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Abstract

Background: Macular corneal dystrophy (MCD) is a rare autosomal recessive disorder that is characterized by
progressive corneal opacity that starts in early childhood and ultimately progresses to blindness in early adulthood.
The aim of this study was to identify the cause of MCD in a black South African family with two affected sisters.

Methods: A multigenerational South African Sotho-speaking family with type | MCD was studied using whole
exome sequencing. Variant filtering to identify the MCD-causal mutation included the disease inheritance pattern,
variant minor allele frequency and potential functional impact.

Results: Ophthalmologic evaluation of the cases revealed a typical MCD phenotype and none of the other family
members were affected. An average of 127 713 variants per individual was identified following exome sequencing
and approximately 1.2 % were not present in any of the investigated public databases. Variant filtering identified a
homozygous E71Q mutation in CHST6, a known MCD-causing gene encoding corneal N-acetyl glucosamine-6-O-
sulfotransferase. This E71Q mutation results in a non-conservative amino acid change in a highly conserved
functional domain of the human CHST6 that is essential for enzyme activity.

Conclusion: We identified a novel E71Q mutation in CHST6 as the MCD-causal mutation in a black South African

family with type | MCD. This is the first description of MCD in a black Sub-Saharan African family and therefore
contributes valuable insights into the genetic aetiology of this disease, while improving genetic counselling for

this and potentially other MCD families.
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Background

Macular corneal dystrophy (MCD) (OMIM #217800) is
a rare autosomal recessive disorder that is characterized
clinically by irregularly shaped superficial opacities that
progressively extend through the corneal stroma [1, 2].
Onset typically occurs in the first decade of life and pro-
gresses to severe bilateral visual impairment in adult-
hood, which ultimately necessitates keratoplasty [3].
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MCD has been identified in a number of populations
across the world [4—11], but it has not yet been reported
in Sub-Saharan Africa.

Mutations in the carbohydrate sulfotransferase 6 gene
(CHST6) were identified as the cause for MCD in 2000
[12]. CHST6 encodes corneal N-acetyl glucosamine-6-O-
sulfotransferase (C-GIcNAc6ST), an enzyme which ca-
talyses the sulfation of GIcNAc residues in the main
glycosaminoglycan in the cornea, keratan sulfate, to gen-
erate sulfated keratan sulfate (KS). The defective sulfa-
tion of keratan sulfate that is caused by a deficiency in
this enzyme leads to malformations in fibril organization
in the cornea, which results in progressive corneal opaci-
fication in MCD patients [13—-15].
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MCD can be divided into two immunophenotypes
based on the reactivity of the patient’s serum and
corneal tissue to an antibody against KS. Antigenic KS
reactivity is very low (or undetectable) in the serum and
absent in corneal tissue in MCD type I patients, whereas
normal to sub-normal KS levels are detectable in the
serum and corneal stroma of type II MCD patients
[16]. In situ hybridization analysis did not detect
CHST6 transcripts in corneal epithelium of an MCD
type II patient, suggesting that the mutations found in
type II lead to a loss of cornea-specific expression of
CHST6 [12]. These two subtypes are, however, clinic-
ally indistinguishable.

Patients with type I MCD usually harbour missense
mutations and indels in the coding region of CHSTS,
which leads to the functional inactivation of the enzyme
[12, 17], whereas deletions and/or rearrangements in
the region between CHST6 and the neighbouring
CHSTS5 have been reported in patients with MCD type
II [1, 12]. This region likely harbours a gene regulatory
element that affects the cell-specific transcription of
CHST6 [12].

However, some studies failed to find potentially causa-
tive mutations in the coding region, upstream regulatory
region or splice site mutations of CHST6 in MCD pa-
tients [1, 5, 6, 9, 18, 19]. Current theories to explain this
include pathogenic mutations in an unknown regulatory
promoter immediately upstream of CHST6 or cis-acting
distant regulatory elements [1, 20], while genetic hetero-
geneity has not yet been excluded [1].

In the present study, which is the first description of
MCD in a sub-Saharan African family, we used whole
exome sequencing to identify the MCD-causal mutation
in a consanguineous black South African family.
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Methods

MCD Family

Two sisters presented with a complaint of decreased vi-
sion in 2007 to the Eye Clinic of the Charlotte Maxeke
Johannesburg Academic Hospital in Johannesburg, South
Africa. They were diagnosed with MCD based upon the
distinctive clinical features, which were later confirmed by
histopathologic examination following penetrating kerato-
plasty. We invited the entire family for an ophthalmic
examination and seven additional family members con-
sented to participate in this study. The pedigree was con-
sistent with an autosomal recessive inheritance pattern
and showed evidence of consanguinity (Fig. 1).

