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Abstract

Background: Platelet Endothelial Aggregation Receptor 1 (PEART), a membrane protein highly expressed in platelets
and endothelial cells, plays a role in platelet contact-induced activation, sustained platelet aggregation and endothelial
function. Previous reports implicate PEART rs12041331 as a variant influencing risk in patients with coronary heart
disease. We investigated whether genetic variation in PEART predicts cardiovascular outcome in a white population.

Methods: In 1938 participants enrolled in the Flemish Study on Environment, Genes and Health Outcomes (51.3%
women; mean age 43.6 years), we genotyped 9 tagging SNPs in PEART, measured baseline cardiovascular risk factors,
and recorded Cardiovascular disease incidence. For SNPs, we contrasted cardiovascular disease incidence of minor-
allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotypes carriers vs.
non-carriers. In adjusted analyses, we accounted for family clusters and baseline covariables, including sex, age, body
mass index, mean arterial pressure, the total-to-HDL cholesterol ratio, smoking and drinking, antihypertensive drug
treatment, and history of cardiovascular disease and diabetes mellitus.

Results: Over a median follow-up of 15.3 years, 238 died and 181 experienced a major cardiovascular endpoint. The
multivariable-adjusted hazard ratios of eight PEART SNPs, including rs12566888, ranged from 0.87 to 1.07 (P 20.35) and
from 0.78 to 1.30 (P 20.15), respectively. The hazard ratios of three haplotypes with frequency 210% ranged from 0.93
to 1.11 (P 2049) for mortality and from 0.84 to 1.03 (P 20.29) for a cardiovascular complications. These results were not
influenced by intake of antiplatelet drugs, nonsteroidal anti-inflammatory drugs, or both (P-values for interaction = 0.056).

Conclusions: In a White population, we could not replicate previous reports from experimental studies or obtained in
patients suggesting that PEART might be a susceptibility gene for cardiovascular complications.
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Background

Platelet Endothelial Aggregation Receptor 1 (PEARI) is
a membrane tyrosine kinase receptor highly expressed in
platelets and endothelial cells. PEAR1 mediates platelet
contact-induced activation [1] and sustains aggregation
by supporting activation of the platelet specific integrin
allbB3 [2, 3]. Variation in the PEARI gene, including
SNP rs12041331, is associated with increased platelet re-
sponses to agonists [4] and with the inter-individual
variability in the response to antiplatelet drugs [5, 6].
Among patients with coronary heart disease taking anti-
platelet agents [5], rs12041331 A-allele carriers experi-
enced more adverse cardiovascular outcomes and had
higher death rates than GG homozygotes. Moreover, in
experimental studies [7], we observed an inverse correl-
ation between endothelial PEAR1 expression and vascular
assembly. In the Heredity and Phenotype Intervention
Heart Study [8], there was significant association between
flow-mediated dilation and rs12041331. A meta-analysis
of 75,000 publicly available microarrays [8] revealed that
expression of PEARI is highly correlated with genes, such
as ANG2, ACVRLI and ENG, and phenotypes, such as
endothelial cell migration and angiogenesis, which play a
pivotal role in endothelial function.

Platelet [5] and endothelial [9] dysfunction precede
adverse cardiovascular outcomes, but the impact of
genetic variability in PEARI on cardiovascular out-
come remains poorly understood and requires further
clarification, in particular in unbiased population sam-
ples. To this end, we analysed the database of the
Flemish Study on Environment, Genes and Health
Outcomes (FLEMENGHO [10-12]) to search for
association between the incidence of cardiovascular
complications and genetic variation in PEARI.

