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Abstract

Background: Microsomal triglyceride transfer protein (MTP) works to lipidate and assemble the apoB-containing
lipoproteins in liver. It closely links up the hepatic secretion of lipid to regulate serum lipid and atherosclerosis.
Cases of MTTP gene mutation is characterized by abetalipoproteinemia and remarkable hepatic steatosis or
cirrhosis. Several MTTP polymorphisms have been reported relating to metabolic syndrome, hyperlipidemia and
steatohepatitis. We supposed the regulation of serum lipids and risk of non-alcoholic fatty liver disease (NAFLD)
formation may be modified by individual susceptibility related to the MTTP polymorphisms.

Methods and results: A cross-sectional population of 1193 subjects, 1087 males and 106 females mean aged
459+ 89 years, were enrolled without recognized secondary hyperlipidemia. Fasting serum lipid, insulin, and
non-esterified fatty acid were assessed and transformed to insulin resistance index, HOMA-IR and Adipo-IR.
After ruling out alcohol abuser, non-alcoholic fatty liver disease (NAFLD) was diagnosed by abdominal
ultrasound. Five common MTTP polymorphisms (promoter -493G/T, E98D, 1128T, N166S, and Q297H) were
conducted by TagMan assay. Multivariate regression analysis was used to estimate their impact on serum lipid
and NAFLD risk. Assessment revealed a differential impact on LDL-C and non-HDL-C, which were sequentially
determined by the Q297H polymorphism, insulin resistance, body mass index and age. Carriers of
homozygous minor allele (297H) had significantly lower LDL-C and non-HDL-C but higher risk for NAFLD.
Molecular modeling of the 297H variant demonstrated higher free energy, potentially referring to an unstable
structure and functional sequence.

Conclusion: These results evidenced the MTTP polymorphisms could modulate the lipid homeostasis to
determine the serum lipids and risk of NAFLD. The MTTP 297H polymorphism interacted with age, insulin
resistance and BMI to decrease serum apoB containing lipoproteins (LDL-C and non-HDL-C) but increase the
risk of NAFLD formation.
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Background

Microsomal triglyceride transfer protein (MTP) resides in
the microsomes of hepatocytes and enterocytes as a chap-
eron to preferentially transfer neutral lipids (triglycerides
and cholesterol ester). It is responsible for the assembly
and secretion of triglyceride rich apoB-containing lipopro-
teins such as chylomicron, very low density lipoproteins
(VLDL-C), and low density lipoproteins (LDL-C) [1, 2].
Abetalipoproteinemia (ABL) is a rare disease, character-
ized by absence or very low apoB-containing lipoproteins
in plasma and remarkable hepatic steatosis or cirrhosis,
which is attributable to decreased lipid secretion from the
liver and caused by MTTP gene mutation [3, 4].

Non-alcoholic fatty liver disease (NAFLD) is strongly
concomitant with obesity, type 2 diabetes mellitus and
hypertriglyceridemia, and also regarded as a hepatic mani-
festation of metabolic syndrome [5]. An imbalance of fatty
acid homeostasis may contribute to the development of
NAFLD, including excess dietary fat intake, increased fatty
acid influx, de novo lipogenesis, decreased [-oxidation of
fatty acid or reduced export of triglyceride-rich lipopro-
teins. The functional variability of MTP is linked to the
development of NAFLD, raised lipid and risk of athero-
sclerotic cardiovascular disease (CAD) [6, 7]. However, no
large scale studies have been performed to provide solid
evidence for the association among MTTP genetic poly-
morphisms, serum lipid level and NAFLD formation.
Early recognition of genetic MTTP polymorphisms that
confer a higher risk of developing NAFLD would improve
the clinical management of this growing fast disease.

The MTP protein is a heterodimer composed of M-
subunit (sized ~97 kDa) and P subunit (protein disulfide
isomerase, PD], sized ~55 kDa) in a 1:1 stoichiometry by
non-covalent interactions. The MTP protein exhibits
three major structural domains responsible for different
functions. The N-terminal B-barrel (BY, residues 22-297)
of human MTP binds with apoB, the central a-helical do-
main (residues 298-603) interacts with PDI and apoB, and
the two C-terminal B-sheet domains (B and p*, residues
604-894) mediate lipid-binding and transfer activity [2, 8].