The study was approved by the Human Research
Ethics Committee (Medical) of the University of the
Witwatersrand, South Africa (protocol number M131
125), and followed the tenets of the Declaration of
Helsinki. Written informed consent was obtained from
all participating family members for participation in this
study and the use of their DNA and clinical data for re-
search purposes after a genetic counsellor explained the
nature and possible consequences of the study to them.

Complete ophthalmic examination of each participating
family member was performed. Phenotyping included a
slit-lamp examination, anterior segment photography and
OCULUS Pentacam® examination.

Whole exome sequencing, assembly and variant calling

Targeted exome capture was performed by preparing se-
quencing libraries from genomic DNA using the NuGEN
Ovation Ultralow DR Multiplex protocol followed by a
SureSelectXT Human All Exon V5 + UTRs (70 MB) target
enrichment (Agilent, Basel, Switzerland). Captured librar-
ies were sequenced on the Illumina HiSeq 2500 with 76-
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Fig. 1 Schematic representation of the MCD pedigree. The 9 sequenced individuals are indicated with a + and their genotype for the E71Q
mutation is indicated below the Individual ID. Individuals IV.3 and IV.4 (shaded black) show clinical manifestations of macular corneal dystrophy
(MCD), while their consanguineous parents, siblings IV.1 and V.6 and children did not
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bp paired-end reads. Reads were mapped to the human
hgl9 genome assembly using the Burrows-Wheeler
Aligner (BWA) [21] and GATK base quality score recali-
bration, indel realignment, and duplicate removal was
applied according to GATK Best Practises guidelines [22].
Variants were called with the GATK Unified Genotyper
[23] and annotated with the Ensembl Variant Effect
Predictor [24]. Variants with a VQSLOD score below
2 and/or a base coverage below 5x were considered
low quality calls and consequently not included in
the analysis.

Variant filtering to identify putative MCD-causal variant(s)
Using a tiered filtering strategy, we first explored variants
that followed a simple autosomal recessive inheritance
pattern (both affected sisters should be homozygous for
the variant allele, carrier mother should be heterozygous
and unaffected siblings and children can be either homo-
zygous for the reference allele or heterozygous) (Fig. 2).
We only considered novel variants and variants with a
minor allele frequency (MAF) of less than 1 % in the 1000
Genomes Project (1kGP) [25] and NHLBI GO Exome
Sequencing Project (ESP6500) databases, because devel-
opmental eye disorders, and MCD in particular, are con-
sidered very rare [26, 27].
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Non-coding or synonymous variants were excluded
and the variants that remained following the filtering
process were evaluated for possible functional impact
using SIFT [28], PolyPhen-2 [29] and MutationTaster2
[30]. A database search of the genes containing potential
MCD causal mutations was done using PubMed, Online
Mendelian Inheritance in Man (OMIM) and the Human
Gene Mutation Database (HGMD) Professional 2014.2
[31]. This filtering strategy was then repeated with com-
pound heterozygous mutations that followed an auto-
somal recessive inheritance pattern in the family.

Validation and segregation analysis

Sanger sequencing was performed in each of the participat-
ing family members to confirm the segregation of the
putative MCD-causal variant in the family. A fragment
spanning the location of the CHST6 E71Q mutation was
obtained by PCR amplification using sense 5'-AGGTCCA-
GATCCGTGGGTG-3" and antisense 5'-CTTTCTGGTTT
CCCGGCCA-3" primers. These primers were then used to
sequence the amplicons with the BigDye® Terminator v3.1
Cycle Sequencing chemistry (Thermo Fisher Scientific;
Reinach, Switzerland). The purified fragment population
was then loaded on a 3730XL Genetic Analyzer for the final
capillary electrophoresis step.