Methods

Study population

The recruitment and follow-up of FLEMENGHO par-
ticipants are fully described in previous publications
[10-12]. In this study, of 3343 FLEMENGHO partici-
pants, we excluded 1405 from analysis, because blood
stored in the biobank was exhausted with no material
left for genotyping (n =521), because of DNA degrad-
ation (#=314), because one or more PEARI SNPs
were missing (n =16), because participants were less
than 20 years old at enrolment (n = 372) with no con-
tribution to incident cardiovascular disease, or be-
cause follow-up data were lacking (n = 182). Of the 16
participants with missing information on SNPs, none
experienced a cardiovascular event during follow-up
and one men died from prostate carcinoma. Finally,
the number of participants carried through in all stat-
istical analyses totalled 1938.
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Measurements at baseline

The information of blood pressure, anthropometric
characteristics, medical history, and smoking and drink-
ing habits were obtained by trained nurses as described
elsewhere previously [12]. Blood pressure was the aver-
age of five consecutive auscultatory readings obtained
with a standard mercury sphygmomanometer after par-
ticipants had rested in the sitting position for at least
5 min. Mean arterial blood pressure was diastolic blood
pressure plus one third of the difference of systolic
minus diastolic blood pressure. The nurses also adminis-
tered a standardised questionnaire inquiring about each
participant’s medical history, smoking and drinking
habits, and intake of medications. Antiplatelet agents
included aspirin, dipyridamole, ticlopidine and clopi-
dogrel. Plasma glucose and serum total and high-
density lipoprotein (HDL) cholesterol and serum
creatinine were measured by automated methods in
certified laboratories.

Follow-up of mortality and morbidity

We ascertained the vital status of participants at an-
nual intervals until 31 December 2014 via the Belgian
Population Registry. In addition, we obtained the
International Classification of Disease codes for the
immediate and underlying causes of death from the
Flemish Registry of Death Certificates. For 1838 par-
ticipants, we collected information on the incidence
of non-fatal cardiovascular events either via face-to-
face follow-up visits with repeated administration of
the same standardised questionnaire as used at base-
line (7 =1660) or via a structured telephone interview
(n=178). Follow-up data involving face-to-face con-
tact were available from one visit in 501 participants,
from two in 352, from three in 388, and from four or
more in 419 participants.

Trained nurses used the International Classification
of Diseases to code incident adverse health outcomes.
Investigators blinded with regard to the genotypic re-
sults adjudicated the cause of death and non-fatal
cardiovascular events against the medical records of
general practitioners or the hospitals in the catchment
area of the study. Coronary events included sudden
death, fatal and non-fatal myocardial infarction, and
surgical or percutaneous coronary revascularisation.
Cerebrovascular disease included ischaemic stroke and
transient ischaemic attack. Cardiovascular events in-
cluded all of the foregoing coronary and cerebrovas-
cular events plus pulmonary embolism, deep vein
thrombosis, aortic dissection or aneurysm, and throm-
bosis or revascularisation of visceral or peripheral ar-
teries. In the outcome analyses, we only considered
the first event within each category.
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Genotyping

PEAR1 (22704 base-pairs) maps to a genomic area
characterised by high linkage disequilibrium (Fig. 1) on
chromosome 1. We selected nine tagging SNPs (rs2768762,
rs2644620, rs12566888, rs2768744, rs6671392, rs822441,
rs11264581, rs12137505 and rs749256; Additional file 1:
Table S1) that are in high linkage disequilibrium (R* > 0.80)
with 53 SNPs, covering the entire PEARI gene and have a
minor allele frequency of at least 1%. After extraction of
genomic DNA from peripheral blood cells [13], the SNPs
were genotyped, using the TagMan® OpenArray™ Genotyp-
ing System (Life Technologies, Foster City, CA). All DNA
samples were loaded at 50 ng per microliter and amplified
on customised arrays following the manufacturer’s instruc-
tions. For analysis of the genotypes, we used autocalling
methods implemented in the TagMan Genotyper software
version 1.3 (Life Technologies). Next, genotype clusters
were evaluated manually with the sample call rate set above
0.90. Sixteen duplicate samples gave 100% reproducibility
for all SNPs on the custom made array [12]. The partici-
pants were genotyped for these SNPs by using the strategy
as described previously [12, 13]. In our study population,
rs12041331 was in complete linkage with genotyped
rs12566888 (R* =0.99; D’=1.000). We used Minimac soft-
ware [14] to impute rs12041331, which in previous reports
[5, 15] was associated with platelet function and cardiovas-
cular outcomes.

