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Abstract

Human inbreeding generally reduces breast cancer risk (BCR). When the parents are biologically related, their infants
have a lower birth weight due to smaller body organs. The undersized breasts, because of fewer mammary stem
cells, have a lower likelihood of malignant conversion. Fetal growth is regulated by genomically imprinted genes
which are in conflict; they promote growth when derived from the father and suppress growth when derived from
the mother. The kinship theory explicates that the intensity of conflict between these genes affects growth and
therefore the size of the newborn. In descendants of closely related parents, this gene clash is less resulting in a
smaller infant. In this review, we elucidate the different mechanisms by which human inbreeding affects BCR, and

why this risk is dissimilar in different inbred populations.
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Background

The link between human consanguinity and malignancy
is important for understanding carcinogenesis. Cancer
has a strong genetic component and human consanguin-
ity, still very common in many parts of the world, in-
creases gene homozygosis. Homozygosis of low
penetrance tumor genes, and its frequency in the popu-
lation, can increase or decrease the risk of cancer [1-6].
Homozygosis of mutated tumor suppressor genes in
stem cells with double dose can cause either early abor-
tion or early childhood cancer [7-9]. Consanguinity can
lower breast cancer risk (BCR) as homozygosis of mu-
tated DNA-repair genes like BRCA1 and BRCA2, being
incompatible with life, are not transmitted to the next
generation [10-12]. Homozygotes of abnormal mis-
match repair genes (e.g., MLHI, MSH2, MSH6) that
cause a severe cancer syndrome, also fail to reproduce
[13]. Thus, inbreeding should clear the consanguineous
population of these tumor genes and inherited cancer
syndromes should be less common in consanguineous
(compared to non-consanguineous) populations. How-
ever, multiple other factors are involved: parents with a
low cancer risk can also produce offspring with a higher
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cancer risk by negative heterosis, i.e., offspring exhibit
more negative qualities than their parents [14—16]. Thus,
the cumulative (and often competing) outcome of differ-
ent consanguinity-cancer models is difficult to predict
due to varying frequency of the different cancer genes
and varying environmental aspects involved in carcino-
genesis in different populations. As a result, both an in-
crease and a decrease in risk of different cancers has
been reported in different consanguineous populations
[17-27]. Similarly, inconclusive links have been reported
between cancer risk and autozygosity (measured by size
of the regions of homozygosis in human genome) in dif-
ferent world populations [28—-34].

The various studies on BCR in inbreeding families, simi-
lar to other types of cancer, have also produced contradict-
ory results. BCR is lower in Arab inbreeding families than
non-inbreeding families [18—-23]. However, the BCR is in-
creased in inbreeding families from Pakistan [24—27]. In
this review, we deliberate how human consanguinity can
lower BCR through genomic imprinting and why some
other mechanisms of inbreeding may increase it.

Human consanguinity: Prevalence, types of
marriages and measures of relatedness

Human consanguinity is more frequent than generally
appreciated. Worldwide, 1.1 billion of people have con-
sanguineous parents [35]. Such unions are most
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common in the developing societies of North Africa, the
Middle East and South Asia. In these populations, 10%
to 50% of all marriages are between close kin: first cous-
ins, double first cousins, first cousins once removed and
second cousins. Since the latter unions do not increase
biological risks of inbreeding, they are not considered
consanguineous. Half of all consanguineous marriages
are between first cousins; a woman can be married to
only one of her four first cousins: father’s brother’s son
(FBS), father’s sister’s son, mother’s brother’s son and
mother’s sister’s son (Fig. 1). The Arab world comprises
of 22 nations of the Middle East and North Africa in
which people speak the same language (Arabic) and
share the same religion (Islam); however, their genetic
heritage is much less uniform. Arab families, in contrast
to non-Arab families, arrange FBS unions half the time
instead of the expected one fourth. The preference for
FBS marriage is a cultural trait universal among Arabs
which mandates that every woman’s marriage should be
approved by her paternal uncle [36, 37]. Similarly, in
double first cousin unions, there are two possible types
of cousins and, in first cousin once removed unions
there are eight different types of cousins (Table 1). In
contrast to first cousin unions, the frequencies of differ-
ent cousin choices in later two types of unions are un-
known. The biological closeness of spouses is defined by
the coefficient of relatedness (R) which indicates the
fraction of autosomal genes two individuals share by
common descent (Table 1). The coefficient of inbreeding
(F) is a fraction of autosomal genes that are homozygous
by common descent and measures the risk of genetic
harm in offspring of biologically related individuals (F =
R/ 2). In any population, the mean R correlates with the
consanguinity rate, but former is a more precise an indi-
cator of biological closeness.

