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Background: The recurrent microduplication of 16p11.2 (dup16p11.2) is associated with a broad spectrum
of neurodevelopmental disorders (NDD) confounded by incomplete penetrance and variable expressivity.
This inter- and intra-familial clinical variability highlights the importance of personalized genetic counselling

in individuals at-risk.

Case presentation: In this study, we performed whole exome sequencing (WES) to look for other genomic
alterations that could explain the clinical variability in a family with a boy presenting with NDD who inherited
the dup16p11.2 from his apparently healthy mother. We identified novel splicing variants of VPS13B (8q22.2)
in the proband with compound heterozygous inheritance. Two VPS13B mutations abolished the canonical
splice sites resulting in low RNA expression in transformed lymphoblasts of the proband. VPS13B mutation
causes Cohen syndrome (CS) consistent with the proband’s phenotype (intellectual disability (ID), microcephaly, facial
gestalt, retinal dystrophy, joint hypermobility and neutropenia).

The new diagnosis of CS has important health implication for the proband, provides the opportunity for more
meaningful and accurate genetic counselling for the family; and underscores the importance of longitudinally

following patients for evolving phenotypic features.

Conclusions: This is the first report of a co-occurrence of pathogenic variants with familial dup16p11.2. Our finding
suggests that the variable expressivity among carriers of rare putatively pathogenic CNVs such as dup16p11.2 warrants
further study by WES and individualized genetic counselling of families with such CNVs.

Keywords: 16p11.2 duplication, Cohen syndrome, Neuro-developmental disorders, Variable expressivity, Whole exome

sequencing, Case report

Background

Chromosome microarray analysis of subjects with NDD
has uncovered a large number of rare copy number
variations (CNVs); nevertheless, some pathogenic and
putatively pathogenic CNVs detected in patients cannot
completely explain complex patient phenotypes, particu-
larly when an unaffected parent carries the same
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submicroscopic imbalance. One example of a suscepti-
bility locus for NDD is the 16p11.2 region with ~600 kb
deletions and duplications observed in ~1 % of autism
and 1.5 % of children diagnosed with significant devel-
opmental or language delays compared to 0.04—0.07 %
amongst control populations [1, 2]. Carriers of 16p11.2
CNV manifest a broad spectrum of neurocognitive pheno-
types, ranging from ID [1, 3, 4], autism spectrum disorder
(ASD) [5, 6], schizophrenia [7], congenital anomalies [4, 8]
to individuals without a specific phenotype [3, 4, 8]. There
is familial coincidence of both phenotypically affected and
unaffected carriers in some families [1, 7, 8]. The estimated
penetrance of 16pl11.2 deletion and duplication are
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46.8 % and 27.2 %, respectively [2]. Multiple studies
demonstrated the power of WES to find the genetic etiology
of clinical variability among such patients. WES helped to
discover that the presence of variants on the non-CNV con-
taining homolog chromosome may unmask biallelic muta-
tions in an autosomal recessive condition [9, 10], or that
damaging variants in other parts of the genome may con-
tribute to such variable expressivity [11]. The results of these
studies suggest that inconsistent phenotypes in patients with
known pathogenic CNVs or with CNVs inherited from an
unaffected parent may indicate the co-occurrence of
secondary genomic events elsewhere in the genome.

In this study, we report that pathogenic variants of
VPS13B located at chromosome 8 in a boy with NDD
carrying a familial dup16p11.2 contribute to the clinical
variability in this family.

