phosphorylation and degradation, and cell proliferation and differentiation. Several of these functions have been
suggested to be of importance for the pathophysiology of PD.

Methods: The SNPs rs9722, rs2239574, rs881827, rs9984765, and rs1051169 of the S100B gene were genotyped using
the KASPar® PCR SNP genotyping system in a case-control study of two populations (431 PD patients and 465 controls,
195 PD patients and 378 controls, respectively). The association between the genotype and allelic distributions and PD
risk was evaluated using Chi-Square and Cox proportional hazards test, as well as logistic regression. Linear regression
and Cox proportional hazards tests were applied to assess the effect of the rs9722 genotypes on age of disease onset.

Results: The S100B SNPs tested were not associated with the risk of PD. However, in both cohorts, the T allele of rs9722
was significantly more common in early onset PD patients compared to late onset PD patients. The SNP rs9722 was
significantly related to age of onset, and each T allele lowered disease onset with 4.9 years. In addition, allelic variants of
rs881827, rs9984765, and rs1051169, were significantly more common in early-onset PD compared to late-onset PD in
the pooled population.

Conclusions: rs9722, a functional SNP in the 3’-UTR of the S100B gene, was strongly associated with age of onset of PD.
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Background
Sporadic Parkinson’s disease (PD) or idiopathic PD is
the far most common form of PD and accounts for at
least 90% of all cases. Among the suggested patho-
physiological mechanisms of neurodegeneration in PD
are increased generation of reactive oxygen species,
mitochondrial pathology, and increase in intracellular
calcium [1–3]. There is also evidence that immune and
inflammatory mechanisms as well as impaired protein
degradation are involved in the pathogenesis [4–6].
Recently, it was suggested that sporadic PD could be
due to misfolded alpha-synuclein that spreads and by

change reaction induce misfolding and pathological
aggregation of native alpha-synuclein [7–9]. Conceiv-
ably, these mechanisms may operate simultaneously or
in time sequence.
Regarding sporadic PD, a number of genetic

polymorphism-based studies has been performed on a
variety of candidate genes (see http://www.pdgene.org)
[10]. In a recently performed meta-analysis of genome-
wide association studies (GWAS) significance was
obtained for 28 gene loci [11]. However, according to
genome-wide complex trait analysis there are substan-
tially more risk loci to be identified [12].
S100B is a highly conserved protein and a member of

the S100 calcium-binding protein superfamily. It is
expressed in various cell types in the central nervous
system, such as astrocytes, neural progenitor cells, and
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various neuronal populations [13, 14], as well as in the
enteric nervous system in glial cells important for the
regulation of inflammation in the gut [15]. Being both
intracellularly and extracellularly active, S100B has a
wide range of functions. Within cells, the protein regu-
lates calcium homeostasis, cytoskeleton assembly/disas-
sembly, protein phosphorylation and degradation, and
cell proliferation and differentiation [16]. Secreted S100B
have paracrine, autocrine, and endocrine properties,
modulating the activity of neurons, astrocytes, microglia,
monocytes, and endothelial cells [16].
Elevated serum concentrations of S100B have been

detected in several pathological conditions, such as acute
brain injuries [17], schizophrenia [18, 19], and Alzhei-
mer’s disease [20]. Regarding PD, conflicting results have
been obtained. In one study S100B serum concentrations
were not significantly different between PD patients and
controls [21]. In another study, however, antibodies
against S100B were detected in the blood of PD patients,
but not in the control group [22]. Sathe et al. [23]
recently showed significantly higher S100B concentra-
tions post-mortem in substantia nigra of PD patients.
Animal studies suggest S100B to be involved in motor

and memory functions. Transgenic mice overexpressing
S100B showed symptoms similar to PD, exhibiting
impaired motor coordination [24], whereas S100B
knock-out mice have exhibited enhanced spatial ability
and synaptic plasticity [25].
Considering these previous findings we performed a

case-control study in two independent Swedish popula-
tions to evaluate the possible association between single
nucleotide polymorphisms (SNPs) in the gene coding for
S100B and PD. Since age of onset of PD seems to have a
relatively high heritability, in one study estimated to be
40–60% [26], and previously have been reported to be
associated with some gene polymorphisms [27], we also
examined whether these SNPs affect age of onset of PD.
We genotyped rs9722 and rs1051169 together with three
other SNPs in the S100B gene, which were selected as
Tag-SNPs (see Fig. 1).