-

1.8 v.3 Iv.4 v.1
SNP 115 420 113 356 113 841 112 490
Indel 13 842 13617 13784 13658

IV.6 V.10 V.8 V.9 v.i1
113723 114 261 114 345 113539 115352
13696 13476 13802 13 560 13 662

Affected sisters (IV3 and IV.4) share 106 552 variants

Inheritance Filter out variants that do not follow autosomal
recessive inheritance pattern
1 855 variants
Frequency Filter out variants with MAF > 1% in 1kGP and

ESP6500

81 variants

) ) Filter out variants with low likelihood of functionality
Functionality (SIFT, PolyPhen2 and MutationTaster2)
7 variants
Disease knowledge l MCD-associated genes
CHST6 E71Q mutation

Fig. 2 Bioinformatic analysis pipeline
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Microscopy

Cross-sections of the corneal buttons excised during
penetrating keratoplasty were stained with haematoxylin
and eosin (HE). In addition, the following histochemical
stains were performed: Alcian blue, Hale’s colloidal iron,
Masson’s trichrome, Periodic acid-Schiff (PAS) and
Congo red.

Results

Clinical evaluation

A South African Sotho-speaking family was identified with
two MCD-affected sisters of consanguineous parents at
the Eye Clinic of the Charlotte Maxeke Johannesburg
Academic Hospital. Both affected sisters (IV.3 and IV.4;
Fig. 1) presented to the clinic in September 2007 with the
complaint of decreased vision. We recruited seven add-
itional family members as shown in the multigenerational
pedigree (Fig. 1).

Patient IV.3 was born in 1977. At the first examination
her best-corrected visual acuity in both eyes was count-
ing fingers (<20/200). Both corneas showed ill-defined
opacities scattered throughout the stroma. Some were
deep and peripheral and typical of macular dystrophy.
The corneal stroma between the opacities also showed
opacification. Pentacam and contact pachymetry were
performed which revealed thin corneas. Corneal astig-
matism was present measuring 4.2 dioptres in the right
eye and 3.7 dioptres on the left. Intraocular pressures
were normal and the eyes otherwise unremarkable, how-
ever the fundus view was poor.

Patient IV.4 was born in 1981. The first eye examin-
ation was similar to that of her sister, with a best-
corrected visual acuity of counting fingers in either eye.
Pentacam and contact pachymetry also revealed thin
corneas. Corneal astigmatism was 2.4 dioptres on the
right and 3.7 dioptres on the left. The intraocular pres-
sures were normal, posterior polar cataracts were
present bilaterally and view of the fundi was limited by
the cloudy corneas.

Both patients subsequently had uneventful penetrating
keratoplasties in their right eyes. The excised corneal
tissue was preserved for microscopy and immunohis-
tochemistry. At 3 months post-penetrating kerato-
plasty patient IV.3 had a clear graft with a best
corrected visual acuity of 20/60 in the right eye. We
are unsure about age of onset so amblyopia may be a
factor in the end result. The lens was clear and fundus
examination as well as posterior pole optical coher-
ence tomography (OCT) was normal. Patient IV.4 had
a clear graft with a best corrected visual acuity of 20/
25 at 2 months post-penetrating keratoplasty in the
right eye. Fundus examination and OCT of the poster-
ior pole were unremarkable.
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The following unaffected family members all under-
went a comprehensive ophthalmological examination
and were found to have no ocular pathology:

111.7, I11.9, IV.1, IV.6, V.8, V.9, V.10, V.11.

Microscopy

Microscopic examination showed tissue compatible with
derivation from the cornea (Fig. 3). Granular basophilic
deposits were noted among the lamellae of the substan-
tia propria, within the corneal endothelium, Descemet’s
membrane and in Bowman’s membrane. The granular
eosinophilic deposits were highlighted by Alcian blue,
Hale’s colloidal iron and PAS stains. The granules were
not seen on the Masson trichrome stain. The Congo red
stain was negative. No birefringent material was seen on
polarising microscopy.

Whole exome sequencing and variant filtering

We performed whole exome sequencing on 9 family
members to an average depth of 43x. On average, 98
and 95 % of bases were covered to 5x and 10x within
the targeted regions, respectively. We identified an aver-
age of 127 713 small variants (<50 bp) per individual
after filtering out the low quality base calls and variants
with a coverage below 5x in the whole family. Approxi-
mately 1.2 % of these variants were not present in any of
the investigated public databases (Table 1).

The two affected sisters shared 106 552 variants that
varied from the human reference genome in either a het-
erozygous or homozygous state (Fig. 2). This number
was reduced to 1 855 variants when we filtered based on
a simple autosomal recessive mode of inheritance by
only keeping the variants where the affected sisters are
homozygous for the variant allele, carrier mother is
heterozygous and the unaffected siblings and children
are either homozygous for the reference allele or hetero-
zygous. We then retained the 81 variants with a MAF
below 1 % in the 1kGP and ESP6500 data sets. Table 2
shows the 7 variants that remained after we filtered out
variants with a low likelihood of adverse functionality
based on the type of mutation as assessed using SIFT,
PolyPhen-2 and MutationTaster2.