Parental consanguinity and breast cancer

The age-standardized incidence of breast cancer is in-
versely related to the rate of consanguinity (Fig. 2). In
five studies from Arab countries, parental consanguinity
was protective against breast cancer. In two studies in-
volving the native population of United Arab Emirates,
a) BCR in women born to consanguineous parents was
half (50%) compared to women of non-consanguineous
parents; this protective effect was greater among women
less than 50 years old (p =0.02) [18], and b) breast can-
cer patients had a lower mean coefficient of inbreeding
(p=0.19) and their parents were less often first and
double first cousins (p = 0.09) than the parents of non-
cancer controls [19]. In another case-controlled study
from Qatar, breast cancer patients had a lower mean co-
efficient of inbreeding than controls (p = 0.0125) [21]. In
Morocco, both consanguinity rate and mean coefficient
of inbreeding were lower among breast cancer patients
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Fig. 1 Inheritance of paternally-derived genomically-imprinted gene in
four types of first cousin families defined by the cousin wife marries: FBS,
father's brother's son; MBS, mother's brother’s son; FSS, father’s sister's
son; MSS, mother’s sister's son. Only in FBS union paternally-derived and
genomically-imprinted gene (black dot) continuously retains all three

identities (DNA sequence, biochemical structure and functionality) over
three generations; in the fetus, one of its copies becomes maternally
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than matched controls [22]. Similarly, a statistically sig-
nificant protective effect of parental consanguinity
against breast cancer was reported from Tunisia [23].
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Table 1 Coefficients of relatedness by common descent of autosomal genes (R) and genomically imprinted genes inherited from
father (R,) and mother (R,) in non-kin and close-kin families

Marriage Women units with R Rp Rm
Random Non-kin
Double first cousin Father's brother's and mother’s sister’s son 0.25 0.25 0.25
Father's sister's and mother’s brother’s son 0.25
First cousin Father's brother's son 0.125 0.125
Father's sister’s son 0.125
Mother's brother's son 0.125
Mother’s sister's son 0.125 0.125
First cousin once removed Father's paternal uncle’s son 0.0625 0.0625
Father's paternal aunt’s son 0.0625
Father's maternal uncle’s son 0.0625
Father's maternal aunt’s son 0.0625
Mother’s paternal uncle’s son 0.0625
Mother’s paternal aunt's son 0.0625
Mother's maternal uncle’s son 0.0625
Mother's maternal aunt’s son 0.0625 0.0625

One possible explanation for this observation is the pro-
tective effect of homozygosis of some low penetrance
breast cancer gene(s) common in all Arab populations.
Indeed, in a study from Tunisia, homozygote of one
variant of the P53 gene was associated with a lower BCR
[38]. However, the same genotype in the Saudi popula-
tion was reported to increase the BCR [39]. In Arab
populations only a few specific and more of commonly
shared variants of breast cancer susceptibility genes have
been identified [40]. In theory, another possibility is that
consanguinity protects against breast cancer by decreas-
ing the number of BRCAI and BRCA2 cancer cases as
homozygotes of these genes are early aborted [10-12].
In Arabs, these germline mutations are few and those
specific for the population have not unequivocally
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Fig. 2 Age-standardized incidence of breast cancer and rate of
consanguinity reported from 28 countries. The outlier (incidence 50,
consanguinity 50) country is Pakistan. Adapted from reference [12]

proven to be carcinogenic [41, 42]; hence, the breast
cancer protection by parental consanguinity is largely
unexplained.