Almost all of the reported MTTP mutations residue in
the a-helical and C-terminal functional domains, which
mainly mediate the interaction of PDI and apoB to regu-
late the lipid-binding or lipid-transfer activity, respect-
ively. Most of these mutations are deletions, premature
stop codons and splice mutation and always cause vir-
tual absence of apoB with health-threatening or even
life-threatening sequelae, such as failure to thrive, fat mal-
absorption, neuropathy or myopathy in later life [9, 10].
However in literature review, MTTP polymorphisms on
the promoter region and N-terminal of -barrel (22-297)
may modulate the MTP activity but not causing ABL
[11-13]. The MTTP gene (4q24) is polymorphic with nu-
merous variants and remains in linkage disequilibrium.
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Previous reports have demonstrated subjects with MTTP
promoter -493G/T or I1128T polymorphisms are suscep-
tible to develop metabolic syndrome, hyperlipidemia,
more oxidative stress, ischemic heart disease, -cell dys-
function and non-alcoholic steatohepatitis [11-15]. But,
some studies have controversial and inconsistent results.

The human MTTP gene is suppressed by insulin but en-
hanced by a high fat or cholesterol-enriched diet [2, 3, 16].
We assumed genetic effect of the MTTP polymorphisms
may interact with the metabolic regulators, such as age,
sex, body mass index (BMI), and insulin resistance, to
regulate the lipid homeostasis and hepatic steatosis. This
study, focusing on common polymorphisms over pro-
moter (-493G/T) and N-terminal B-barrel (residues 22-
297) of MTTP, was tried to estimate and compare the
genetic impact on serum lipids and NAFLD, adjusted by
the above metabolic regulators. The results could eventu-
ally be applied in clinic for identifying high-risk candidates
for hyperlipidemia and NAFLD.

Methods

Selection criteria

This cross-sectional study was designed and conducted
in adherence to the STROBE guidelines. The purposes,
rationale, methodology, and risks to the participants in-
cluding psychosocial stress were reviewed, supervised
and approved by the Institutional Review Board of
Kaohsiung Medical University Hospital (KMUH-IRB-
980323). The subjects, who were recruited from health
check-ups at the Department of Preventive Medicine at
KMUH, had their serum stored in the tissue bank after
informed consent obtained. Serum of all enrolled partici-
pants was provided from the tissue bank after de-
identification of their names and personal characteristics.
Participants with recognized secondary dyslipidemia,
including known diabetes, nephrotic syndrome, Cush-
ing’s syndrome, hypothyroidism, chronic liver disease,
alcoholism or current users of lipid-lowering agents
were evaluated in a detailed medical history review by
an experienced physician and excluded from this
study. Ultimately a cross-sectional population of 1193
subjects (1087 male and 106 female, mean age 459 +
8.9 years) was enrolled randomly within half a year. The
age distribution of the study population ranged from 16 to
88 years, with 95 % aged between 25 and 65 years.

Biochemistry measurements and evaluation of fatty liver

Fasting blood samples were assessed by multichannel
auto-analyzer for serum glucose, aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), total chol-
esterol, triglyceride, HDL-cholesterol (HDL-C), and
LDL-cholesterol (LDL-C). Fasting serum insulin and
non-esterified fatty acid (NEFA) were measured by com-
mercial RIA and ELISA kits as in our previous
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experiments. The objective and quantitative insulin re-
sistance indexes were obtained and expressed as
HOMA-IR (= insulin (pU/mL) x glucose (mmol/L)/22.5)
and Adipo-IR index (= fasting insulin (pU/mL) x NEFA
(umol/L)).

Evaluation for fatty liver disease was performed by ab-
dominal B-mode ultrasound (3.5 MHz convex trans-
ducer, Toshiba SSA-250, Tokyo, Japan). Diagnosis and
grading of the fatty liver was carried out by well-trained
hepatologists using the standard ultrasonography criteria
in our hospital to achieve inter-individual consistency.