Case presentation

The proband is an 11 year old boy introduced to our clinic
with global developmental delay and verbal apraxia at the
age of four. He is the third of four-children of non-
consanguineous parents of Chinese descent. His mother
and his paternal grand-mother have a history of recurrent
spontaneous pregnancy losses with unknown cause. His
parents and three siblings are apparently healthy (Fig. 1a).
The proband was born after 39 weeks of uneventful preg-
nancy via caesarean section for fetal distress with Apgar
scores of 8 and 9 at one and five minutes after birth,
respectively. His birth weight was 2175 gram (<3™ per-
centile (%ile)), length was 47 cm (10™ %ile) and occipito-
frontal circumference (OFC) was 34 cm (25" %ile). The
patient exhibited feeding difficulty, low muscle tone, bilat-
eral ptosis, club foot, bilateral undescended testes, and
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flexion contracture of hand and wrist. The proband’s la-
boratory diagnostic workup was normal and included rou-
tine karyotype, subtelomeric FISH, fragile X, biochemical
assessment, cranial MRI and CT scan. Affymetrix
Genome-Wide Human SNP Array 6.0 revealed a 709.2 kb
duplication of 16p11.2 (29,425,199-30,134,432) in the
proband, confirmed by FISH and parental studies indicat-
ing maternal inheritance. The proband’s siblings were not
tested for dup16p11.2 per the family’s request.

We examined the mother who is a carrier of dup16p11.2
for the possibility that apparently healthy carrier parents
might have some unnoticed clinical features, and for the
presence of phenotypic commonality with his child. She
showed no sign of ID, ASD, psychiatric disorder (anxiety,
depression, obsessive-compulsive disorders (OCD)),
underweight or microcephaly. She was also negative for
history of other dupl6pll.2 features including epilepsy,
speech and motor delay, and congenital anomalies.

Genetic testing

DNA samples of family trios were sent to PerkinElmer
Company for exome enrichment using the TruSeq
Exome Enrichment Kit (Agilent v5 + UTR), followed by
paired-end sequencing (Illumina HiSeq 2000, read
length of 100 bp). Using Golden Helix (GH) software
(SNP & Variation Suite 7.7.8), the WES data from a
single VCF file for sequenced family members was
analyzed (Additional file 1: Figure S1). Two novel
splicing mutations of VPSI3B (8q22.2) with compound
heterozygous inheritance were identified in the proband
and subsequently confirmed by Sanger sequencing
(Fig. 1b). A sequence variant of ¢.1426-1G > A located in
the acceptor splice site of intron 10 was identified in
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Fig. 1 a Family pedigree. b Sanger sequencing analysis of VPS13B variants. I) Proband and his mother are carriers of splicing mutation of
€.1426-1G > A. ) Proband and his father are carriers of splicing mutation of c4157+ 1G> T (sequences of reverse strands are shown)
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Proband A and his mother. The second variant, a
nucleotide change of G >T at c.4157 + 1 situated in the
donor site of intron 27, was inherited from his father.
Mutations and/or CNVs in the VPS13B gene lead to a
rare autosomal recessive condition called Cohen syn-
drome (CS) [12].

Functional prediction tools used for WES data analysis
anticipate the effect of non-synonymous variants (coding
region). However, both variants of VPS13B are located
at canonical splice sites. ALAMUT software predicted
that two intronic variants of VPSI3B would result in
skipping of the exon 11 and 27. To confirm this pre-
diction, we performed PCR on c¢cDNA samples of pro-
band and a control using two separate sets of primers
covering exons 9-12 and 26-29 of VPS13B, followed
by Sanger sequencing of the PCR products. This con-
firmed that both variants abolish the canonical splice
sites and create aberrant RNA sequences (Fig. 2).
Real-time quantitative PCR (qPCR) for VPSI3B demon-
strated reduced expression in the proband compared to
two controls (Additional file 1: Material and methods).
The mother also showed reduced RNA expression com-
pared to one control (Fig. 3). Other family members
were not available for VPS13B or dupl6pll.2 testing.

The VPSI3B gene, also known as COH1 (OMIM:
607817), is approximately 864 kb in length and located
on chromosome 8q22.2. It consists of 62 exons encoding
a transmembrane protein of 4022 amino acids [12].
VPS13B is a peripheral membrane protein that is required
for function, orientation and structural integrity of the
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Fig. 3 Expression study of VPS13B gene. The mean RNA expression
of VPS13B calculated from three different time-series of RNA extraction
in the proband, his mother and two normal controls. The relative
expression of VPS13B is <0.5 fold in the proband and >06 fold in his

mother. Error bars indicate standard errors from three replicates

Golgi apparatus and thus plays a role in vesicle-mediated
sorting and intracellular protein transport [13, 14]. Homo-
zygous or compound heterozygous mutations/CNVs of
VPS13B cause CS [12].