In contrast to the decrease in risk, breast cancer in
Pakistan positively correlates with parental consanguin-
ity [24—27]. Pakistan is a country with an unusually high
incidence of breast cancer (outlier in Fig. 2); among its
nationals, the incidence of breast cancer is significantly
higher compared to its neighboring countries [43]. A
high frequency of BRCA1 and BRCA2 mutations has
been proposed to explain these epidemiological findings.
However, most of the gene variants are unique to
Pakistan, and they have not been convincingly shown to
be carcinogenic [24-26]. In addition, consanguinity
should protect against breast cancer caused by BRCAI
and BRCA2 which is not a case in this population. In
the absence of any obvious environmental risk factor for
breast cancer that contrasts Pakistan from its neighbors,
a higher frequency of low penetrance cancer genes that
increase cancer risk in homozygotes is a more likely ex-
planation. Until now, however, only a few of the known
low penetrance breast cancer genes have been studied
and none of them can explain the high breast cancer
rates in both general population and daughters of con-
sanguineous parents [2, 26]. In this population, however,
new mutations of CHEK2 gene, which moderately in-
creases risk of breast cancer in heterozygotes, were
found in rare patients from a few tested ethnic groups
[44, 45]. The homozygotes of CHEK2 mutation are at
higher risk of breast cancer development than heterozy-
gote which could explain increased BCR in both general
population and daughters of consanguineous parents
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[46]. Nonetheless, a very low frequency of this gene can-
not explain high rate of breast cancer in Pakistan.
Another possible mechanism that could increase
breast cancer rate among Pakistani women is negative
heterosis (NH) [47]. This phenomenon of NH was no-
ticed almost a century ago in studies of crossing and
back crossing of different inbred subspecies of animals
which produced offspring with a higher cancer rates
than in both parents [14-16]. NH, in contrast to positive
heterosis (PH) (hybrid vigor), signifies that the offspring
have more negative qualities than their parents. Re-
cently, it has been shown that heterosis is the result of
disrupted genomic imprinting in the offspring of two
subspecies of inbred parents [48]. In humans, possible
examples of PH are bigger daughters from mixed mar-
riages (as seen in one tribal region of India), and NH has
been proposed as a cause of the exceptionally high inci-
dence of breast cancer in Pakistan [47, 49]. The hypoth-
esis is based on the fact that after a long history of
inbreeding in numerous kinship groups (tribes, biradaris,
castes) in the region, there was a sudden and violent mi-
gration of unprecedented proportions. In 1947, when
the Republic of Pakistan was formed, members of inbred
groups were forcefully mixed producing inter-group
unions that, like NH in animal studies, could contribute
to the extra breast cancer in this population. In short,
despite the many hypotheses, the reasons for the higher
rates of breast cancer in Pakistan, overall and in consan-
guineous families, remain largely undetermined.

Parental consanguinity and newborn size

The lower newborn weight in consanguinity is a less well
known phenomenon that remains largely unexplained.
In a large (7 =10,289) and well-controlled study, infants
of consanguineous parents were 1.8% smaller (than new-
borns of non-consanguineous parents) [50]. In this same
study, a review of 11 previous studies showed that in ten
of them the babies of consanguineous parents were, on
an average, 20 to 221 g smaller. This difference was sta-
tistically significant in four studies; in the remaining
studies, where the results did not achieve statistical sig-
nificance, the nutritional deprivation was pronounced,
the sample size was small and covariates of fetal growth
were not controlled. In similar studies from Turkey, in-
bred newborns were not smaller but inbred school-aged-
males (females were not studied) were significantly
smaller than non-inbred controls [51, 52]. In all these
consanguinity studies, newborns with congenital disor-
ders were excluded from the analysis.

The importance of newborn size

In general, a newborn’s size at birth (i.e., the weight, the
length and the head circumference) is determined by
both genetic and environmental factors [53]. In one
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study, causes of variation in birth size was estimated to
be as follows: fetal genes, 30%; maternal genes, 20%; en-
vironmental factors, 15%; and unknown factors, 35%
[54]. The mother’s height, weight, and weight at birth
are stronger determinants of the baby size than the same
parameters of the father. Also, many environmental fac-
tors are involved like birth order and, during pregnancy,
mother’s illnesses, caloric intake and use of alcohol, to-
bacco and hormones [54, 55]. Any study addressing a
potentially new cause affecting fetal growth must ac-
count for the effects of multiple independent cofounders
determining newborn size.