Statistical analysis

For database management and statistical analysis, we
used SAS software, version 9.4 (SAS Institute, Cary,
NC). For comparison of means and proportions, we ap-
plied the large sample z test or ANOVA and Fisher’s
exact, respectively. We tested Hardy-Weinberg equilib-
rium in unrelated founders, using the exact statistics
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available in the PROC ALLELE procedure of the SAS
package. For analysis of single SNPs, we compared
minor allele carriers with major allele homozygotes. We
tested linkage disequilibrium, using the SAS procedures
PROC ALLELE. Using the expectation-maximisation al-
gorithm as implemented in the PROC HAPLOTYPE
procedure of the SAS software, we used all SNPs in-
cluded in the statistical analysis to reconstruct haplo-
types. In the context of this article, haplotype refers to a
set of statistically associated PEARI SNPs.

We compared the cumulative incidence of adverse
health outcomes in relation to genetic variants, using
Cox proportional hazards models adjusted for sex and
age. Next, we assessed the prognostic value of the gen-
etic variants in multivariable-adjusted Cox regression.
We checked the proportional hazard assumption by ap-
plying the Kolmogorov-type supremum test as imple-
mented in the ASSESS statement of the PROC PHREG
procedure. To account for family clusters, we used the
PROC SURVIVAL procedure of the SAS-callable
SUDAAN 11.0.1 software (Research Triangle Institute,
NC)[12]. In this procedure, clustering within pedigrees
was accounted for by including family as a random effect
in the Cox models along with other covariables modelled
as fixed effects. We analysed genotypes and haplotypes
using major allele homozygotes and non-carriers as
reference groups, respectively. Throughout our manu-
script, statistical significance refers to a 2-sided
P-value of 0.05 or less.

Results

Baseline characteristics

As described in a previous publication [11], all 1938 par-
ticipants were White Europeans, of whom 994 (51.3%)
were women. The study population consisted of 335
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Fig. 1 Plot of the PEART gene (p13.1-12.3). The x-axis represents the physical position on chromosome 1 (build 37, hg19). The y-axis and the line
indicate the recombination rate. The nine selected tagging SNPs (rs number and position given) were in high linkage disequilibrium (R? > 0.80)
with ~50 tagged SNPs denoted by vertical lines. Imputed rs72041331 was in complete linkage with genotyped rs72566888 (R’ = 0.99; D’=1.000)
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singletons and 1603 related subjects, belonging to 45
single-generation families and 176 multi-generation ped-
igrees. Age averaged (+SD) 43.6 + 14.3 years, body mass
index 25.7 + 4.3 kg/m2, blood pressure 125.2 + 15.7 mm
Hg systolic and 76.2+9.5 mm Hg diastolic, and total
cholesterol 5.50 +1.15 mmol/L. Among all participants,
478 (24.7%) had hypertension, of whom 208 (44.0%)
were on antihypertensive drug treatment, 32 (1.7%) had
diabetes mellitus, and 52 (2.7%) reported a history of
cardiovascular disease. Previous cardiovascular compli-
cations included coronary heart disease, ischaemic cere-
brovascular disease, peripheral arterial disease and
pulmonary embolism in 41 (2.1%), 9 (0.46%), 2 (0.10%)
and 1 (0.052%) patients, respectively.

Of 994 women and 944 men, 275 (27.7%) women and
329 (34.8%) men were smokers, and 166 (16.7%) women
and 394 (41.7%) men reported intake of alcohol. In
smokers, median tobacco use was 15 cigarettes per day
(interquartile range, 10 to 20 cigarettes per day). In
drinkers, the median alcohol consumption was 14 g per
day (8 to 28 g per day). Table 1 lists the baseline charac-
teristics of participants according to the rsI2566888
genotype. None of the risk factors differed between
minor allele carriers and major allele homozygotes
(0.30<P<0.97).