Search strategy

Blood samples were collected after overnight fasting for
DNA extraction and routine biochemistry. TagMan tech-
nology was used to detect the sequence variants of five
common microsomal triglyceride transfer protein (MTTP)
polymorphisms  (rs1800591 for promoter -493G/T;
rs2306986 for Glu98Asp (E98D), rs3816873 for 1le128Thr
(1128T), rs3792683 for Asnl66Ser (N166S), rs2306985 for
GIn297His (Q297H)). To achieve significance from our
limited sample size, non-synonymous polymorphisms with
minor allele frequency more than 10 % in the Han popula-
tion were chosen according to the SNP reference in NCBI
GenBank website. The sequence variants were further ana-
lyzed by the ABI PRISM 7500% (Applied Biosystems,
Roche, Taipei, Taiwan) detection system.

Molecular modeling assay

The I-TASSER server was used for high-resolution mod-
eling of structural and functional predictions for the
MTP protein by submitting the amino acid sequences
(NCBI accession number AAI 25112.1) to obtain the ini-
tial 3D model [17]. The solvated protein structure
inserted in a Tip3p water box was applied for the mo-
lecular dynamics (MD) simulations and performed in
the canonical ensemble with a simulation temperature
of 310 K by Verlet integrator with an integration time
step of 0.002 ps and SHAKE constraints of all covalent
bonds involving hydrogen atoms. In the electrostatic in-
teractions, atom-based truncation was performed using
the PME method, and the switch van der Waals function
was used with a 2.00 nm cutoff for atom-pair lists. The
structure was minimized for 100,000 conjugate gradient
steps, and then subjected to a 100 ns isothermal, con-
stant volume MD simulation by the Amber 14 (pmemd.
cuda) program. The final model was derived using the
SDM server to predict the effects of mutations (H297Q)
on protein stability and visualized with PyMOL [18].

Statistical analysis

All of the statistical analysis was conducted using the
SPSS 19.0 statistical package for Windows (SPSS Inc.,
Chicago, IL, USA). Allele frequencies were estimated by
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direct counting, while each genotypic distribution was
assessed for the Hardy-Weinberg equilibrium by chi-
square test. Haploview 4.2™ software (Broad Institute,
Cambridge, MA, USA) was used to reconstruct the
haplotype blocks. Continuous variables were expressed
as mean * standard deviation (SD). The normal distrib-
uted variables were compared between groups using an
independent ¢ test. The Nonparametric Man-Whitney
rank-sum test was used to analyze non-normally distrib-
uted variable of serum triglyceride. Multiple linear re-
gression analysis was employed using serum LDL-C,
non-HDL-C, and triglyceride as a dependent variable,
while multiple logistic regression analysis was employed
using the presence of NAFLD as a dependent variable to
recruit BMI, HOMA-IR, Adipo-IR and the genotypes of
MTTP polymorphisms as independent variables based
on significance in univariate analyses and regression
models. The hazard of dyslipidemia and of NAFLD by
the haplotype effects were further analyzed by the SAS
9.3 system (SAS Institute Inc., Cary, NC, USA). There
were 19 genotype combinations for these above poly-
morphisms. To avoid bias, we excluded 9 combinations
because of small subject numbers (<4) and missing data.
Principally, genotype of the GG: GT: TT was simplified
as number 1: 2: 3. All the genotype combination (haplo-
type) was according to the sequence of G-493T/E98D/
[128T/N166S/Q297H polymorphisms. Frequency of the
most popular genotypes combination, -493GG/E98/1128/
S166/Q297H simply indicated as 11132 (GG/GG/TT/GG/
GC), was 2243 % as reference control to compare
the relative risk of other combinations for metabolic
abnormalities.

Results
Minor allele frequencies of the five common non-
synonymous MTTP polymorphisms were: promoter -493
(G: T=284: 16 %), E98D (G: C=84.1: 15.9 %), [128T (T:
C=86.3: 159 %), N166S (A: G =84: 16 %) and Q297H
(G: C=59.7: 40.3 %). All of the genotype distributions
were tested in Hardy-Weinberg equilibrium (Table 1).
There is strong linkage disequilibrium with allelic associ-
ation in all pairwise combination (pairwise D’ greater than
0.97) among these five polymorphisms (Fig. 1). Cellular
MTP is an essential chaperone to transfer triglycerides
and cholesterol esters for the biosynthesis of apo-B-
containing lipoprotein particles. Therefore, the serum lipid
level determined by MTTP polymorphisms was classified
by cholesterol and triglyceride for further analysis. As
shown in Table 2, subjects with CC genotype (297H) had
significantly lower serum LDL-C than those with GG+GC
genotypes.

