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Abstract

Background: Hereditary Spastic Paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative diseases.
Thin Corpus Callosum (TCC) associated HSP is a distinguished subgroup of complex forms. Purines and pyrimidine, the
basic DNA and RNA components, are regulating the cell metabolism, having roles in signal transduction, energy

preservation and cellular repair. Genetic defects in nucleotide metabolism related genes have been only recently
implicated in brain and neurodegenerative diseases’ pathogenesis.

Case presentation: \We present a consanguineous Qatari family with two brothers, 9 and 3 years, who displayed
a characteristic phenotype of early onset and markedly-severe spasticity with tiptoe walking, delayed dysarthric
speech, persistent truncal hypotonia, and multiple variable-sized areas of brownish skin discoloration appearing at
different places on the body. A clinical diagnosis suggestive of complex hereditary spastic paraplegia (HSP) was
set after the family had the second affected child. Whole genome sequencing identified a novel homozygous
NT5C2 splice site mutation (NM_012229.4/NM_001134373.2: c.1159 + 1G> T) that recessively segregated in family
members. Brain MRI revealed dysgenic and thin corpus callosum (TCC) with peri-trigonal white matter cystic
changes in both affected boys, whereas a well-developed corpus callosum with normal white matter was shown
in their apparently normal brother, who found to be a carrier for the mutant variant. This mutation led to skipping of
exon 14 with removal of 58 amino acid residues at the C-terminal half. The aberrantly spliced NT5C2 showed substantial
reduction in expression level in the in-vitro study, indicating marked instability of the mutant NT5C2 protein.

Conclusion: The present report expands the phenotypic spectrum of SPG45 and confirms NT5C2-SPG45 as a member
of the rare TCC SPG-subtypes. Homozygous alteration in NT5C2 seems essential to produce central white matter
developmental defects. The study highlights the importance of cytosolic Il 5-nucleotidase (NT5C2) in maintaining the
normal balance of purines’ pool in the brain, which seems to play a pivotal role in the normal development of central
white matter structures.

Keywords: Hereditary spastic paraplegia, SPG-Thin corpus callosum subgroup, Nucleotide metabolism, NT5C2, SPG45,
SPG45-brain MRI

* Correspondence: aka2005@gatar-med.cornell.edu

TEqual contributors

“Neurogenetics Research program, Neurology Department, Weill Cornell
Medical College, Qatar Foundation- Education City, 24144, Doha, Qatar
Neurology Department, Weill Cornell Medical College, New York, USA
Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12881-017-0395-6&domain=pdf
mailto:aka2005@qatar-med.cornell.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Elsaid et al. BMC Medical Genetics (2017) 18:33

Background

Hereditary spastic paraplegia (HSP) is a large, genetically
heterogeneous group of neurodegenerative diseases
characterized by retrograde degeneration of axons of
motor neurons of the corticospinal tract [1]. A rare sub-
group of the HSP recessive-forms was described with a
brain-imaging marker of thin corpus callosum (TCC),
for which a set of few genes has been identified so far
[2]. Genetic defects in nucleotide metabolism related
genes have been only recently implicated in HSP patho-
genesis [3]. Nucleotidases are a group of hydrolases clas-
sified according to their subcellular localization and sites
of cleavage. The 5 nucleotidases catalyze the hydrolysis
of 5 ribo- and deoxyribo-nucleotide monophosphate
into the corresponding nucleoside. The 5’ nucleotidase
cytosolic II (NT5C2) enzyme has a critical role in main-
taining the balance of nucleotides, nucleosides and free
nucleobases of purine’s pools in the brain and spinal
cord [4]. NT5C2 catalyzes the hydrolysis of Adenosine
Monophosphate and Inosine Monophosphate releasing
Adenosine. Adenosine has been recently recognized to
have a key role in promoting myelin formation in the
central nervous system (CNS) [5]. Adenosine inhibits
proliferation of oligodendrocytes progenitor cells (OPC),
whereas it stimulates their differentiation into mature ol-
igodendrocytes and modulates the communication of
the neuron and glial cells with the axons [6-8]. This
study describes a consanguineous Qatari family with a
provisional clinical diagnosis of complex-HSP, in which
the HSP-genes panel testing failed to detect the under-
lying gene defect. By using whole genome sequencing
(WGS) and ingenuity variant data analysis (IVA) we
were able to identify a novel homozygous splice site mu-
tation in NT5C2 that recessively segregates in the family.
The NT5C2 gene involvement in HSP families from
Middle East has been reported only once before, however;
this is the first report in Qatari patients and demonstrates
new clinical findings and interesting observations.