Incidence of events

Over a median follow-up of 15.3 years (5th to 95th per-
centile interval, 7.4 to 27.2 years), 238 participants died.
Table 2 lists incident events by fatality and disease
endpoint. Coronary events (n = 107) comprised 7 sudden
deaths, 17 fatal and 35 non-fatal myocardial infarctions,
78 cases of surgical (n=29) or percutaneous (n=56)
coronary revascularisation. Ischaemic cerebrovascular
events (n=61) included 15 fatal and 38 non-fatal cases
of ischaemic stroke and 14 cases of transient ischaemic
attack. The composite cardiovascular endpoint, consist-
ing of 53 fatal and 128 non-fatal events, included the
aforementioned coronary and cerebrovascular events
plus 4 fatal and 14 non-fatal cases of pulmonary embol-
ism or deep vein thrombosis, 7 fatal cases of aortic dis-
section or aneurysm, and 3 fatal and 13 non-fatal cases
of thrombosis of visceral or peripheral arteries. Non-
fatal events do not sum up, as only the first event in
each category was analysed.

Use of antiplatelet agents

Of 1938 participants, 375 (19.3%), 374 (19.3%) and 84
(4.3%) were on antiplatelet therapy, non-steroidal anti-
inflammatory drugs and both at any time point, while
250 (12.9%), 240 (12.4%) and 53 (2.7%) took these agents
for at least 25% of their follow-up. Of 375 patients on
antiplatelet agents at any time, 369 (19.0%) took aspirin,
9 (0.46%) dipyridamole, 11 (0.57%) ticlopidine and 43
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Table 1 Baseline characteristics of participants by rs712566888

genotypes
Characteristic T allele GG All
carriers homozygotes

N° 363 1575 1938

N°® with characteristics (%)
Women 195 (53.7) 799 (50.7) 994 (51.3)
Current smoker 101 (27.8) 503 (31.9) 604 (31.2)
Drinking alcohol 112 (30.9) 448 (284) 560 (28.9)
Diabetes mellitus 3(0.8) 29 (1.8) 32 (1.7)
Hypertension 84 (23.1) 394 (25.0) 478 (24.7)
Treated hypertension 39 (10.7) 169 (10.7) 208 (10.7)
History of CVD 8(22) 44 (2.8) 52 (2.7)
Antiplatelet drugs 70 (19.3) 305 (19.4) 375 (19.3)

Mean of characteristic (+SD)
Age, years 428+ 141 436+143 436+143
Body mass index, kg/m? 256+ 4.3 25743 257+43
Waist-to-hip ratio 084+009  085+0.09 0.84+0.09
Systolic blood pressure, 12454152 1253+158 1252 +15.7
mm Hg
Diastolic blood pressure, ~ 76.0+94 762+96 762£95
mm Hg
Mean arterial pressure, 922+102 926+ 106 925+ 105
mm Hg
Heart rate, beats per 69.2+95 694 +98 693+96
minute
Total cholesterol, mmol/L ~ 547+1.18 551+ 1.15 550+ 1.15
HDL cholesterol, mmol/L  1.39+041 139+039 139+0.38
Total-to-HDL cholesterol ~ 431+£1.77 427 +1.65 427 +167
ratio
Serum creatinine, umol/L ~ 90.2 + 16.6 910+173 909+ 17.1
Plasma glucose, mmol/L ~ 5.12+ 1.55 503+1.32 504+137

Abbreviations: HDL, high-density lipoprotein cholesterol. Mean arterial pressure
was diastolic pressure plus one third of the difference of systolic minus diastolic
pressure. Diabetes mellitus was a fasting or random plasma glucose level of > 7.0
or >11.1 mmol/L (=126 mg/dL or >200 mg/dL), or use of antidiabetic agents.
Hypertension was a blood pressure of >140 mm Hg systolic or >90 mm Hg
diastolic or use of antihypertensive drugs. There were no differences between
minor allele carriers and major allele homozygotes (0.30 < P < 0.97)

(2.2%) clopidogrel, either in monotherapy (n =318
[16.4%]) or in combination (n =57 [2.9%]). Among the
250 participants on antiplatelet agents during at least
25% of their follow-up, 249 (12.8%) took aspirin, 1
(0.052%) dipyridamole, 2 (0.10%) ticlopidine and 15
(7.7%) clopidogrel prescribed in monotherapy (n =233
[12.0%]) or in combination (17 =17 [0.88%]).