Methods
Study populations
The discovery cohort consisted of 431 PD patients and
465 control subjects. The PD patients were recruited
from four hospitals in Sweden (Gothenburg, Falköping,
Skövde and Stockholm). Control subjects comprised un-
related outpatients in primary care in Gothenburg and
participants in the Kungsholmen project, a community-
based cohort in Stockholm of people aged 75 years and
older [28]. Participants in the Kungsholmen project has
been confirmed not to have PD. The validation cohort
consisted of 195 PD patients and 378 control subjects.
The PD patients were recruited from the hospitals in

Linköping and Jönköping and control subjects were
randomly collected from the population registry in the
same recruitment area as for the hospitals. The patient
and control groups in the validation cohort were
frequency-matched by age and sex. All PD patients had
been examined by neurologists and/or movement disor-
ders specialists and fulfilled the Parkinson Disease
Society Brain Bank criteria for idiopathic PD [29], except
that the presence of more than one relative with the dis-
ease was not regarded as an exclusion criterion. Thirteen
cases (3%) in the discovery cohort and 11 cases (5.6%) in
the validation cohort had more than one affected rela-
tive. In the discovery cohort, 25% of the patients
reported to have a first-, second- or third-degree relative
with PD, and in the validation cohort, 21% of the pa-
tients report about having a first- or second degree rela-
tive with the disorder. Nearly all subjects (> 99%) were
of Caucasian origin. All subjects had provided informed
consent and the study were approved by the ethical
committees at University of Gothenburg, Karolinska
Institute and Linköping University.
Age of disease onset was defined as the time when the

patients first noticed PD symptoms. The commonly used
definition of having an “early age of onset” of PD if the
disease begins at or before 50 years of age was used [6,
30, 31]. By using this definition, 87 patients (20%) in the
discovery cohort and 25 patients (13%) in the validation
cohort were categorized as having early-onset PD. The
majority of the 87 early onset patients in the discovery
cohort have previously been screened for mutations in

Fig. 1 LD plot generated for the S100B gene using HaploView v.4.2
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the DJ-1, parkin, and PINK1 genes, and were not found
be carriers of any of these [32, 33].

Genotyping and statistical analysis
DNA from blood samples were genotyped using the
KASPar® PCR SNP genotyping system (KBiosciences,
Herts, UK). The three tag-SNPs were chosen by pair
wise tagging (r2 ≥ 0.80) from the International HapMap
Project database (release 27, Phase II + III, February
2009, on NCBI B36 assembly, dbSNP b126). Thirty-eight
individuals in the discovery cohort and four individuals
in the validation cohort were excluded due to poor DNA
quality. Success rates for the investigated SNPs were
between 96.6–99.6%. Differences in allelic distributions
were analysed using a Chi-square test in Haploview 4.0
(Broad Institute, Cambridge, MA, USA) and logistic re-
gression in SPSS 19.0 (IBM Corporation, Armonk, NY,
USA) and multiple testing correction was carried out on
the pooled data by Bonferroni procedures (analyses of 5
SNPs and 3 comparisons: controls versus all PD patients,
controls versus early onset PD and early onset versus
late onset PD; 15 tests, corrected significance level: p =
0.0033). Cox proportional hazard tests were performed
in SPSS 19.0 on the whole population including controls,
as well as on patients only. Age at disease onset was
used for patients and age at examination was used for
controls. The association between the SNPs and age at
disease onset was also evaluated using linear regression
in SPSS. For both Cox proportional hazards analysis and
linear regression analysis, gender and sample group (dis-
covery cohort or validation cohort) were used as covari-
ates. The significance level was set at p = 0.05.