Cases presentation

Results

Clinical report

Patient IL.3 is the youngest (3 years old) of three broth-
ers of consanguineous parents (Fig. 2a). Developmental
delay was the first sign that drew the parents’ attention.
He remained unable to crawl or sit until the age of
10 months and started tiptoe-walking at the age of 2
years. Progressive spasticity of the lower limbs; limited
ankles’ dorsiflexion and hips abduction, with ankle clo-
nus and brisk (+4) reflexes, sitting with bending curved
back due to truncal hypotonia, delayed speech and mild
mental impairments were his main presentations. His
gait was unsteady with knees flexion and lumber lordosis
to help to achieve balance.
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Patient II.1 is the oldest brother (9 years old). Al-
though he is similarly affected, he was originally mis-
diagnosed for cerebral palsy because of prematurity and
early lower limb spasticity. Postnatally, he was admitted
to the NICU because of respiratory distress; however, no
mechanical ventilation was required. By the age of 4
months, his lower limbs were markedly spastic with
scissoring. As a 2-year-old, his speech and motor devel-
opmental delay were notable. He could not sit unsup-
ported for long periods, but could take a few steps while
holding onto objects with evident lower limbs spasticity
and marked truncal hypotonia. He started to speak when
he was 3 years old. On examination, he was alert and
cooperative despite delay in active speech. His gait, per-
formed with difficulty for few steps, demonstrated tiptoe
walking with limited knee and hip extension and trunk
flexion.

At 2 and 3 years old, he was admitted to an inpatient
pediatric rehabilitation and training program for 4
months each, which aimed to support motor and speech
development. The response was good, as gross motor
functions, including sitting, crawling and kneeling,
standing, and walking for a short distance without sup-
port or orthopedic aid, became possible. He showed a
more secure and significantly improved gait, and was
able to pick up objects from the ground and walk up to
600 meters without supportive aids. His Gross Motor
Function Measure (GMFM) chart, at the age of 3 years
showed continued improvements with the percentage of
sitting 100%, standing 74% and walking 56%. However,
as a 7-year-old, he underwent tenotomies for his spastic
hips and ankles.

Follow up at 9 years showed him to have an unsup-
ported gait with primary forefoot contact, knee in flexion
and lumber lordosis. Features of truncal hypotonia,
markedly limited ankle dorsiflexion and ankle clonus
were notable.

His speech showed mild dysarthria. He has learning
difficulties and is attending a mainstream school with
extra support. Multiple and variable-sized areas of
brownish skin discoloration were present at different
places on his body (Fig. 1.1).

Brain Magnetic Resonance Imaging (MRI) of the
two affected boys showed dysgenic/TCC and white matter
cystic changes (Fig. 1.2). Images of the unaffected brother
(heterozygous for the mutation) showed well-developed
Corpus Callosum.

The clinical characteristics of our patients in compari-
son to other NT5C2-related patients are summarized in
Table 1.

Genomic report
HSP-panel testing involving 24 known HSP-related
genes including those for SPG11 and SPGI15 in a
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Fig. 1 Skin patches and Brain MRI. 7.7: skin patches of brownish
discoloration. Detected in the older patient. Images (a, b, and c)
showed multiple, variable-sized areas of darkened “brownish” skin
discoloration on the upper right thigh, left thigh and above the right
nipple, respectively. The outline-edges of some of those areas look
darker. Such variable-sized, multiple and brownish skin areas with
darker outline were also seen on the abdomen and upper arms
(data not shown). 1.2: Brain MRI of the three brothers. MRI Scans of
younger patient, I1.3: Axial T2 weighted image (d) showed slit like
widely separated lateral ventricles with slightly dilated occipital horns
(vellow arrow), bilateral peri-trigonal multiple variable size cystic
white matter changes, and mild frontal cerebral atrophy. Sagittal