Analyses of SNPs

Additional file 1: Table S2 describes the position of the 9
SNPs on chromosome 1. In 787 unrelated founders (first
generation participants), all SNPs complied with Hardy-
Weinberg equilibrium (0.08 < P <0.88) with the exception
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Table 2 Fatal and Nonfatal Cardiovascular Events

Endpoint Type Number of events
Sudden death Fatal 7
Myocardial infarction Fatal 17
Non-fatal 35
Coronary revascularisation Non-fatal 78
Ischaemic cardiomyopathy Non-fatal 22
Ischaemic stroke Fatal 15
Non-fatal 38
Transient ischaemic attack Non-fatal 14
Pulmonary embolism Fatal 4
Pulmonary embolism or Non-fatal 14
deep venous thrombosis
Aortic aneurysm or dissection Fatal 7
Peripheral arterial diseases Fatal 2
Non-fatal 13
Visceral arterial thrombosis Fatal 1

Total number 181

Follow-up of the 1938 participants spanned a median of 15.3 years (5th to 95th
percentile interval, 7.4-27.2 years). Participants could experience multiple non-fatal
events, so that number do not add up. In the outcome analyses, only the first event
within each category was considered

of rs749256 (P=0.01), which was therefore excluded
for further analysis. In the whole study population
(Additional file 1: Table S3), excluding rs749256, the
frequencies of the minor alleles in all of the SNPs
ranged from 9.9 to 42.9%. The frequencies of minor allele
homozygotes in all of the analysed 8 SNPs were less than
5% (from 1.1 to 4.2%), except for rs12137505 (18.5%).

As illustrated for total mortality and the composite
cardiovascular endpoint in relation to rsI2566888 in
Fig. 2, for all SNPs (0.23<P<0.98), the sex- and
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age-adjusted cumulative incidence of all endpoints under
study did not differ between minor allele carriers and
major allele homozygotes. There were also no differ-
ences in these estimates between homozygous and het-
erozygous minor allele carriers (0.38 < P<0.92). Next, we
accounted for family clusters and adjusted the hazard ra-
tios for baseline characteristics, including sex, age, body
mass index, mean arterial pressure, the total-to-HDL
cholesterol ratio, smoking and drinking, antihypertensive
drug treatment and history of cardiovascular disease and
diabetes mellitus. As illustrated for all endpoints under
study in relation to rs12566888, cardiovascular risk was
similar among minor allele carriers and major allele
homozygotes (0.25 < P <0.95; Table 3). Analysis of the
seven other PEARI SNPs similarly produced non-
significant findings (Additional file 1: Table S4). Among
the 1938 participants, 250 and 240 were taking antiplate-
let agents or nonsteroidal anti-inflammatory drugs for at
least 25% of their follow-up. The aforementioned results
with respect to rs12566888 and the seven other SNPs
were consistent, irrespective of the intake of antiplate-
let drugs, nonsteroidal anti-inflammatory drugs, or
both (Additional file 1: Table S5; P-values for inter-
action > 0.27).

Analysis of haplotypes

Using the expectation-maximisation algorithm as imple-
mented in the PROC HAPLOTYPE procedure of the
SAS software, three haplotypes had a frequency of over
10% (Additional file 1: Table S6) and were carried
through in the analysis. With letters referring to the
r$2768762, rs2644620, rs12566888, rs2768744, rs6671392,
rs822441, rs11264581, and rs12137505 alleles, respect-
ively (Additional file 1: Tables S1 and S2), these haplo-
types (Additional file 1: Table S6) were TTGATGGA

a ;-
16 Total Mortality
— TT+GT
12 1
& — GG
[]
2
5 81
k=]
[*]
£
4 4
o4 P=0.76
T T T T T
0 6 12 18 24
Follow-Up (years)
TT+GT 363 259 154 129 73
GG 1575 1550 1136 573 379