The fasting serum triglyceride, mainly carried in VLDL-
C, is a major component of metabolic syndrome and
highly contributes to insulin resistance. We compared
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Table 1 Distribution of MTTP genotypes
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NCBI references Gene polymorphisms Allele change Genotypes Distribution (numbers, %)

rs1800591 (promoter) G-493T G/T GG GT: TT 882: 273:29 (74.5 %: 23.1 %: 2.4 %)
rs2306986 E98D G/C GG: GC: CC 809: 318: 25 (70.2 %: 27.6 %: 2.2 %)
rs3816873 1128T T/C TT: TC. CC 878: 270: 26 (74.8 %: 23.0 %: 2.2 %)
153792683 N166S A/G AA: AG: GG 818:327: 24 (70.0 %: 28.0 %: 2.0 %)
rs2306985 Q297H G/C GG: GC.CC 414: 566: 193 (35.3 %: 48.3 %: 16.4 %)

Genotype distribution was in Hardy-Weinberg equilibrium tested by chi-square test

these metabolic abnormalities with MTTP polymorphisms
by univariate analysis (Table 3). Subjects with CC geno-
type (98D) and GG genotype (166S) apparently had sig-
nificantly lower BMI. Subjects with TT genotype of
promoter G-493T, CC genotype (98D), CC genotype

G-493T
E98D
1128T
N166S
Q297H

Block 1 (20 kb)
1 2

D!

Block 1 (20 kb)
1 2 3 a4 5

Fig. 1 Haplotype block map for five common MTTP polymorphisms.
Top plot: The linkage disequilibrium between two SNPs is standardized
as D'. The dark grey cells indicate strong linkage disequilibrium among
these SNPs. Bottom plot: The gray-scale spectrum (from left to right)
indicates pairwise r (%) values ranging from black (= 1) to

white (= 0)

(128T) and GG genotype (166S) had significantly lower
serum triglyceride. The lower Adipo-IR was correlated
well with promoter G-493T and 128T. However, the
Q297H genotype was not correlated with these metabolic
parameters.

The relative impact of the MTTP genotypes and their
interaction with confounding risks on serum LDL-C
were further tested by multivariate regression analysis
(Table 4). The CC genotype (297H) had a significantly
greater impact on reduced serum LDL-C than age and
BMI. Moreover, serum non-HDL-C was significantly
negatively determined by homozygous CC genotype
(297H) and HOMA-IR, while positively regulated by
Adipo-IR, BMI and age in that sequence (Table 5). By
multivariate analysis, the significant association of MTTP
polymorphisms with serum triglyceride was overpowered
by the impact of insulin resistance (HOMA-IR and
Adipo-IR) and BMI (Additional file 1). These results sug-
gest insulin resistance and BMI significantly contribute
more to serum triglyceride than the genetic effect of
MTTP polymorphisms.