Intronic point mutations within donor and acceptor
sites at mRNA splice junctions typically cause mRNA
mis-splicing, leading to subsequent nonsense-mediated
mRNA decay (NMD), and altered protein with effect on
the clinical phenotype [15]. Indeed, Sanger sequencing
of RT-PCR product corresponding to each specific
VPS13B variant demonstrated that both variants create
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Fig. 2 Sanger sequencing of RT-PCR products of proband and control, using primers covering exons 9-12 and 26-29 of VPS13B. a The variant of
€.1426-1G > A disrupted the following sequences and caused frameshift in the proband. The orange arrow shows the first bp of exon 11 in the
normal control. b The variant of 4157 + 1G > T disrupted following sequences, and caused frameshift in the proband. The orange arrow shows
the first bp of exon 27 in the normal control
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Table 1 Clinical phenotypes of proband, and their presence/
absence among reported cases of CS and dup16p11.2

Proband’s clinical
findings

Reported findings in
patients

Cohen duplépll.2

syndrome

Pregnancy/birth

Neurocognitive

Build/stature

Cranium/hair

Forehead/face/
nose

Mouth/oral
region

Eye/eye globe/
vision

Reduced fetal activity
Low birth weight
Feeding difficulty
DD/ID™®

ASD®

Happy/friendly
disposition®

Hypotoniab
Verbal apraxia

Motor delay®

Poor motor coordination

Brisk reflexes

Underweight®
(S4y/0)

Short stature

Truncal obesity®
(childhood)

Microcephaly®®
(postnatal)

Flat occiput
Double hair whorls

Low hairline®
(anterior)

Thick hair®
Narrow forehead

Micrognathia/mild
retrognathia

Malar hypoplasia
Depressed nasal root
Short triangular nose
Small mouth

Thick upper lip

Short/smooth philtrum?

High-arched palate

Thickened alveolar
ridges

Prominent upper central

incisors
Hypertelorism

Ptosis (bilateral)
Blepharophimosis
Wave shaped eyelids®
Thick eyebrow®
Long/thick eyelashes®

+ o+ o+ o+ o+ o+
+

+ + + + o+
+
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Table 1 Clinical phenotypes of proband, and their presence/
absence among reported cases of CS and dup16p11.2
(Continued)

Myopia® + +
Diffuse retinal + -
dystrophy?

Ears/hearing Large ears + +
Posteriorly rotated + +
ears
Auricular pits + +
Hearing loss + -
(unilateral

sensorineural)
Abdomen/thorax Diastasis recti - -
Hypoplastic nipples - -

Slender extremities/ + +
tapered fingers®

Extremities/
musculoskeletal

Joint hypermobility?
Club foot (bilateral)

Sandal gap

+ o+ o+ o+

Scoliosis

Genitalia/urinary  Hypospadias
tract

+ o+ o+ o+

Cryptorchidism

+

Haematology/ Chronic anemia

Immunolos ) )
9 Recurrent infection + -

(Ut

Intermittent neutropenia® + -

*Diagnostic criteria for CS
PMost observed findings among patients with dup16p11.2

aberrant RNA sequences and frameshift and thus prob-
ably lead to NMD. Moreover, the RNA expression level
of VPSI3B in the proband was significantly reduced
compared to two controls. VPSI3B expression in his
mother was intermediate between the proband and one
control, suggesting that partial loss-of-function in car-
riers of autosomal recessive disorders is not sufficient to
produce a complete disease phenotype.