Results
Demographic data of the populations are presented in
Table 1. The genotype distributions of all five polymor-
phisms were in Hardy-Weinberg equilibrium in both
control populations (p-value cut-off = 0.01). Three indi-
viduals were excluded in the statistical analysis of age of
onset due to missing information about onset age. The

allele and genotype distributions of the SNPs in Popula-
tion 1 are displayed in Table 2.
In the discovery cohort, no significant differences in

allelic or genotype frequencies were observed for any
of the SNPs when comparing PD patients and controls,
using Chi-square test and logistic regression analysis
(results not shown). However, there were significant
differences in allelic and genotype frequencies for sev-
eral SNPs in the S100B gene when comparing PD
patients with an early age of onset (≤50 years) to PD
patients with a late disease onset as well as when com-
paring to controls. The T allele of rs9722, the C allele
of rs9984765, and the G allele of rs1051169 were sig-
nificantly more common in early-onset PD patients
compared to late-onset PD patients (p = 0.0002, p =
0.008, and p = 0.037, respectively) and when compared
to controls (p = 0.006, p = 0.005, and p = 0.035, respect-
ively). Furthermore, the genotype frequencies of
rs9722 and rs9984765 differed significantly when com-
paring early-onset PD patients and late-onset PD
patients (p = 0.001 and p = 0.028, respectively) as well
as when comparing early-onset PD patients and con-
trols (p = 0.026 and p = 0.004, respectively).
To replicate these findings, we genotyped the S100B

SNPs in an independent validation cohort (see Table 3).
No significant differences in allele or genotype frequen-
cies were observed for any of the SNPs when comparing
all PD patients with controls in the validation cohort.
However, the T allele of rs9722, and the C allele of
rs881827 were significantly more common in early-onset
than late-onset PD (p = 0.005 and p = 0.014, respectively)
and the C allele of rs881827 was significantly more com-
mon in early-onset PD than in controls (p = 0.035). The
genotype frequencies of rs9722 differed significantly
when comparing early-onset to late onset PD patients
(p = 0.021).
The allelic frequencies for the pooled populations

are presented in Table 4, showing significant differ-
ences for all SNPs, except rs2239574. Notable is the
highly significant allelic and genotype frequency dif-
ference of the rs9722 SNP in early-onset and late-
onset PD (p = 0.0000041 and p = 0.00005, respectively
(Bonferroni corrected p-values: p = 0.0000615 and p =
0.00075, respectively)). In line with these results, a
Cox regression analysis comprising all PD patients in
the pooled population (see Fig. 2) confirmed that the
T-allele of rs9722 is associated with an earlier age of
onset (HR = 1.49; 95% C.I = 1.17–1.90, p = 0.001). The
Cox proportional hazards tests were insignificant
when analyzing the whole population including
controls (results not shown). Furthermore, when ana-
lyzing the data for the pooled population, linear
regression showed that disease onset was significantly
lower with more T alleles of the rs9722 polymorphism

Table 1 Demographic data describing the study populations

Discovery cohort Validation cohort All

N 896 573 1469

Controls 465 378 843

Mean age 74.1 67.5 70.8

Males (%) 134 (28.8) 187 (49.5) 321 (38.1)

PD Patients 431 195 626

Mean age 67.6 71.4 69.5

Males (%) 258 (59.9) 121 (62.1) 379 (60.5)

Mean age of onset 59.3 63.6 61.5

Onset ≤50 y. of age (%) 87 (20.2) 25 (12.8) 112 (17.9)
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(p = 0.00004) and that each T allele lowered disease
onset with 4.9 years. In addition, the haplotype
TCCCG of the five genotyped SNPs (rs9722,
rs2239574, rs881827, rs9984765, rs1051169) was also
significantly more common in early- onset compared
to late-onset PD in both populations (p = 0.01 for the
discovery cohort, p = 0.035 for the validation cohort,
and p = 0.000019 for both combined) as well as in
early onset PD as compared to controls (p = 0.0099 for
the discovery cohort, p = 0.064 for the validation
cohort, and p = 0.0031 for both combined).