From an evolutionary perspective, bigger individuals
survive better than smaller ones, and the birth size cor-
relates with body size during adulthood [54]. From a
medical perspective, smaller birth size carries an in-
creased risk of chronic nutritional disorders (obesity,
diabetes mellitus type 2, fatty liver, hypertension, cardio-
vascular diseases) and, in women, a decreased risk of
premenopausal breast cancer [55, 56].

Birth size and breast cancer

The neonatal birth size is a well-established risk factor
for breast cancer. Studies during the last two decades,
from several countries, have consistently shown that
birth weight and birth length positively correlate with
breast cancer in women <50 years old [57-63]. Bigger
babies have larger mammary glands and the number of
mammary stem cells is proportional to its size [64—66].
A denser shadow of the breast radiogram is associated
with a higher mammary gland mass and a higher BCR
[67]; furthermore, bigger babies have a higher number of
circulating hematopoietic stem cells [68]. The newborn
size and the number of stem cells positively correlate
with blood levels of several growth promoting hormones
and the expression of at least two genomically imprinted
genes that affect fetal growth: positively with insulin-like
growth factor 2 (IGF-2) (which is expressed when inher-
ited from father and inactivated when inherited from
mother), and negatively with PHLDA2 (which is
expressed when inherited from mother and genomically
imprinted when inherited from father) [69-75]. In short,
studies have established a plausible link between the ex-
pression of genomically imprinted genes and the risk of
malignant transformation in the breast.

Genomically imprinted genes and genetic conflict
theory

The change in gene expression (without the change in
DNA nucleotide sequence) is produced by methylation,
histone modification, and small RNA interference (im-
printing). Generally, with few exceptions, imprinting in-
activates genes. Genomic imprinting is a special form of
gene inactivation depending on parent from whom it
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originates. As a rule, a gene in the fetus if inherited from
mother is suppressed while the same gene if inherited
from father is expressed. This results in mono-allelic in-
heritance and, in effect, transforms one into two genes,
each with identical DNA nucleotide sequence but with
different biochemical structure (e.g., with methyl groups
or without methyl groups) and function (decreased or
increased expression) depending on parent of origin. In
humans, genomic imprinting is confined to about 100
genes that regulate cell proliferation during fetal and
early postnatal development, behavior and cognition,
and are expressed mostly in the placenta and the brain
[76, 77]. The evolution of genomic imprinting is ex-
plained by the kinship theory [78-81].

Kinship (genetic conflict) theory of genomic imprinting
The theory of genomic imprinting (also called genetic
conflict theory) posits that, in mammals, the genomic
imprinting of genes is a consequence of the interactions
between the fetus, the mother, the father and their
genes, as follows: a) both maternal- and paternal-derived
developmental genes regulate growth of the fetus; b) the
mother provides disproportionally more resources for
the offspring’s growth than the father; ¢) mothers can
have offspring from more than one male (polyandry).
Bigger babies survive better but they also utilize more
resources from the mother, which could lower her fit-
ness by decreasing her resources available for future off-
spring. To conserve her resources and maximize fitness,
mother’s growth promoting genes are suppressed. On
other hand, the father’s genes are expressed to promote
growth as this increases the odds of their survival due to
a bigger baby. In short, the maternally-derived and
paternally-derived genes in the fetus are in conflict about
how much growth to promote as this determines the
number of their copies in future generations due to a)
asymmetry of biological investments in their progeny
and b) polyandry which creates different future life tra-
jectories of their gene copies [78—-81]. In other words,
genomic imprinting emerged during evolution as a
mechanism which increases the inclusive fitness of
genes. Thus, anything that would affect polyandry is ex-
pected to affect the intensity of conflict between geno-
mically imprinted genes and size of the fetus. In one
animal study, female rats mated with three males pro-
duced bigger pups than females mated with one male
[82]. Likewise, in humans, anything that increases inclu-
sive fitness is expected to decrease the intensity of gene
conflict and produce smaller babies.