Fig. 2 Incidence of total mortality (@) and cardiovascular disease (b) by rs712566888 genotype. Estimates were standardised to the mean of the
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distributions of sex and age in the whole study population. Vertical bars denote the standard error. Cumulative incidence did not differ between
minor allele homozygotes and heterozygotes (0.38 < P < 0.92). Median follow-up was 15.3 years. Tabulated data are the number of participants at
risk by genotype at 6-year intervals
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Table 3 Multivariable-adjusted hazard ratios by rs12566888 genotype

Event N° of events (rate per 1000 person-years) Hazard ratio P

T allele carriers (N =363) GG homozygotes (N=1575) (95%

Total mortality 40 (6.80) 198 (7.58) 0.99 (0.72-1.36) 095
Cardiovascular mortality 7 (1.19) 46 (1.79) 0.79 (0.36-1.73) 0.55
Cardiovascular events 27 (476) 154 (6.15) 0.78 (0.50-1.20) 025
Coronary events 18 (3.13) 89 (3.50) 0.93 (0.55-1.58) 0.79
Ischaemic cerebrovascular events 8 (1.37) 53 (2.05) 0.72 (0.35-1.46) 0.36

Numbers of events do not add up, because only the first event in each category was analysed. Hazard ratios (95% confidence interval) express the risk of minor
allele carriers vs. major allele homozygotes. Hazard ratios account for family clusters, and were adjusted for baseline characteristics including sex, age, body mass
index, mean arterial pressure, total-to-HDL cholesterol ratio, smoking and drinking, antihypertensive drug treatment, and history of cardiovascular disease and

diabetes mellitus

(37.1%), TTGATGGG (22.8%), and TTGATGAG (12.0%).
As illustrated for total mortality and the composite car-
diovascular endpoint in relation to the most frequent
haplotype (TTGATGGA) in Fig. 3, the sex-and age-
adjusted cumulative incidence of any endpoint did not
differ between carriers and non-carriers of the three
haplotypes (0.24 < P <0.86). Similarly, the multivariable-
adjusted hazard ratios did not reveal increased risk asso-
ciated with any haplotype (0.11 <P <0.97; Table 4). As
shown for TTGATGGA in Additional file 1, Table S7,
the haplotype results were independent of the use of an-
tiplatelet drugs, non-steroidal anti-inflammatory drugs,
or both (P-values for interaction > 0.056).

Discussion

We could not confirm our working hypothesis that inci-
dence of cardiovascular disease is associated with genetic
variation in PEARI. These results were independent of
the use of antiplatelet agents or anti-inflammatory drugs.
Our hypothesis originated from studies showing associ-
ation of variability in the responses to antiplatelet drugs
[4, 6] or of the incidence of cardiovascular complications

[5] with rs12041331. A recent genome-wide association
study [15] also demonstrated association of platelet ag-
gregation with 75s12566888. In our current study, we cov-
ered the entire PEARI gene by analysis of eight tagging
SNPs, which are in high linkage disequilibrium with 53
other SNPs in PEARI. For analysis of single SNPs, we
contrasted minor allele carriers with major allele homo-
zygotes, because of the low frequency of the minor al-
leles and minor allele homozygotes (Additional file 1:
Table S3) and because the sex- and age-adjusted cumu-
lative incidence of all endpoints under study was similar
in minor allele homozygotes and heterozygotes. rs12566888
genotyped in the present study is a proxy for rs12041331.
In line with the reported R* of 0.97 [15], in the
present study population this measure of linkage dis-
equilibrium was 0.99.

Experimental data [1, 2, 4, 15, 16] and studies of plate-
let aggregation in humans [17] further underpinned our
hypothesis that genetic variation in PEARI might predict
cardiovascular risk. Indeed, recent studies [1, 2] gener-
ated the molecular and functional evidence that PEAR1
is a platelet transmembrane protein that is activated by
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Table 4 Multivariable-adjusted hazard ratios by PEART haplotypes