The frequency of NAFLD in our adult population was
58.5 % (n=658), which included 6.4 % with severe
NAFLD. As shown in Table 6, the risk of developing
NAFLD was significantly correlated with the CC geno-
type (297H), BMI and Adipo-IR in that order. The risk
impact on NAFLD was higher by the genetic effect of
297H polymorphism than BMI or insulin resistance.
Our results revealed that carriers of homozygous 297H
had significantly lower serum LDL-C and non-HDL-C
but a greater risk of developing NAFLD adjusted by in-
sulin resistance, BMI and age. To investigate the cumu-
lative effect of these polymorphisms, the lipid and
metabolic parameters were compared among the 10
genotype combinations (Additional file 2). This revealed
that females have significantly lower LDL-C, non-HDL-
C, BMI, aspartate and alanine transaminase (AST and
ALT) but higher HDL-C than males. This may be impli-
cated in a protective effect for atherosclerosis progres-
sion in females. The haplotype 21233 (GT/GG/TC/GG/
CC) carriers had significantly lower serum cholesterol,
LDL-C and non-HDL-C than controls with a greater im-
pact from genetic effect than age and gender. Carriers of
the haplotype 11133 (GG/GG/TT/GG/CC), especially
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Table 2 Comparison of the serum cholesterol, LDL-C and non-HDL-C with MTTP genotypes
Genotype Cholesterol (mg/dl) P LDL (mg/dl) P Non-HDL (mg/dl) P
(promoter) G-493T
GG+GT (n=1159) 180.7+324 0576 123.1+33.1 0.391 1293 +325 0.694
TT (n=29) 184.1 £ 28.1 1298 £29.7 1323+£235
Glu98Asp (E98D)
GG+GC (n=1132) 180.5+319 0.551 1232+330 0.566 1292+323 0.719
CC(n=25) 1843+ 285 1277 £333 1320+27
ller128Thr (1128T)
TT+TC (n=1153) 1806+ 324 0.783 123.0+33.1 0.384 1293+326 0.848
CC (n=26) 1824 +273 1303+316 1309+ 246
Asn166Ser (N166S)
AA+AG (n=1150) 180.5+322 0489 1229+329 0.362 1291 +£324 0.543
GG (n=25) 185.1+£29.2 130.1+£339 133.8+£279
GIn297His (Q297H)
GG+GC (n=984) 1809+326 0433 124.1+337 0.047* 1299+ 33.1 0.282
CC(n=193) 1790+ 296 1185+288 1266 £ 284

Data are shown as mean + SD. Independent t test was used for statistical analysis. (* P < 0.05 indicates significant)

having the C allele of Q297H, significantly displayed in-
crement of AST (2.2 IU/L) and ALT (3.8 IU/L) and haz-
ard for fatty liver formation (odds ratio 1.68) compared
with control.

Predicted molecular modeling of the MTP structure
and potential energy equilibrium were shown in Fig. 2.
The potential energy reached equilibrium after 2.80 ns
over 100 ns md simulations. Calculation of the residue

effect revealed a higher delta free energy 0.91 kcal/M
(AG, Q297H) for 297H, indicating that 297H was less
stable in protein structure than Q297 and that this may
involve altered interaction of the B-barrel of MTP with
apoB. Therefore, as a functional polymorphism of MTTPR
the CC genotype (297H) may result in functional alter-
ation of the MTP protein to decrease assembly and secre-
tion of apoB-containing lipoproteins.

Table 3 Comparison of the metabolic parameters with MTTP genotypes

Genotype BMI (kg/m?) P TG (mg/dl) P HOMA-IR P Adipo-IR P

(promoter) G-493T
GG+GT (n=1155) 245+33 0527 1383+1239 0.039% 1.09+2.29 0572 246+384 0.014*
TT (n=29) 247 +25 117.1+49.7 0.83+0.72 161+132

Glu98Asp (E98D)
GG+GC (n=1127) 245+33 0.050% 1370+ 1209 0.001% 1.09£231 0.044* 248+387 0436
CC(n=25) 226+23 101.3+432 0.61+1.02 1.78 £2.98

[le128Thr (1128T)
TT+TC (n=1148) 245+33 0.640 1381 +1236 0.040% 1.08+229 0.140 246 +3.86 0.017*
CC(n=26) 248+26 1149+519 0.833+0.75 157+1.38

Asn166Ser (N166S)
AA+AG (n=1145) 245+33 0.006* 1386+ 1239 0.001* 1.05+1.92 0.301 243+2.75 0442
GG (n=24) 227+23 102.8 +44.3 062 +1.04 1.77 £2.98

GIn297His (Q297H)
GG+GC (n=984) 245+34 0913 1369+ 124.1 0.656 1.09+243 0451 057+023 0337
CC(n=193) 245429 141.2+£116.2 0.92+098 058+0.25

Data are shown as mean + SD

Independent t test was used for statistical analysis of body mass index (BMI) and insulin resistance (HOMA-IR and Adipo-IR)
Mann-Whitney U test was used to analyze triglyceride (TG). (* P < 0.05 indicates significant)



