Thiffault et al. BMC Medical Genetics (2017) 18:124
DOI 10.1186/512881-017-0481-9

Hypotonia and intellectual disability

BMC Medical Genetics

@ CrossMark

without dysmorphic features in a patient

with PIGN-related disease

Isabelle Thiffault'>*"®, Britton Zuccarelli?, Holly Welsh?® Xuan Yuan’, Emily Farrow', Lee Zellmer!, Neil Miller',
Sarah Soden'**, Ahmed Abdelmoity”, Robert A. Brodsky and Carol Saunders'**

Abstract

Background: Defects in the human glycosylphosphatidylinositol anchor biosynthetic pathway are associated with
inherited glycosylphosphatidylinositol (GPI)-deficiencies characterized by a broad range of clinical phenotypes including
multiple congenital anomalies, dysmorphic faces, developmental delay, hypotonia, and epilepsy. Biallelic variants in PIGN,
encoding phosphatidylinositol-glycan biosynthesis class N have been recently associated with multiple congenital

anomalies hypotonia seizure syndrome.

Case presentation: Our patient is a 2 year old male with hypotonia, global developmental delay, and focal epilepsy.
Trio whole-exome sequencing revealed heterozygous variants in PIGN, c.181G > T (p.Glu61*) and ¢.284G > A (p.Arg95GIn).
Analysis of FLAER and anti-CD59 by flow-cytometry demonstrated a shift in this patient's granulocytes, confirming a
glycosylphosphatidylinositol-biosynthesis defect, consistent with PIGN-related disease.

Conclusions: To date, a total of 18 patients have been reported, all but 2 of whom have congenital anomalies and/or
obvious dysmorphic features. Our patient has no significant dysmorphic features or multiple congenital anomalies, which
is consistent with recent reports linking non-truncating variants with a milder phenotype, highlighting the importance of

functional studies in interpreting sequence variants.
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Background

Biallelic variants in glycosylphosphatidylinositol (GPI)-an-
chor synthesis pathway genes are responsible for GPI
deficiency disorders, associated with broad clinical features
including intellectual disability, seizures, and diverse con-
genital anomalies. At least 150 different human proteins
are anchored by the glycolipid GPI to the outer plasma
membrane [1]. GPI-anchoring is a multistep process which
includes; 1) synthesis of the GPI precursor molecules in the
endoplasmic reticulum (ER), 2) transfer to the carboxy-
terminus of the protein, and 3) remodeling of the GPI-
protein complex in the ER and Golgi [2]. Complete GPI
deficiency is expected to cause embryonic lethality because
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GPI proteins with important roles in embryogenesis require
GPI anchoring for expression on the cell surface [3]. In
support of this, all reported cases of GPI deficiency have
been due to hypomorphic variants. At least 26 genes in-
volved in the biosynthesis and remodelling of GPI anchored
proteins have been described [4, 5], with germline patho-
genic variants in 13 have been so far associated with a var-
iety of human disorders. Whole-exome sequencing (WES)
permits the simultaneous interrogation of all inborn GPI
deficiency gene sequences including PIGV [6], PIGN [7],
PIGL [8], PIGA [9], PIGO [10], PGAP2 [11], and PIGT [12],
as well as many other neurological disorders on the differ-
ential. Biallelic variants in PIGN, have been recently
associated with Multiple Congenital Anomalies-Hypotonia-
Seizures syndrome 1 (MCAHS1; OMIM #614080) is an
autosomal recessive disorder, and so is Fryns syndrome.
Both disorders have actually been reported to be associated
to PIGN-deficiency, similarly MCAHS2 (OMIM #300868)
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is linked to PIGA defects [7], and MCAHS3 (OMIM
#615398) to PIGT defects [12, 7, 11, 13-21]. To date, a total
of 18 patients have been reported, all but 2 of whom have
congenital anomalies and/or obvious dysmorphic features
[7, 11, 13-21]. Here, we report a patient with PIGN-related
GPI deficiency and no congenital anomalies or obvious
dysmorphic features.38-weeks gestation following an un-
complicated pregnancy. The patient’s mother was a 33 year
old gravida 2 para 2 female. There was no exposure to
alcohol, tobacco, or drugs. Delivery was via spontaneous
vaginal delivery. His growth parameters at birth included a
weight of 3.46 kg (90% for gestational age) and length of
47 cm (30% for gestational age). At 2 months of age his
pediatrician raised concern for developmental delay be-
cause he had not yet developed a social smile, did not yet
fix nor track, and had poor head control. He began having
involuntary movements at 3 months of age that were ini-
tially diagnosed as Sandifer syndrome. These events were
ultimately classified as partial complex seizures, which were
controlled with levetiracetam and topiramate. The family
history was notable for a maternal grandmother who died
from complications related to what was described as a
rapid-onset ataxia followed by the development of aphasia
and seizures. No genetic diagnostic evaluation was ever per-
formed for this individual. The patients parents and 3 year
old sister were otherwise healthy.