Absence of dupl6pll.2 -related phenotype in the
mother, presence of some CS features in the proband,
and the discovery of pathogenic VPSI3B mutations
warranted re-evaluation of our patient at 10 years of age.
CS has a broad clinical phenotype spectrum including
ID, microcephaly, hypotonia, dysmorphic facial features,
truncal obesity, slender extremities, joint hypermo-
bility, myopia, retinal dystrophy, intermittent isolated
neutropenia, and happy personality. Neutropenia is
characterized as a neutrophil count of <1.5 x 10°/L
in children and <1.8 x 10°/L in adults [16]. The facial
gestalt includes down-slanting palpebral fissures, wave-
shaped eyelids, thick eyebrows and eyelashes, low hairline,
prominent and beak-shaped nose, malar hypoplasia, short
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philtrum, high-arched palate, maxillary prognathia and
prominent central incisors [17-19]. Patients with CS
grimace when they are asked to smile [12, 20]. Other signs
and symptoms include short stature and scoliosis [12, 20].
In addition, individuals with CS have high rates of ASD or
autistic features [21]. The estimated prevalence of CS is
1:105,000 [22], however, its frequency may be considerably
higher due to the fact that patients are often not diag-
nosed until they reach their teenage or adult years. The
early diagnosis of CS is challenging because facial features
are less noticeable in pre-school age, truncal obesity
may evolve in late-childhood, neutropenia is rarely
identified due to its intermittent pattern and absence
of clinical consequences, and diagnosis of retinal dys-
trophy usually occurs in later childhood [16, 17, 20].

Reverse phenotyping of our patient at 10 years of age
unequivocally confirmed a pattern of features consist-
ent with CS (Table 1). Table 1 shows the presence or
absence of clinical features observed in our proband
relative to patients with CS [17, 18, 20-24], or
dupl6pll.2 [4, 8, 25-27].

Being underweight is a known feature of dup 16p11.2.
Although the proband was underweight at birth, his
weight changed with age to the 5-10™ %ile at the age of
10. He also developed truncal obesity with slender
extremities, mild scoliosis, and evolving facial gestalt
consistent with CS. Similar to the report by El Chehadeh-
Djebbar et al. [17], our study suggests that some CS
features are age-dependent and evolve later in childhood
(Table 2).

Conclusion

Inherited dup16p11.2 by itself cannot explain the variable
expressivity among NDD patients when their carrier
parents are unaffected. We utilized WES in a family
with a child presenting with NDD carrying dupl6p11.2
inherited from his unaffected mother, and searched for
sequence changes that could explain this clinical varia-
bility. We discovered that compound heterozygous vari-
ants of VPSI3B contribute to the proband’s phenotypic

Table 2 Evolving clinical features of proband

Evolving features 4y/o 10y/0
Weight <3 %ile 5-10™ %ile
Oval face No Yes
Truncal obesity No Yes
Down-slanting, wavy palpebral fissures No Yes

Short and smooth philtrum No Yes

Long slender distal extremities/fingers No Yes

Spine abnormality No Yes
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features. The new CS diagnosis helps in screening and
earlier management of scoliosis, periodontal disease and
tooth loss, early cataract, vision loss, and premature aging
[24] in the proband; and provides more informed genetic
counselling for the family.

Our study suggests that NDD patients with dup16p11.2
may show additional pathogenic SNVs in their genome,
which significantly influence phenotype heterogeneity
and the genetic counselling of families with putatively
pathogenic CNVs showing variable expressivity and
incomplete penetrance. Genomic microarray is a valuable
first-tier test for the postnatal evaluation of individuals
with NDD including ID, ASD, and/or multiple congenital
anomalies. However, coupling of microarray with WES or
whole genome data analyses will facilitate a more compre-
hensive and accurate analysis of genetic causes of NDD,
heighten understanding of the etiology of variable
expressivity among NDD patients, and optimize clinically-
informed and effective genetic counselling and persona-
lized management options.

Additional file

Additional file 1: Figure S1: Filtering strategies used for analysis of WES
data; Additional material and methods. (DOCX 83 kb)
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