Discussion
In the present study rs9722, rs9984765 and rs10511669
in the S100B gene were associated with age of onset of
PD in Population 1 and rs9722 and rs881827 were asso-
ciated with age of onset in Population 2. In both popula-
tions, the T allele of rs9722 was strongly associated with
early-onset PD. Furthermore, in both populations, the
haplotype TCCCG of the five genotyped SNPs was more
frequent in early-onset than in late-onset PD.
Several of the large GWAS studying PD [10] include

SNPs in the S100B gene, although only one study

Table 2 Allele and genotype frequencies of S100B SNPs in the discovery cohort

Controls Early onset PD Late onset PD p-Valuea p-Valueb ORc

n Frequency n Frequency n Frequency

rs9722

C 782 0.929 147 0.865 626 0.946 2.0 × 10−4 0.006 2.7 (1.6–4.7)

T 60 0.071 23 0.135 36 0.054

CC 365 0.867 64 0.753 296 0.894 0.001 0.026

TC 52 0.124 19 0.224 34 0.103

TT 4 0.010 2 0.024 1 0.003

rs2239574

C 559 0.661 118 0.686 463 0.704 0.654 0.522 1.1 (0.8–1.6)

T 287 0.339 54 0.314 195 0.296

CC 188 0.444 38 0.442 168 0.511 0.202 0.320

TC 183 0.433 42 0.488 127 0.386

TT 52 0.123 6 0.070 34 0.103

rs881827

C 629 0.740 130 0.756 464 0.714 0.274 0.665 1.2 (0.8–1.8)

T 221 0.260 42 0.244 186 0.286

CC 236 0.555 48 0.558 166 0.511 0.468 0.615

TC 157 0.369 34 0.395 132 0.406

TT 32 0.075 4 0.047 27 0.083

rs9984765

T 649 0.774 116 0.674 508 0.772 0.008 0.005 1.6 (1.1–2.4)

C 189 0.226 56 0.326 150 0.228

TT 263 0.628 38 0.442 197 0.599 0.028 0.004

CT 123 0.294 40 0.465 114 0.347

CC 33 0.079 8 0.093 18 0.055

rs1051169

C 568 0.688 104 0.605 453 0.688 0.037 0.035 1.4 (1.0–2.0)

G 258 0.312 68 0.395 205 0.312

CC 206 0.499 34 0.395 157 0.477 0.073 0.138

GC 156 0.378 36 0.419 139 0.422

GG 51 0.123 16 0.186 33 0.100

Significant (p < 0.05) results are shown in bold. aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR
(95% confidence interval) for early onset PD compared to controls. P-values were calculated from Chis-square test and ORs were calculated using
logistic regression

Fardell et al. BMC Medical Genetics  (2018) 19:42 Page 4 of 9



Table 3 Allele and genotype frequencies of S100B SNPs in the validation cohort

Controls Early onset PD Late onset PD p-Valuea p-Valueb OR

n Frequency n Frequency n Frequency

rs9722

C 679 0.913 37 0.841 325 0.950 0.005 0.109 3.6 (1.4–9.3)

T 65 0.087 7 0.159 17 0.050

CC 312 0.839 16 0.727 157 0.918 0.021 0.277

TC 55 0.148 5 0.227 11 0.064

TT 5 0.013 1 0.045 3 0.018

rs2239574

C 515 0.689 27 0.643 238 0.704 0.415 0.535 1.3 (0.7–2.6)