During his initial neurodiagnostic evaluation, no source
of provocation for seizure was identified. Laboratory studies
including lactate, pyruvate, creatine kinase, serum amino
acids, plasma acylcarnitines, and urine organic acids were
unremarkable. Karyotype and microarray were unremark-
able. His electroencephalogram revealed right centro-
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temporal focal slowing. A brain magnetic resonance
imaging study revealed an incidental left middle cranial
fossa arachnoid cyst and mildly enlarged subarachnoid
spaces but was otherwise unremarkable and did not identify
a potential seizure focus. Negative molecular studies
included testing for Prader-Willi and Fragile X syndromes,
and sequencing for mitochondrial tRNA mutations. A
panel of 51 genes associated with epilepsy performed in
2014, revealed a heterozygous variant of unknown
significance (c.68C > A, p.Ala23Glu) in the SCNIA gene.
Forty-five hours of continuous monitoring for spells
characterization at 5 months of age confirmed their epilep-
tic nature, with right hemispheric discharges. He was con-
tinued on levetiracetam at 45 mg/kg/day and started on
adjunctive topiramate at 7 mg/kg/day after which he
achieved seizure-freedom. At 22 months of age he
remained profoundly delayed, unable to hold his head up,
roll over, or sit, with no babbling or other verbal skills. Fur-
ther evaluation was performed for a suspected underlying
genetic condition due to his history of poor growth
(weight < 2nd percentile, length < 10th percentile), relative
macrocephaly / brachyephaly (head circumference 85th
percentile), focal epilepsy, hypotonia, developmental delays,
cortical visual impairment, and gastrointestinal difficulties.
Although he does not have striking dysmorphia, a physical
exam at 8 months of age noted a short nose, tall palate, and
hypoplasia of the 4th and 5th distal phalanges (Fig. 1).

WES was performed on the patient and his healthy par-
ents, following informed consent and CARE guidelines.
Genomic DNA was extracted from peripheral blood
mononuclear cells using a Chemagen MSMI1 robot
(Perkin Elmer) and prepared for sequencing using the

Fig. 1 Patient CMH1157 at nearly 3 years of age, displaying marked hypotonia without dysmorphic features
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Nextera Rapid Capture Exome kit. Sequencing was
completed on an Illumina HiSeq 2500 instrument. Ap-
proximately 7.62 Gb of 2 x 125 sequenced paired end
reads were obtained, for a mean of 78x average coverage.
Bidirectional sequence was assembled, aligned to refer-
ence gene sequences based on human genome build
GRCh37/UCSC hgl9, and analyzed using custom-
developed software, RUNES and VIKING [22], variants
were filtered to 1% minor allele frequency in our variant
database, then prioritized by the American College of
Medical Genetics (ACMG) categorization [23], OMIM
identity and phenotypic assessment. Alignments were
viewed using Integrative Genomic Viewer software
version 2.3.8 (IGV; Broad Institute, Cambridge, MA,
USA). Because the disorder was thought to be either
recessive or due to a de novo mutation, the initial analysis
targeted homozygous or compound heterozygous variants
with an allele frequency less than 1% in our local database
of >5000 samples, or variants unique to the patient.

After filtering for OMIM phenotypes consistent with this
patient’s clinical presentation, we retained only two genes,
SCNIA and PIGN. The paternally inherited SCNIA variant
previously identified through clinical testing, p.Ala23Glu
(c.68C > A), was confirmed by WES. In addition, this pa-
tient was found to be compound heterozygous in the PIGN
gene for two variants. The first, c.181G > T (p.Glu61*), was
a maternally-inherited nonsense variant in exon 4 of the
gene. Though this variant had not been previously reported,
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it is of the type expected to be pathogenic, the mRNA pro-
duced will likely be targeted for nonsense mediated decay,
resulting in a degraded product. This variant is found in
only one heterozygous individual in the ExAC database so
is extremely rare in the general population (Additional file 1:
Table S1). The second variant, ¢.284G > A (p.Arg95Gln),
results in the substitution of a highly conserved arginine to
glutamine in exon 5, a change that is predicted to be dele-
terious by in silico programs. This paternally-inherited vari-
ant is also very rare in the general population, found in
only 2 controls in the ExAC database (Additional file 1:
Table S1). In the absence of additional evidence of patho-
genicity, this missense variant was interpreted as a variant
of unknown significance (Additional file 1: Table S1). The
genotypes of the proband and parents were confirmed
clinically with Sanger sequencing.