T1- weighted images at different levels (e1& e2) showed markedly
hypoplastic corpus callosum with absent splenium and posterior
part of its body with secondary uplifted third ventricle. Prominent
pre-pontine, supra- and infra- cerebellar cisterns and basal cistern
were obviously noticeable in the youngest patient. MRI of older
patient, II.1: Axial T2- Weighted Image (f) revealed patchy white
matter hyperintensities predominantly at the occipital and periventricular
white matter. Axial Inversion Recovery Image (g) is showing the wide
separation of the bodies of the lateral ventricles secondary to
hypoplastic corpus callosum. Midline Sagittal T2-weighted image
(h) displayed the markedly hypoplastic body and absent
splenium of the corpus callosum. MRI of Normal brother, 11.2:
Axial T2 weighted (i) showed normal white matter volume and
signal and normal gyration pattern with well-formed corpus
callosum. Midline sagittal T1 weighted image (j) is showing the
well-developed corpus callosum’ parts

certified clinical lab, did not confirm the clinical diagno-
sis of HSP and was negative for HSP-related mutations.
WGS was performed for five family members; three
brothers and the parents. A variant mapped to the
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consensus donor splice site in intron-14 of Cytosolic-1I
5Nucleotidase =~ (N75C2) on  chromosome 10,
(NM_012229.4/NM_001134373.2, chr10:104852895C > A;
¢.1159 + 1G > T) was identified and was corroborated by
the finding of a homozygosity region on chromosome 10
overlapping with NT5C2 (Additional file 1: Figure S2).
The NT5C2 variant was not reported in any of the public
genome databases; the 1000 genomes project, dbSNP, ESP,
and ExAC. And was absent in 108 normal Qatari genomes
[9] (Additional file 2: Figure S1). Importantly, NT5C2 mu-
tations were reported to underlie recessive spastic paraple-
gia in a previous study [3]; hence, NT5C2 was our best
candidate. Recessive segregation of NT5C2 variant in the
family was confirmed (Fig. 2a). RT-PCR verified the
homozygous skipping of exon 14 in the two patients
(Fig. 2¢). Skipped exon 14 removed 58 residues (G330 to
$387) of the 561aa mature protein; however, it is in-frame
and consequently there was no downstream frameshift.
Immunoblots on blood-derived protein lysate of family
members revealed no signal; lack of detectable expression
of NT5C2 in blood can be a reason (data not shown). The
protein expression status of mutant NT5C2 was assessed
in vitro by over-expressing both wild type and mutant
constructs fused to V5 tag in HEK293 cells. A significant
reduction in protein levels of mutant NT5C2 was ob-
served, suggesting altered stability of the mutant form
lacking exon-14 (Fig. 2d). Mutant NT5C2 was detectable
in-vitro despite its marked reduction, likely due to over-
expression experiment; hence, the homozygous splice-
mutant NT5C2 was anticipated to be significantly
deficient in patient’s tissues and ultimately considered a
loss of function mutant.

Discussion

The NT5C2-related phenotype has previously been clin-
ically assigned to SPG45 (MIM: 613162). This report
describes a homozygous novel NT5C2 splice-site muta-
tion in two Qatari siblings with AR-HSP. This mutation
resulted in markedly altered stability of the enzyme-
protein. NT5C2 involvement in recessive HSP was
reported once before in a large HSP-cohort study [3].
The splice mutation identified in this study is located at
the C-terminal half of the protein and led to in-frame
skipping of exon 14. The significantly deficient expres-
sion of mutant NT5C2 shown in in-vitro overexpression
experiment highlights the substantial impact of exon 14
skipping on protein stability and/or its proper folding;
hence a loss of function mutant is assumed.