Following the same approach we identified compound
heterozygous variants in 9 genes, which followed the
autosomal recessive inheritance pattern and where both
mutations survived our frequency and functionality fil-
ters (Additional file 1: Table S1).

Putative MCD-causal mutation

The most probable MCD-causal mutation identified is a
E71Q (c.211G > C) mutation in the CHST6 gene, which is a
known MCD-causal gene. Sanger sequencing confirmed
that this mutation segregated with the disease in the family
(Fig. 4) and it was absent from the 1kGP, ESP6500, dbSNP,
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basophilic deposits within the substantia propria

Fig. 3 Clinical phenotypes. a. Pre-operative photograph of the right eye of IV.3 demonstrating ill-defined corneal stromal opacities. b. Cornea of IV.3.
Hale's colloidal iron 20x. The presence of the granular deposits (arrows) are highlighted by a Hale's colloidal iron stain. ¢. Cornea of IV.3. Hale's colloidal
iron 100x. Higher magnification demonstrates the presence of the granular deposits (arrows) among the lamellae of the substantia propria and within
the corneal endothelium. d. Control cornea: Hale's colloidal iron 40x. Control cornea stained with Hale's colloidal iron fails to identify the presence of

ClinVar, HGMD and African Genome Variation Project
(AGVP) [32] data sets.

This E71Q mutation results in a non-conservative
amino acid change as it replaces a negatively charged
amino acid (glutamic acid) with an amino acid with

polar uncharged side chains (glutamine). All mutations
in CHST6 that alter a codon are presumed to be of
pathogenic significance due to the fact that this gene
contains large blocks of sequences that are predicted to
form a tertiary structural domain that is conserved

Table 1 Summary of small variants (<50 bp) identified in the present study

Family member Al variants (% novel)  Missense (% deleterious)  Splice site (% essential)  Frameshift 5'UTR  3'UTR  Stop gained  Stop lost

1.8 129 262 (1.23) 11 250 (27.44)
V.3 126 973 (1.27) 11023 (27.59)
V4 127 625 (1.27) 11135 (27.05)
V1 126 148 (1.17) 11 006 (27.40)
V.6 127 419 (1.29) 11022 (27.05)
V.10 127 737 (1.13) 11 043 (27.45)
V.8 128 147 (1.16) 11 056 (27.30)
V.9 127 099 (1.15) 11001 (27.52)
Va1 129 014 (1.38) 11 382 (27.56)

3260 (5.58) 202 5791 32408 119 58
3194 (6.20) 214 5823 3199 120 55
3149 (5.84) 210 5733 31831 114 55
3119 (567) 206 5684 31545 125 60
3219 (5.87) 218 5767 31843 122 58
3158 (5.67) 203 5797 32413 121 52
3196 (5.79) 218 5749 32288 112 56
3192 (6.17) 218 5752 32165 118 55
3 220 (6.06) 204 5814 32512 126 56
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Table 2 Results form variant filtering aimed at identifying homozygous variants that segregated with MCD in the family with an
autosomal recessive inheritance pattern. Only CHST6 was previously associated with MCD

Gene Chromosome Nucleotide dbSNPP Mutation SIFT® PolyPhen-2° MutationTaster2
position® change type
CSMD1 83351246 G/C rs368653091 Splice site - - Disease causing
(1.00)

RPILT 8:10469917 G/C rs77585543  Missense Deleterious Probably damaging Polymorphism (0.99)
(0.00) (0.99)

GATA4 8:11606430 A/G Missense Tolerated (0.20)  Benign (0.03) Polymorphism (0.67)

CHST6 16:75513516 /G Missense Deleterious Probably damaging Disease causing
(0.00) (1.00) (1.00)

USP10 16:84779043 G/A rs115881577 Missense Tolerated (0.38)  Benign (0.01) Polymorphism (0.99)

CRISPLD2 16:84900601 A/G rs114234975 Missense Tolerated (0.37)  Benign (0.00) Polymorphism (0.99)

ANKRD24  19:4216761 [@2) rs377188730 Missense Tolerated (0.06)  Benign (0.05) Polymorphism (0.99)

#Chromosomal position given in build 37 format; bRetrieved from bSNP141; “Predictions and scores indicated in brackets retrieved using the Ensembl Variant Effect Predictor

among sulfotransferase enzymes [1, 5, 18, 33]. The E71
amino acid is conserved in all but two of the human
carbohydrate sulfotransferases [5] and falls within the
human CHST6 functional domain (Sulfotransfer 3;
ID:PF13469) [34].