Hsiao et al. BMC Medical Genetics (2015) 16:93

Table 4 Risk impact and interaction of the MTTP genotypes on
serum LDL-C

Independent Parameter 95 % Confidence P
variables estimates (B) interval

Lower vs Upper bound
Age 0430 0.150 0.710 0.003*
Sex (male vs female)  —7.279 —43.699 29.141 0.695
BMI 1448 0636 2261 <0.0001*
HOMA-IR -1.189 -3.543 1.166 0322
Adipo-IR 1414 -0.168 2996 0.080
E98D (CC vs GG+GC)  —32.004 —-96.849 32.840 0333
1128T (CC vs TT+TQ) 12.878 -7.070 32.827 0.205
N166S (GG vs AA+AG) 35.276 —27455 98.007 0.270
Q297H (CC vs GG+GC) —10.802 -17.822 —-3.782 0.003*

Multiple linear regression analysis was applied using serum LDL-C as
dependent variable adjusted by age, sex, BMI, HOMA-IR, Adipo-IR and MTTP
genotypes based on significance in univariate analysis and regression models.
(*P < 0.05 indicates significant)

Discussion

In this study, we observed that carriers of homozygous
CC genotype (297H) had significantly lower serum LDL-
C and non-HDL-C but greater risk of NAFLD. The gen-
etic risk of 297H polymorphism for NAFLD was higher
than BMI and insulin resistance. Our findings suggested
that the MTTP Q297H polymorphism, substitution of
glutamine by histidine in the N-terminal -barrel, may
have conformational change leading to a functional con-
sequence in binding activity with apo B. Since the C al-
lele of Q297H was quite prevalent (40.3 %) in our
population, it may play an important role in NAFLD
formation.

Table 5 Risk impact and interaction of the MTTP genotypes on
serum non-HDL-C

Independent Parameter 95 % Confidence P
variables estimates (B) interval

Lower vs Upper bound
Age 0510 0.247 0.772 <0.0001*
Sex (male vs female) -9.122 —43.247 25.035 0.6006
BMI 1.343 0.581 2.105 0.0011*
HOMA-IR —4.397 —6.606 -2.189 <0.0001*
Adipo-IR 4.157 2673 5641 <0.0001*
E98D (CC vs GG+GC)  —23.150 —83.966 37.666 0455
1128T (CC vs TT+TC) 6400 —12.309 25.110 0502
N166S (GG vs AA+AG) 23.984 —34.850 82.818 0424
Q297H (CC vs GG+GC) —6.802 —13.386 -0218 0.043*

Multiple linear regression analysis was applied using serum non-HDL-C as
dependent variable adjusted by age, sex, BMI, HOMA-IR, Adipo-IR and MTTP
genotypes based on significance in univariate analysis and regression models.
(*P < 0.05 indicates significant)
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Promoter -493G/T polymorphism, conveyed by re-
porter gene assay in HepG2 cells, revealed marked en-
hancement (2-fold) of transcriptional activity by the T
allele [19]. Previous studies reported that individuals car-
rying -493 TT had significantly lower LDL-C, triglycer-
ide and triglyceride/apoB ratios in VLDL-C particles
than carriers of the GG or GT [20]. Vohl et al. reported
that genetic effect of the -493G/T polymorphism on
lipid profile was modulated by gender, visceral adiposity
and insulin level [21]. Our result was consistent with this
finding in those -493 TT carriers had significantly lower
serum triglyceride and insulin resistance than GG or GT
carriers. In KORA study cohort, carriers with homozy-
gous minor allele (297Q) displayed a decrement for BMI
and total cholesterol in females but not in males [22].
The homozygous 297Q and heterozygous -493GT car-
riers, reported by Talmud et al., were found to have
higher serum triglyceride and raising effect on apoB
levels [23]. Our results displayed carriers of homozygous
minor allele (297H) to have lower apoB-containing lipo-
proteins, LDL and non-HDL level, but higher risk for
NAFLD. However, some studies have reported to the
contrary [24]. A meta-analysis of 11 clinical case—control
studies also found that carriers of G versus T allele
might increase individual susceptibility to NAFLD in
both the Caucasian and non-Caucasian populations [25].
Our study recruited a relatively comparable sample size
but had observed different results. Based on our result,
metabolic regulators such as insulin resistance or body
mass index did modulate the phenotypic manifestation
of MTTP polymorphisms. As there was strong linkage
disequilibrium between these common polymorphisms, we
thought these inconsistent results may be interrelated to
the potential heterogeneity of control, interference of the
haplotypes and neglecting these confounders. So, we pro-
posed all the possible confounders are obligatory to recruit
in multivariate analysis to verify the real genetic effect.