Though suspected to be related to the patient’s pheno-
type, the uncertainty surrounding the pathogenicity of the
missense variant called for functional studies to prove caus-
ality before interpreting this genotype as pathogenic. In
order to examine the effect of the genotype, especially the
p.Arg95GIn variant on the function of PIGN, the surface
expression of GPI-anchored proteins on granulocytes were
analyzed by flow cytometry analysis (FACS). Granulocytes
from the patient and reference controls were gated after
staining with mouse anti-human CD59 and FLAER [24] to
allow us to perform the FACS analysis only on blood gran-
ulocytes. Such studies (Fig. 2) demonstrated a shift in anti-
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mother (1158) and a healthy male control (RB)

Fig. 2 Cell surface display of GPl-anchored proteins on red cells and granulocytes analyzed by flow cytometry. Red cells were stained with mouse
anti-human CD59. Red cells from the patient (1157), his mother (1158) and a healthy control RB displayed similar amounts of CD59. However, patient
granulocytes (1157) showed a half log reduction in fluorescence intensity following staining with anti-human CD59 and FLAER compared to the carrier
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CD59 and FLAER staining in this patient’s granulocytes,
indicating a GPI defect consistent with PIGN-related dis-
ease. Taken together with the fact that this variant was
found in trans with a pathogenic variant, p.Arg95GIn was
classified as likely pathogenic and the genotype interpreted
to be diagnostic for PIGN-related disease.

Discussion and conclusions

Of the 26 genes involved in the GPI pathway, four are re-
quired for remodeling of GPI after attachment to proteins.
In addition, 22 so-called “PIG genes” are required for syn-
thesis and protein attachment of GPI, with PIGN belong-
ing to the latter group [2, 4, 5]. Variants in PIGN are
associated with a variable phenotype including epilepsy,
hypotonia, global developmental delay, gastroesophageal
reflux, and congenital anomalies of the hands, feet, heart,
gastrointestinal system, genitourinary system, and brain
[7, 13-15, 20, 21]. A recent genotype-phenotype correl-
ation has been suggested, where congenital anomalies are
found only in association with biallelic truncating variants
[15]; our patient further supports this.

This case is one of many demonstrating the utility of
WES in diagnosing neurodevelopmental disorders in the
context of clinical testing. Targeted panels exist for many
disease states, and have benefits including less data to
interpret, minimizing incidental findings, and are gener-
ally less expensive than WES or WGS. However, the
diagnostic yield of this approach is <10% (cjs, unpub-
lished data), well below of that of WES/WGS, which
ranges from 25 to 50%. Panel testing often necessitates
more than one test, and serial testing of additional genes
or panels quickly surpasses the expense of WES/WGS
[22]. Such panels are more economical only if the rele-
vant gene is covered, and the extreme variability of the
content different laboratories offer for the same condi-
tion makes it difficult for clinicians to manage the gene
lists for such nonspecific symptoms such as intellectual
disability. The rapid rate of new gene discovery makes it
difficult for laboratories to incorporate relevant targets
to panels, even if the difference in the procedure is sim-
ply the bioinformatic unmasking of genes. For example,
PIGN, which was first reported to have a disease associ-
ation in May of 2014, is represented on only 2 of 47 Epi-
lepsy panels and 2 of 24 Autism/Intellectual disability
panels listed in NextGxDx. The comparison of such
gene lists is difficult for clinicians and the curation is
onerous for the clinical laboratory to manage. Clinical
WES/WGS removes the guesswork related to gene
inclusion, since all genes relevant to the patient’s pheno-
type are queried in the analysis process. In the current
case, by using WES in a young child with hypotonia, sei-
zures, a diagnosis of PIGN-related disease was made.

The clinical severity of the cases reported to date seems
to correlate with the predicted functional severity of the
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pathogenic variants seen in PIGN. The male we described
here further supports the genotype-phenotype assertions.
He has marked phenotypic overlap with the previously re-
ported cases. More recently, Fryns syndrome can be
caused by recessive mutations in PIGN, providing further
evidence for genetic heterogeneity [16, 17]. The patient
we report and two recent published reports [13, 15] sug-
gest that major congenital anomalies are not a core feature
of PIGN-related disorders and are associated only in the
presence of two truncating variants. Evaluation for patho-
genic variants in genes involved the GPI-anchor synthesis
pathway, causing PIG-associated epilepsy/multiple con-
genital anomalies-hypotonia-seizures syndrome, should be
considered in patients of all ethnicities with epilepsy, with
or without additional features. The increasing number of
phenotypes associated with pathogenic variants (coding
and non-coding) in the GPI pathway suggests that expan-
sion of genotype-phenotype correlations related to GPI
pathophysiology still requires further investigations.

Additional file

Additional file 1: Table S1. Characteristic of variants reported in
patient CMH1157. (DOCX 34 kb)
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