Variants of uncertain significance

We identified potentially damaging homozygous muta-
tions of unknown clinical relevance in RPILI and CSMDI1I,
which also segregated with MCD in the family (Table 2).
None of the identified compound heterozygous mutations

m: | Iv.3 |

T A AT G C A G

Iv.4 l Iv.1

T AA T G C A G

Fig. 4 Results form CHST6 Sanger Sequencing. Electropherograms from Sanger sequencing indicating homozygous E71Q genotype in the two affected
sisters (V.3 and IV4), heterozygous genotype in the carrier mother (lll.8) and homozygous reference genotype in the unaffected brother (IV.1). The red
arrow indicates the position of the E71Q mutation and the sequences are given for the reverse strand

l
T A AT G G A G
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are believed to be of any pathogenic relevance based on
gene function, their MAF in the general population and
bioinformatic predictors of functional impact (Additional
file 1: Table S1).

RPILI is associated with a spectrum of inherited
retinal diseases including retinitis pigmentosa and occult
macular dystrophy [35, 36]. The S564C mutation identi-
fied here is recorded in dbSNP131 (rs77585543) and is
predicted to be damaging according to SIFT and
PolyPhen-2, but not MutationTaster2. It has a MAF of
4 % in the African sample subset of the 1kGP and two
of these individuals are homozygous for this mutation.

We confirmed that RPILI is expressed in retinal cells
from healthy donors and found that RPILI expression
levels are very low in the cornea, although higher levels
of RP1LI are detected in the cornea than in negative
control samples (human dermal fibroblasts) (Additional
file 1: Figure S1). Taken together, these data suggest that
the RP1L1 mutation is unlikely to be the MCD-causal
mutation in this family. It is perhaps plausible that this
mutation might somehow impact on the retinal pheno-
type of these patients, but we did not observe any un-
usual retinal features.

A g.1501249C > G splice site mutation (rs368653091)
in CSMD1 that segregates with MCD in the family is
predicted to be disease causing according to Mutation-
Taster2 as it changes the sequence motif adjacent to the
acceptor sequence at position 1501247 (Table 2).
CSMD1 encodes the CUB and Sushi multiple domains 1
protein, which is associated with phenotypic variance in
neuropsychological disorders [37-39], but it has no
documented effect on ocular phenotypes. It is therefore
unlikely that this splice site mutation will drive the
MCD phenotype in the affected sisters.

Discussion

We report on a consanguineous black South African
family with type I MCD, which is caused by a novel
E71Q mutation in CHST6. It is the first report of MCD
in a Sub-Saharan African family, although it is not the
first report of MCD in an individual with African ances-
try as Patel et al. previously identified a novel mutation
in CHST6, which is associated with MCD type II in an
African American [40].

The CHST6 gene encodes the C-GIcNAc6ST enzyme,
which is responsible for generating KS in the cornea.
Improper functioning of this enzyme leads to malforma-
tions in fibril organization in the cornea, which mani-
fests as the characteristic superficial opacities seen in
MCD patients [13-15]. However, some studies failed to
identify mutations in the CHST6/CHSTS5 region in MCD
patients [1, 5, 6, 9, 18, 19]. We used a whole exome
sequencing approach to investigate the cause of MCD in
this South African family, because we did not have
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sufficient African data to inform on whether a candidate
gene approach would be successful in this case.

We identified a homozygous E71Q mutation in the two
affected sisters that falls within the CHST6 functional do-
main, which segregated with MCD in the family. El-Ashry
et al. previously identified a G905T transversion that
results in another amino acid change at the same position
(E71D) in a British family with MCD. However, this muta-
tion was not considered deleterious as it leads to a conser-
vative amino acid change and was inherited in tandem
with a P72S non-conservative amino acid substitution and
the authors concluded that P72S, rather than the E71D
mutation, was the causal mutation in this family [41].