T 233 0.311 15 0.357 100 0.296

CC 172 0.460 9 0.429 86 0.509 0.731 0.635

TC 171 0.457 9 0.429 66 0.391

TT 31 0.083 3 0.143 17 0.101

rs881827

C 537 0.718 38 0.864 240 0.702 0.024 0.035 2.7 (1.1–6.6)

T 211 0.282 6 0.136 102 0.298

CC 200 0.535 17 0.773 85 0.497 0.051 0.093

TC 137 0.366 4 0.182 70 0.409

TT 37 0.099 1 0.045 16 0.094

rs9984765

T 549 0.736 31 0.705 260 0.760 0.420 0.647 1.3 (0.7–2.7)

C 197 0.264 13 0.295 82 0.240

TT 202 0.539 11 0.500 104 0.608 0.587 0.883

CT 148 0.395 9 0.409 52 0.304

CC 25 0.067 2 0.091 15 0.088

rs1051169

C 475 0.656 26 0.591 224 0.663 0.346 0.378 1.4 (0.7–2.6)

G 249 0.344 18 0.409 114 0.337

CC 156 0.430 9 0.409 77 0.456 0.469 0.284

GC 165 0.455 8 0.364 70 0.414

GG 42 0.116 5 0.227 22 0.130

Significant (p < 0.05) results are shown in bold. aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR
(95% confidence interval) for early onset PD compared to controls. P-values were calculated from Chis-square test and ORs were calculated using
logistic regression

Table 4 P-values of comparisons of S100B SNPs on allele and genotype level in the pooled population

rs9722 rs2239574 rs881827 rs9984765 rs1051169

p-Valuea allele *4.1 × 10−6 0.448 0.043 0.007 0.028

p-Valuea genotype *5.0 × 10−5 0.233 0.131 0.018 0.049

p-Valueb allele *0.003 0.912 0.132 0.016 0.038

p-Valueb genotype 0.015 0.731 0.289 0.034 0.079

ORc 2.9 (1.8–4.7) 1.1 (0.8–1.6) 1.4 (1.0–2.0) 1.6 (1.1–2.1) 1.4 (1.0–1.9)
aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR (95% confidence interval) for early onset PD
compared to controls. Significant (p < 0.05) results are shown in bold. With Bonferroni correction for multiple testing (analyses of 5 SNPs and 3 comparisons;
controls versus all PD patients, controls versus early onset PD and early onset versus late onset PD) significant (p < 0.0033) results are shown by *. P-values were
calculated from Chis-square test and ORs were calculated using logistic regression
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genotyped the SNPs investigated in the present study
[34]. However, other GWAS include SNPs in high LD
with the ones genotyped in our study, which makes it
possible to impute the genotypes of our SNPs. None of
these studies report significant associations regarding
PD and SNPs in the S100B gene, which is in line with
the findings in the present study.
Noteworthy, only two GWAS so far have investigated

age at onset of PD [35, 36]. In both studies, not rs9722
itself, but SNPs in high LD with rs9722, were genotyped
and no significant association with age of onset were
found. However, to be able to compare the results from
different association studies it is important that the
inclusion criteria for patients and controls used in the
studies are similar, especially when searching for genetic
risk variants of low impact in a complex disorder like
PD. In the GWAS studying onset age in PD by Latourelle
et al. [35], two of three of the PD populations investigated
include samples recruited to study familial PD which
means that all of the patients in those populations have a
family history of the disease, making their sample different
from ours where at least 80% of the patients are sporadic
cases. Furthermore, in the GWAS by Spencer et al. [36],
there is a quite large difference in mean age of onset
(65.8 years) compared to our study (61.5 years). These
dissimilarities might be part of the explanation to the devi-
ation in results when comparing these two studies with
the present one. Furthermore, the diversity of ethnicity

might also be of importance and the populations studied
in the present paper are very homogenous in that regard.
The S100B gene was investigated in a study of PD pa-