Formation of the VLDL-C involves two-steps process.
First, primordial apoB precursors are formed to fuse
with small luminal lipid droplets, which are mainly me-
diated by the MTP protein. Second, the bulk neutral
lipids, composed of triglyceride, cholesterol ester and
phospholipids, are added to the preformed lipid droplets
to form mature VLDL-C [26, 27]. The N-terminal do-
main of MTP (residues 22-297) interacts closely with
apoB (residues 1-264) to determine the conformational
and electrostatic properties of apoB and construct a suit-
able amphipathic lipid interface for further loading of
the lipid core [8]. Residue Thr128 of MTDP, located in a
protruding loop at top of the p-barrel with a hydropho-
bic nature and more surface exposure, was less thermally
stable and more easily cleaved in assembly with the
apoB-MTP complex than the Ile128 residue. The 1128T
polymorphism, changing from an uncharged to a polar
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Table 6 Risk impact and interaction of the MTTP genotypes on
non-alcoholic fatty liver disease (NAFLD)

Independent variables Odds ratio P

(95 % confidence interval)
Age 0.991 (0.973-1.009) 0313
Sex 1.252 (0.071-21.976) 0.878
BMI (kg/mz) 1.370 (1.288-1.457) <0.0001*
HOMA-IR 0.895 (0.694-1.154) 0391
Adipo-IR index 1.266 (1.175-1.365) <0.0001*
Promoter (TT vs GG+GT) 0.588 (0.194-1.785) 0349
E98D (CC vs GG+GC) 1(0.040-12.723) 0816
N166S (GG vs AA+AG) 1.028 (0.057-18483) 0.985
Q297H (CC vs GG+GO) 1.682 (1.102-2.568) 0.016*

Multiple logistic regression analysis was applied using NAFLD as a dependent
variable adjusted by age, sex, BMI, HOMA-IR, Adipo-IR and MTTP genotypes
based on significance in univariate analysis and regression models. (*P < 0.05
indicates significant)

amino acid, was speculated to confer a change in elec-
trostatic stability and alter the interactive binding activ-
ity of both proteins [28]. Our results have demonstrated
strong linkage disequilibrium among these polymor-
phisms (-493G/T, E98D, 1128T and N166S). Carriers
with these minor alleles had significantly lower serum
triglyceride in univariate analysis. This result implies that
these missense MTTP polymorphisms may independ-
ently alter the binding or folding of MTP with apoB, and
interfere the fusing with luminal lipid droplets. As the
formed VLDL-C conveying less triglyceride (neutral
lipid), it would rationally lead to lower serum NEFA, less
visceral obesity and insulin resistance. However, our re-
sults revealed genetic impact of the MTTP polymor-
phisms on serum triglyceride was overpowered by
insulin resistance and BMI. This result implicated that
serum triglyceride was determined more by the insulin
resistance and adiposity than the genetic effect of MTTP
polymorphisms.