The E71Q mutation identified here results in a change
from a negatively charged glutamic acid to the polar un-
charged glutamine at a residue that is highly conserved
among human sulfotransferases [1, 5]. It is, furthermore,
not present in the 1kGP, ESP6500, dbSNP, ClinVar or
HGMD databases and three programs for analysing
protein functions, Polyphen2, SIFT and MutationTa-
ster2, predicted that the E71Q mutation is probably
damaging, deleterious and disease causing, respectively.
Taken together, this suggests a very high likelihood that
this mutation would have a deleterious effect on the C-
GIcNACc6ST enzyme.

We identified two additional variants of unknown clin-
ical relevance that segregated with MCD in our family: a
g.1501249C > G splice site mutation in CSMDI and a
S564C missense muation in RPI1L1. The CSMDI muta-
tion is predicted to be disease causing by MutationTa-
ster2. Aberrant splicing in CSMD1 has been associated
with cancer susceptibility [42], while some studies
report association between CSMDI mutations and
phenotypic variance in neuropsychological disorders
[37-39], but it has no documented effect on any ocu-
lar phenotype. In silico predictions of functionality of
splicing variants are, furthermore, more vulnerable to
false positive predictions than similar predictors for
missense variants [43]. The CSMDI splice variant
identified here is therefore not the most likely driver
of the MCD phenotype in this family.

It is possible to speculate that the RPILI S564C muta-
tion might somehow have an effect on the clinical
phenotype in these MCD patients due to RP1LI’s associ-
ation with two retinal disorders, occult macular dys-
trophy and retinitis pigmentosa. However, we found that
this gene is not expressed in the human cornea, making
it unlikely to have an impact on the corneal phenotype
of this family. We did confirm that this gene is expressed
in the human retina, but fundus examination of both
individuals post penetrating keratoplasty was normal
and the post-operative visual acuities were appropriate
for the degree of astigmatism and did not suggest retinal
disease. The S564C mutation is also observed twice in a
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homozygous state in the 1kGP data. Taken together, this
suggests that the S564C mutation is unlikely to cause a
severe ocular phenotype in this family.

A large number of in silico functional predictors are
available at present, all of which aim to address the diffi-
cult task of prioritizing variants in disease gene identifi-
cation studies based on different types of data, often
yielding different results [44]. However, all of these pre-
dictors report an error rate and the studies that aim to
evaluate these predictors are slightly flawed due to the
overlap in the training and test data sets, which may
yield overly optimistic results [45]. It is therefore im-
portant to note that in silico functional predictors serve
as a context within which to interpret sequencing re-
sults and that multiple lines of evidence are needed to
infer pathogenicity.

African populations contributed the largest number of
variants and with the highest fraction of novel variants
in the 1kGP [25]. This reflects the great genetic diversity
in populations with African ancestry, which has been
demonstrated in a number of additional studies [46, 47].
We identified an average of 1569 novel variants per indi-
vidual. An average of 11 100 of the identified variants
were non-synonymous coding (missense) mutations and
almost a third of these variants are novel, which is
higher than the average recorded in the 1kGP [25].

It is often difficult to get an early, accurate diagnosis
for patients with rare diseases, particularly in an over-
burdened public health care system. The identification
of the MCD causal mutation is of great significance to
this family as it provides valuable information on the
risks to other family members and improves accurate
genetic counselling. Fortunately all members of this fam-
ily that were tested could be reassured that they did not
have the same disorder as the two affected sisters. This
was especially relevant to the younger family members.
Tools for early diagnosis equip the family with the
knowledge to seek timely, effective care for other family
members with vision problems. Furthermore, our study
contributes research into the genetic underpinnings of
ocular disease phenotypes in African populations. Stud-
ies on African populations have a high probability of
identifying novel disease genes due to their high degree
of genetic diversity. Such studies additionally serve as a
guide to determine where data generated on Caucasian
populations might be transferable to Africans.

Conclusions

We have identified a novel E71Q mutation in CHST6
as the cause of MCD in this black South African
family. This is the first clinical description of MCD in
a Sub-Saharan African family as well as the first inves-
tigation into the genetic aetiology of MCD in a Sub-
Saharan African population. This study therefore
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contributes towards genetic counselling for MCD pa-
tients of African descent.

Additional file

Additional file 1: Table S1. Results from variant filtering for compound
heterozygous that segregated with MCD in the family with an autosomal
recessive inheritance pattern. Figure S1. Results form gRT-PCR investigating
RPILT expression levels in the cornea. (DOCX 121 kb)
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