Genetic conflict is lower in consanguineous
families

In a first cousin marriage, the wife carries 0.125 of auto-
somal genes of her husband by common descent. In
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future, if she conceives a child with another man, that
child would carry 0.0625 of the genes of her current
husband, her first cousin and the child’s uncle. In her
current child, half of those 0.0625 genes are identical by
common descent (Fig. 1). In contrast, in a non-cousin
(random mate) marriage, none of the genes of current
father will be in the other man’s child. In close-kin fam-
ilies, therefore, polyandry produces less conflict between
parental genes in the fetus. The expected conflict reduc-
tion is proportional to R of parents and is shown in
Table 1. The kinship theory of genomic imprinting sup-
ports the findings of smaller babies in consanguineous
families [50]. This theory also predicts that babies of
double first cousins will be smaller than babies of first
cousins, which in turn are expected to be smaller than
babies of first cousins once removed.

However, the genomically imprinted genes are more
important for fetal growth than other genes. As per the
kinship theory, they are genomically imprinted for that
very reason and, consequently, they exert a stronger ef-
fect on size of newborns in any consanguineous family.
The coefficient of relatedness of the genomically
imprinted paternally-derived (R,) and maternally-derived
genes (R,,), however, is different from the non-
genomically imprinted genes (R) and are shown in
Table 1. Among 14 different kinds of consanguineous
families, only in three R,>0; in such families, the pro-
duction of smaller babies is expected. Among four types
of first cousin families, likewise, only the FBS family type
(more common amongst Arabs) is expected to produce
significantly smaller newborns.

Breast cancer protection by parental
consanguinity: Summary and conclusion
Epidemiological observations have helped to uncover
many novel mechanisms of carcinogenesis [83]. Several
studies suggest that human inbreeding protects against
breast cancer. In general, consanguineous parents pro-
duce smaller newborns and smaller newborns develop
breast cancer less frequently later in life. The reason for
smaller infants in close-kin families is elucidated by the
kinship theory of genomic imprinting. As per this the-
ory, growth promoting genes inherited from father and
mother are in conflict; the intensity of this conflict con-
trols fetal growth and, ultimately, the size of newborn. In
the offspring of close-kin marriages, the intensity of gen-
etic conflict is less which results in smaller newborns.

In Arab women, the decrease in BCR by parental con-
sanguinity could be a result of i) decreased gene conflict
that is enhanced by a larger number of first cousin mar-
riages of the FBS type, ii) protective effect of homozygo-
sis of some still unidentified breast cancer gene(s), or iii)
additive protective effect of both these mechanisms
against breast cancer. However, in Pakistan parental
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consanguinity increases BCR. As explained earlier, BCR
reduction by decrease gene conflict may be exceeded by
increased risk due to the following factors: i) cancer in-
crease due to NH, ii) homozygosis of unidentified breast
cancer susceptibility genes or iii) the additive effect of
both these mechanisms.

There are several cofounders in consanguinity — can-
cer risk besides infant size. Theoretically, the frequency
of lethal cancer alleles is reduced by inbreeding in pro-
portion to its duration and intensity. Inbreeding coexists
with socioeconomic underdevelopment, which is associ-
ated with lower risk factors for breast cancer (e.g., earlier
pregnancies, longer nursing, decreased use of alcohol
and tobacco). In consanguineous populations, women
generally marry earlier and earlier first pregnancies pro-
tects against breast cancer [36]. In some (but not all)
studies, the daughters of consanguineous parents marry
consanguineously more often, and they could be better
protected by an earlier first pregnancy [18, 84]. Polyan-
dry, a theoretical determinant of baby size, varies be-
tween societies. Finally, a fathers’ investment in offspring,
another determinant of baby size, is a cultural trait that
varies between societies, and it is a possible cofounder
in BCR.

In future studies, for more clarity, the effect of auto-
somal gene conflict on birth size can be verified by com-
paring the parental coefficient of relatedness, the
offspring coefficient of inbreeding and infant size from
consanguineous and non-consanguineous families in the
same population. The validity of genomic imprinting hy-
pothesis of inbreeding can be tested by comparing the
parental coefficient of relatedness of genomically
imprinted genes and birth size. Furthermore, measuring
growth hormones like IGF-2 in fetal blood and expres-
sion of developmental genes in the placenta (from
women married to different types of cousins) would pro-
vide additional pieces of the puzzle. Then, we can be
sure of the relative role of genomic imprinting in redu-
cing the risk of breast cancer in inbred populations —
and add further to our understanding of carcinogenesis.
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