The six reported NT5C2 mutations, so far, (3 and this
report) (Additional file 3: Table S1) seems to lead to the
same path of loss of function. Even so the impact of
previously described NT5C2 mutations on the encoded
protein was not tested, however they were predicted to
be deleterious and impair the protein function [3].
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Table 1 Phenotypic Characteristics in SPG45 patients with NT5C2 mutations
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Phenotype Characteristics Patient I1.1 Patient 11.3 Families described in Ref.3

Age at onset 7 months 10 months 15 &18 months, infancy,
or Unknown

Disease ~9 years ~3 years Range between 2 and 33

duration years old with a mean of

Presentation at
disease onset

Speech delay

Speech
dysarthria

Lower limbs Spasticity
Back hypotonia
Walking ability

Gait abnormality

Learning disability

Cerebellar signs

Ophthalmolo-gical signs

Brain MRI

Skin changes

Skeletal abnormalities

Urine incontinence

Reference

Marked lower limbs spasticity
and developmental delay

+ (speech started at age 3 years)

+

Markedly severe
+

Can walk unsupported with
abnormal gait

+ (Unsteady gait while walking
associated with lumber lordosis,
knees flexion, limited foot
movements, limited knees and
hips extension.

+ (attending special school)

Latent convergent Squint
improved following correction
glasses, optic disk normal

TCC, CC dysgenesis, white
matter cystic changes and
hyperintensities

Variable size patches of brownish
discoloration begin to appear at
6 years old

Equinus foot

+ [he developed the control
just lately]

This report

Developmental delay and marked
lower limbs spasticity

+ (speech started at age 2 and half years)

+

Markedly Severe
+

Can walk unsupported with tip toe
walking and abnormal gait

+ (Tip toe walking, in-toing, knee
flexion (milder than older brother),
lordosis, unsteadiness because of
movements limitation.

Hyper-metrope, no squint, normal
optic disk

Similar findings in addition to frontal
cerebral atrophy

- (he is yet at the age of 3 years)
Equinus foot
+

This report

30 years
Delayed walking

Mild

Some can walk unsupported,
others walk with support

+ (some cases showed
associated knees flexion
contracture)

+ (except in one family
reported with normal
cognition)

Squint, glaucoma, or primary
optic atrophy, each sign was
reported once in a patient

TCC & white matter changes in
4 families with available images

Equinus foot in one family

Nocturnal enuresis in only
one case

Ell

+ : present; — : absent

Phenotypic features of delayed and dysarthric speech,
persistent truncal hypotonia, variable-sized patches of
skin brownish discoloration and the early-onset, mark-
edly severe spasticity were first described in our patients,
expanding the phenotypic spectrum of SPG45.

The skin patches started to appear at 6 years of age;
hence it was detectable only in the older patient. There
was no clinical reason found for those patches. Altered
nucleotide metabolism might be an explanation; follow
up with the younger patients might provide a clue.

The capacity to maintain the walking ability despite
the marked spasticity (this report) and even in the lon-
gest reported disease duration [3, 10] is of a good prog-
nostic value to SPG45 families with NT5C2 mutations.

Studying the brain imaging of the two patients versus
the unaffected carrier brother was quite interesting.

Brain MRI findings strongly support the observation that
homozygous mutation involving the two copies of
NT5C2 is essential to producing the developmental de-
fects in cerebral white matter with dysgenic/TCC. By
contrast, the heterozygous status of the mutation in the
unaffected brother was associated with normal develop-
ment of cerebral white matter (Fig. 1.2). Brain images in
our cases backed by reports of previously described fam-
ilies with available MRI [3] distinguish SPG45 (NT5C2)
as an additional member of SPG-TCC subgroup.