Page 7 of 9

Haplotypes Event N of events (rate per 1000 person-years) Hazard ratio P
Carriers Non carriers (95% C)
TTGATGGA (N° at risk) 1174 764
Total mortality 146 (7.46) 2 (7.37) 5 (0.81-1.35) 0.73
Cardiovascular mortality 29 (1.48) 4 (1.92) 0.79 (0.43-1.45) 045
Cardiovascular events 102 (5.43) 9 (6.62) 0.84 (0.60-1.17) 0.29
Coronary events 64 (3.37) 3 (3.53) 0.98 (0.62-1.53) 0.91
Ischaemic cerebrovascular events 31 (1.60) 0 (243) 0.67 (041-1.09) 0.1
TTGATGGG (N° at risk) 788 1150
Total mortality 97 (7.48) 141 (7.39) 0.93 (0.72-1.20) 0.58
Cardiovascular mortality 21 (1.62) 32 (1.68) 0.90 (0.51-1.58) 0.72
Cardiovascular events 78 (6.25) 103 (5.65) 3 (0.76-1.39) 0.87
Coronary events 43 (3.39) 64 (3.46) 0.93 (0.63-1.37) 0.71
Ischaemic cerebrovascular events 28 (2.18) 33 (1.75) 7 (0.68-2.01) 0.58
TTGATGAG (N° at risk) 435 1503
Total mortality 5 (8.87) 173 (7.00) 1.11 (0.83-148) 049
Cardiovascular mortality 7 (232) 36 (1.46) 3 (0.73-245) 0.35
Cardiovascular events 44 (6.26) 137 (5.78) 0 (0.70-1.43) 0.98
Coronary events 6 (3.66) 81 (3.36) 1 (0.63-1.63) 0.97
Ischaemic cerebrovascular events 5(2.07) 46 (1.88) 0.96 (0.54-1.70) 0.89

Numbers of events do not add up, because only the first event in each category was analysed. Letters coding the haplotypes refer to the rs2768762, rs2644620,
512566888, 152768744, rs6671392, rs822441, rs11264581, and rs12137505 alleles, respectively (see Additional file 1: Tables S1 and S2). Haplotypes were reconstructed
using the expectation-maximisation algorithm as implemented in the PROC HAPLOTYPE procedure of the SAS software version 9.4. Haplotypes with a frequency of
>10% were carried forward in the analysis. Hazard ratios (95% confidence interval) express the risk of haplotype carriers vs. non carriers. Hazard ratios account for family
clusters, and were adjusted for baseline characteristics including sex, age, body mass index, mean arterial pressure, total-to-HDL cholesterol ratio, smoking and drinking,
antihypertensive drug treatment, and history of cardiovascular disease and diabetes mellitus

signalling molecules or platelet contact. Agonists, such as
ADP and epinephrine, enhance the membrane expression
of PEARI1 and its activation by tyrosine phosphorylation,
which can be blocked by eptifibatide, an allbp3 antagonist
[2]. Platelet proximity induced by centrifugation also in-
creases PEAR1 tyrosine phosphorylation, independent of
allbB3 [2]. In a functional genomics approach, several
PEARI SNPs (rs3737224, rs41299597, rs41273215, rs82242
and rs11264579) were associated with increased platelet re-
sponses to collagen-related peptide and enhanced PEAR1
protein expression [16]. Similarly, rs12041331 [15] and
rs12566888 [4] were associated with PEAR1 expression
[15] or functionality [4]. C-allele carriers of rs2768759 re-
cruited among families with premature coronary artery dis-
ease [17] showed increased native platelet aggregation to
agonists in vitro before and after two weeks of aspirin treat-
ment. Relevant for our current report, two studies [4, 15]
demonstrated that platelet aggregation in response to as-
pirin [15] or agonists [4], including adenosine diphosphate,
epinephrine and collagen, is related to intronic variation at
rs12566888, but proposed that additional studies would be
needed to clarify the importance of genetic variation in
PEARI to cardiovascular disease progression and response
to antiplatelet therapy.