tients by Guo et al. [37]. The authors screened a Chinese
PD-population for mutations in the coding parts of the
gene, and consequently only one of the SNPs investi-
gated in the present study, rs1051169, was possible to
detect. The frequency found for this SNP was quite simi-
lar to the frequencies of it in our Caucasian PD patients.
It has been proposed that S100B has neurotrophic or

neurotoxic properties depending on the extracellular
concentration [16]. In normal conditions, S100B in nano-
molar concentrations seems to protect neurons against
oxidative stress [38, 39]. However, at higher extracellular
concentrations, it may act as a pro-inflammatory
substance activating astrocytes and microglia and inducing
apoptosis [40–42]. Alternatively, S100B at high concentra-
tions merely is a secondary reactive phenomena or marker
of inflammation intensity rather than promoting inflam-
mation (for discussion see Lam et al. [43]).
Parts of the effects of S100B appear to be

mediated by the receptor for advanced glycation end
products (RAGE) [44, 45]. In neurons, nanomolar
concentrations of S100B promote cell survival by
RAGE-mediated NF-KB activation, leading to upreg-
ulation of the anti-apoptotic factor Bcl-2 [39, 46,
47]. However, in micromolar concentrations, the
RAGE-mediated S100B toxic effects are due to

Fig. 2 Age of onset of PD stratified by genotypes of the SNP rs9722, adjusted for gender and sample group
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overproduction of reactive oxygen species (ROS)
[44], leading to apoptosis.
The findings that high concentrations of S100B

could have neurotoxic effects are especially interesting,
because the rs9722 SNP, located in the 3′ untranslated
region (3´-UTR), appears to be functional in that
healthy individuals with the T allele variant, the variant
we found to be more common in PD with early onset,
have been reported to have higher serum and frontal
cortex concentrations of S100B [48]. Furthermore,
functional studies of peripheral blood mononuclear
cells from healthy volunteers show that cells with the
CT genotype of rs9722 express more than twice the
amount of S100B mRNA as well as S100B protein as
compared to cells with the CC genotype [49].
The allelic and genotype frequencies of the S100B

polymorphisms were similar in late-onset PD and con-
trols, but early-onset patients differed to both late-
onset patients and controls. Interestingly, a newly pub-
lished study analyzing data from a meta-analysis of
GWAS found support for that an individual’s polygenic
risk score were higher in PD patients with early onset
as compared to those with late onset [50]. This pattern
suggests that early-onset patients may have a different
pathophysiology compared late-onset patients, with
the S100B allelic variants conferring a risk only for
early-onset patients. Support for this view comes from
the observation that the incidence and prevalence of
PD after the age of 50 increases almost exponentially
in contrast to early onset PD [51], which besides is the
basis for using this age as a cut-off while defining early
age of onset PD.
However, another interpretation is that the functional

activity of S100B does not influence the risk to be
affected of neither PD with a late onset nor PD with an
early onset but rather modulates the age of onset of PD,
a notion that is further supported by the linear regres-
sion analysis and Cox proportional hazards tests per-
formed in the present paper regarding the rs9722 SNP.
Moreover, the observation that the genetic influence on
the risk for sporadic PD, as judged by the very low
concordance rate in monozygotic twins [52, 53], suggests
that environmental factors are most important for
causing the disease.
The distinction between gene variants influencing

the risk to be affected by PD and variants that modify
age of onset might be biologically significant; risk vari-
ants point to the initial cause, whereas onset modifiers
implicate the processes that begin after the initial
insult affecting the threshold for developing clinical
signs [54]. Interestingly, segregation analyses of PD
suggest stronger evidence for major genes influencing
age of onset than for genes influencing susceptibility
to disease [55, 56].

Conclusions
Even though the population sizes used in the current
study are quite small, the results suggest that S100B
activity could influence age of onset of sporadic PD. By
resulting in higher S100B levels, the minor allele of the
SNP rs9722 might modulate age of onset, potentially by
activation of inflammatory processes or by increasing
intracellular calcium.
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