Taken together, the mature oligodendrocytes are the
main myelin forming cells in the brain and Adenosine is
both a modulator of OPC development and a potent
neuron-glial-axonal transmitter, it is likely that the nor-
mal adenosine and purines’ pool concentrations in the
brain has an influence on the normal developmental
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Fig. 2 Identification and functional analysis of NT5C2 mutation. a Pedigree of the consanguineous family and Sanger sequencing of NT5C2 splice
site mutation. The inheritance pattern is consistent with an autosomal recessively segregated disorder. b Schematic illustration of NT5C2 protein
and coding transcript. Upper panel, protein structure with depicted active sites (nucleophile and proton donor at positions 52 and 54, respectively),
metal binding sites (Magnesium metal at positions 52, 54, 351), allosteric activators binding sites (positions 127, 154, 354, 436, 453), substrate binding
region (position 202-210), and Asp/Glu-rich acidic region (position 549-561). G330 and S387 denote boundaries of the deleted region encoded by
exon 14. Bottom panel, coding transcript with numbered exons and the location of all the reported NT5C2 mutations including the present study (red).
Skipped exon 14 reported herein is highlighted yellow. ¢ NT5C2 RNA splicing. RT-PCR using exon14-flanking primers (right diagram depicting exons as
numbered boxes, introns as dashed lines, primers as half arrows, and donor splice site mutation as red circle) shows the absence of the wild-type (358 bp
including exon 14) and the presence only of the mutant (187 bp lacking exon 14) band in the two affected, whereas both bands are present in the
heterozygous cases. Results demonstrate skipping of exon 14 from mature NT5C2 transcript as a consequence of intron 14 donor splice site mutation,
without alteration of transcriptional expression. Ctrl is control RNA from unrelated normal individual. Genomic DNA (gDNA) is used to confirm
specificity of assay toward spliced RNA. GAPDH is housekeeping gene used for normalization. d Mutant NT5C2 lacking exon 14 is unstable.
In-vitro expression analysis in HEK293 cells transfected with wild type (WT) or mutant (MT) NT5C2 fused to V5 tag. Note the marked low
expression levels of mutant NT5C2-Aexon14-V5 (~64 kDa) compared to wild-type NT5C2-V5 (~70 kDa), indicating severe instability of mutant
NT5C2 as a consequence of exon 14 skipping. Beta-actin (ACTB) is used as loading control. V, empty expression vector; M, mock; kDa, kilodalton

process of myelin formation in the CNS. Further experi-
ments are necessary to verify this assumption.

We recognized a striking similarity in the key clinical
features involving TCC, markedly severe spasticity and

long disease duration with maintained ability of unsup-
ported walking in families with NT5C2 (SPG45) or
DDHD2 (SPG54) mutations [11, 12]. Mutated phospho-
lipase DDHD2 was suggested to affect both the dynamics
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and/or morphology of Golgi and ER in a retrograde or
anterograde transport mechanism [13, 14] as well as the
complex lipid metabolism [15, 16]. Whether there might
be a common mechanism potentially linking the NT5C2
loss of function, disturbed purines’ signaling to the trans-
port along the corticospinal tract and/or membrane traf-
ficking, remains a hypothesis awaiting further studies.

Conclusions

The present report confirms the critical role of cytosolic
5’nucleotidase and nucleotide metabolism in the normal
development of central white matter structures and war-
rants further experiments to explore a potential role of
5" nucleotidase in transport and/or maintenance along
the corticospinal tract. The NT5C2 ¢.1159 + 1G > T spli-
cing mutation presents a phenotype of markedly severe
and early onset spasticity, persistent truncal hypotonia,
delayed-dysarthric speech and skin patches of darkened
discoloration. These characteristic features expanding
the phenotypic spectrum of SPG45. The present family
emphasizes SPG45 with NT5C2 mutations as a member
of the TCC-SPG subgroup. Of the notable observation is
the good prognosis of the recessive complex SPG45 in
terms of mild cognitive impairment with some learning
difficulties and the maintained unsupported walking
ability, however with abnormal gait.

Methods
See Additional file 4: Supplementary methods.

Additional files

Additional file 1: Snapshot of Homozygosity Mapper Analysis of WGS
SNPs data. (PDF 491 kb)

Additional file 2: VA analysis of WGS data. Filters applied (see methods)
revealed 3 variants in 3 genes (NT5C2, NINL and KIAA1755) at the genetic
analysis filter that showed in IVA to be compatible with Mendelian recessive
inheritance (upper panel). (PDF 296 kb)

Additional file 3: NT5C2 mutations reported in NT5C2-associated HSP
cases. (DOCX 17 kb)

Additional file 4: Supplementary methods. (DOCX 25 kb)
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