The “lipid-pocket” model is widely quoted to test the
interplay of MTP with apoB, and MTP functions as a
shuttle to fill the “lipid pocket” of the proposed LV-like
apoB intermediate. There is one electrostatic binding site
in region of N-terminal region (residues 22-297) of MTP
and N-terminal region (residue 1-264) of apoB. The
dense cluster of amphipathic [ strands at the N-terminal
end of MTP seems likely to be part of the binding site of
MTP protein to shuttle monomeric triacylglycerol to
apoB. So, the 297 residue resides in a critical location
linking the p-barrel and a-helix of MTP [27, 29, 30].
This study revealed variant of the 297H versus Q297
demonstrated higher free energy equilibrium with an un-
stable protein structure. Hence, it may affect MTP and
apoB binding, leading to malfunction of protein folding
and lipidation with apoB.
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The MTP protein is also expressed in cardiomyocytes
and macrophages to determine lipid excretion from cells
[3, 15]. Cases of ABL have been found to have severe
cardiac lesions with excessive deposition of lipochrome
pigment and extremely low apoB-containing lipopropro-
teins in serum. Tissue-specific mttp knockout mice have
revealed cardiac lipid accumulation [31]. Cases of ABL
and hypobetalipoproteinemia, even those exhibiting subtle
differences in lipid phenotype, all demonstrate variable de-
grees of steatosis, elevated aminotransferase, hepatomeg-
aly, steatohepatitis and profound fibrosis [4, 9, 32]. Taken
together, functional MTP is important in the lipid
metabolism to protect the heart and liver against lipo-
toxic injury. Moreover, pyrosequencing evidence has
demonstrated that minor allele of the MTTP pro-
moter (-493T/-164C) had lower transcriptional activ-
ity compared with the major alleles but expressed
with some tissue discrepancy in heart, liver and mac-
rophages [12, 33]. Our study demonstrated a novel
finding, that carriers of the MTTP 297H had signifi-
cantly lower LDL-C and non-HDL-C but higher risk
for NAFLD. In theory, we speculated MTTP 297 poly-
morphism may alter binding activity of the MTP with
apoB, leading to less secretion of apoB-containing lipopro-
teins. It may result in lower serum LDL-C, non-HDL-C
and more lipid accumulation in liver. Even though carriers
of 297H displayed lower atherogenic lipoproteins, more
evidence is still needed to elucidate whether the risk for
cardiac lipotoxicity or atherosclerosis is raised or reduced
for the same given genotype.

As MTP is involved in the critical step regulating cir-
culating lipid, MTP inhibition has emerged as a potential
target and has been established to have efficacy in treat-
ing hypercholesterolemia patients [34]. The new therap-
ies targeting apoB metabolism for high-risk patients with
familial hypercholesterolemia, such as mipomersen to
inhibit expression of hepatic apoB and lomitapide to
block hepatic MTP activity, have demonstrated excellent
efficacy for reducing atherogenic lipoproteins but have
also significantly raised the risk of hepatic transaminase
(10 %) and hepatic steatosis (18 %) in users. The changes
in hepatic fat have been highly variable from patient to
patient, ranging from a 1 % baseline to an average of
8.6 % at 6 months even up to 30 % in a few cases using
MTP inhibitors [35-37]. Eventually, hepatic steatosis
possibly predisposes to insulin resistance, metabolic syn-
drome, steatohepatitis and liver fibrosis [5]. Despite the
US Food and Drug Administration (FDA) has approved
both mipomersen and lomitapide, it still intensely man-
dates ensuring a maximal benefit-to-risk ratio of these
drugs for clinically appropriate use [38]. Based on our
results, the MTP inhibitors theoretically should not be
used for subjects with familial hypercholesterolemia car-
rying MTTP 297H.
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Fig. 2 Predicted molecular modelling structure and potential energy plots of the microsomal triglyceride transfer protein (MTP). a 297H amino
acid resides at the end of B-barrel shown in a ball/stick model. b The potential energy for MTP in Tip3 water molecules demonstrated higher free

This study simultaneously compared the impact on
serum lipid level and NAFLD formation by the interplay
of MTTP polymorphisms and confounders. It is limited
by the male dominant population even though our people
have demonstrated highly prevalent NAFLD for male [39].
Abdominal ultrasound is generally applied in relatively
large-scaled surveys as a noninvasive and convenient tool
to diagnose NAFLD with acceptable sensitivity and speci-
ficity [5]. However, absent of severity grading of the hep-
atic steatosis in histology would weaken the clinical
relevance of these genetic effects. Because both MTP and

apoB are large proteins to interact in complex, clinical val-
idation of the binding or transfer activity with apoB by
these MTTP polymorphisms related changes is quite chal-
lenging. And our molecular modelling results may help
elucidate the possible conformational changes and protein
stability.

Conclusions

In summary, our study demonstrated that carriers of the
MTTP 297H significantly had lower apoB-containing li-
poproteins (LDL-C, non-HDL-C) and greater risk of



Hsiao et al. BMC Medical Genetics (2015) 16:93

NAFLD adjusted by age, sex and insulin resistance.
Genotype MTTP 297H may be an important and inde-
pendent risk for NAFLD formation (odds ratio 1.68,
1.1-2.6) followed by BMI and Adipo-IR. Our study is
the original report using a predicted molecular modeling
to verify the potential functional alteration for this poly-
morphism. This result further evidenced the genetic risk
in developing NAFLD.
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