Our current null findings obtained in a general popu-
lation are at variance with observations in selected pa-
tients with coronary heart disease on treatment with
aspirin. Lewis and coworkers [5] addressed the associ-
ation of cardiovascular outcomes with genetic variation
in PEARI in two independent aspirin-treated cohorts:
227 percutaneous coronary intervention patients and
1000 patients of the International Verapamil SR/Trando-
lapril Study Genetic Substudy (INVEST-GENES). In 144
white and 83 black patients undergoing percutaneous
coronary intervention, A-allele carriers of rs12041331
were more likely to experience a cardiovascular event or
death compared with GG homozygotes. The hazard
ratios were 2.62 (95% confidence interval, 0.96-7.10; P =
0.059) and 3.97 (1.10-14.3; P=0.035), respectively). In
aspirin-treated INVEST-GENES patients [5], rs12041331
A-allele carriers had a significantly twofold increased
risk of myocardial infarction compared with GG homo-
zygotes. This is in apparent contradiction with several
reports showing association of the rs12041331 A-allele
with lower platelet function or PEARI expression [5, 15,
18, 19] or with endothelial dysfunction [8]. This contra-
dictory results highlight the necessity of further investi-
gations, in particular in unbiased population samples.
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The absence of association between the risk of cardio-
vascular complications and genetic variation in PEARI
demonstrates that the results from experimental studies
are difficult to translate in to human health outcomes.
In the Duke Databank for Cardiovascular Disease
patients [20], candidate SNPs associated with in vitro as-
pirin resistance, including PEARI rs2768759, were not
associated with clinical outcomes in aspirin-treated pa-
tients with coronary artery disease. Several issues might
underlie the divergence between the experimental input
and the epidemiological observations for the research
question we addressed. First, the platelet function tests
as used in the aforementioned genetic studies are con-
ducted in an artificial environment, which might distort
the responses to various agonists [21] and ignore the
complexity of arterial thrombus formation [22]. Indeed,
in clinical trials [22-24] platelet function tests set up to
guide dosage of antiplatelet treatment failed to reduce
cardiovascular risk. Second, as evidenced by genome-
wide association studies [5], the statistical power to
detect association of genetic variation with platelet func-
tion depends on other genetic variants close to the
marker SNP and the frequency of the minor allele car-
riers, which may differ across populations and ethnici-
ties. However, the PEARI SNP frequencies in our
current study are in agreement with those reported in
1000 Genomes (https://www.ncbi.nlm.nih.gov/variation/
tools/1000genomes/) or HapMap (ftp://ftp.ncbi.nlm.nih.
gov/hapmap/), as showed in Additional file 1: Table S8.
Finally, the problem of publication bias cannot be ig-
nored, certainly not in the field of smaller size studies
with focus on a single gene. Ginsel and coworkers [25]
demonstrated a biased distribution of P-values in ab-
stracts listed in Medline 2012 with an apparent increase
in significance levels immediately below 0.05 relative to
the frequency immediately above 0.05. This finding is
likely to be evidence of P-hacking (biased analysis and
reporting) or publication bias.

Conclusion

Based on a predefined hypothesis originating from
experimental studies and observations in patients, we
could not confirm that PEARI is a major susceptibility
gene for cardiovascular disease in the population at
large. Our study illustrates that experimental studies and
observations in selected patients cannot be readily ex-
trapolated to the general population. The divergence be-
tween experimental findings and the current study result
might be related to the complex network of molecular
pathways, in which PEARI is involved over and beyond
its physiological role in platelet and endothelial function.
Furthermore, epigenetic regulation of gene function
might be another factor to be accounted for in future
research of the functional significance of PEARI.
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Additional file 1: Table S1. Common tagging SNPs in PEAR]. Table S2.
PEART allele and genotype frequencies by SNP in unrelated founders.
Table S3. PEART allele and genotype frequencies by SNP in 1938 analysed
participants. Table S4. Hazard ratios for all-cause mortality and the composite
cardiovascular endpoint by PEART SNPs. Table S5. Multivariable-adjusted
hazard ratios associated with rs12566888 by antiplatelet treatment status.
Table S6. Frequencies of haplotypes. Table S7. Multivariable-adjusted hazard
ratios associated with the TTGATGGA haplotype by antiplatelet treatment
status. Table S8. Minor allele frequencies in current study population and in
European subjects in 1000 Genomes and HapMap. (DOC 211 kb)
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