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Abstract

Background: Putative G-quadruplex-forming sequences (PQS) have long been implicated in regulation of
transcription, though the actual mechanisms are not well understood. One proposed mechanism involves the
activity of PQS-specific helicases belonging to the RecQ helicase family. However, patterns of PQS that correlate
with transcriptional sensitivity to RecQ helicases are not well studied, and no adequate transcriptional model exists
to account for PQS effects.

Methods: To better understand PQS transcriptional effects, we analyze PQS motifs in genes differentially-
transcribed in Bloom Syndrome (BS) and Werner Syndrome (WS), two disorders resulting in loss of PQS-interacting
RecQ helicases. We also correlate PQS genome-wide with transcription in multiple human cells lines while
controlling for epigenetic status. Finally, we perform neural network clustering of PQS motifs to assess whether
certain motifs are over-represented in genes sensitive to RecQ helicase loss.

Results: By analyzing PQS motifs in promoters of genes differentially-transcribed in BS and WS, we demonstrate
that abundance of promoter PQS is generally higher in down-regulated genes and lower in up-regulated genes,
and show that these effects are position-dependent. To interpret these correlations we determined genome-wide
PQS correlations with transcription while controlling for epigenetic status. Our results identify multiple discrete
transcription start site-proximal positions where PQS are correlated with either increased or decreased transcription.
Finally, we report neural network clustering analysis of PQS motifs demonstrating that genes differentially-expressed
in BS and WS are significantly biased in PQS motif composition.

Conclusions: Our findings unveil unappreciated detail in the relationship between PQS, RecQ helicases, and
transcription. We show that promoter PQS are generally correlated with reduced gene expression, and that this
effect is relieved by RecQ helicases. We also show that PQS at certain positions on the downstream sense strand
are correlated with increased transcription. We therefore propose a new transcriptional model in which promoter
PQS have at least two distinct types of transcriptional regulatory effects.

Background
Bloom Syndrome (BS) and Werner Syndrome (WS) are
human genetic disorders resulting from loss-of-function
mutations in DNA helicases belonging to the RecQ helicase
family [1–6]. BS patients present with short stature, im-
munodeficiency, and photo-sensitivity. WS is classically as-
sociated with progeria. Both syndromes result in decreased
fertility and increased carcinogenesis. The BLM and WRN

helicases implicated in BS and WS, respectively, have both
been shown to unfold G-quadruplex structures assembled
in vitro [7, 8], in addition to other types of DNA structures.
It has been proposed that BLM and WRN helicases func-
tion in vivo by resolving DNA structures, including intras-
trand and interstrand G-quadruplexes hypothesized to
form at putative G-quadruplex-forming sequences (PQS)
during homologous recombination [9], base-excision repair
(WRN only) [10], in telomeres during cellular replication
[11–13], and in regulation of gene transcription [14]. Here
PQS are identified by an algorithm (see Methods) analyzing
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the potential to form intrastrand G-quadruplexes under
proper conditions if DNA strands were separated [15].
Analysis of transcriptional perturbations in BS and WS

has identified effects on various cellular signaling path-
ways including control of growth/proliferation, death/
survival, protein synthesis, gene expression, and develop-
ment [16, 17]. Interestingly, it has also been noted that
genes differentially expressed in BS and WS have in-
creased PQS abundance, suggesting that transcriptional
changes upon loss of RecQ helicases could result from
failure to properly suppress G-quadruplex structures
[14, 16]. Despite the absence of conclusive biochemical
evidence for G-quadruplex structures at PQS in these
genes, sequence-expression correlations are compelling.
Little is yet known concerning specific PQS motifs in

the promoters of genes differentially sensitive to loss of
BLM and WRN helicases. Such knowledge might pro-
vide insight into how PQS /RecQ helicase interactions
modulate gene expression. In the current work, we
therefore analyze the abundance and sequences of PQS
within 2 kbp of transcription start sites (TSS) for genes
differentially expressed in BS and WS. We elucidate sta-
tistically significant PQS abundance patterns in these
genes vs. genes whose transcription is not altered by
RecQ helicase loss. We also use a new approach to cor-
relate PQS location with transcriptional activation or re-
pression. The method applies epigenetic information to
predict gene expression, with subsequent analysis of the
modeling error and correlation with PQS position. These
two methods map intrinsic PQS transcription regulatory
effects, and predict how PQS abundance at discrete posi-
tions correlates with transcriptional changes upon BLM
or WRN helicase loss, and lead us to propose a new tran-
scriptional model in which promoter PQS have at least
two distinct types of transcriptional regulatory effects.
Finally, we analyze PQS motifs using neural network clus-
tering to demonstrate that genes differentially-expressed
in BS and WS are significantly biased in their PQS motifs.
This suggests an unappreciated biological relationship
between PQS, RecQ helicases, and transcription.

Methods
PQS mapping near TSS
GENCODE version 7 gene annotations (produced using
GRCh37) were downloaded from www.gencodegen
es.org/releases/7.html. The list of annotations was fil-
tered to remove all entries with a tag of “cds_start_NF”
or “low_sequence_quality”, leaving a set of 156,253
GENCODE v7 transcripts. From this list of transcripts,
139,758 unique transcription start sites (TSS) were iden-
tified, representing 59,005 unique genes. PQS were then
mapped to the 2 kbp upstream and downstream of iden-
tified TSS using PQS midpoint reference genomic coor-
dinates (Additional file 1). R code for this procedure is

provided in Additional file 2. A total of 88,058 unique
PQS were mapped to within 2 kbp of a TSS. Since many
genes have multiple TSS located within a few kbp of
each other, some PQS were counted multiple times, with
a total of 251,386 PQS mapping assignments to known
TSS (Additional file 3).

BS and WS gene expression data
Differential gene expression data for Bloom Syndrome
patient fibroblasts was obtained from the supplemental
information section of reference [16]. Genes in this data-
set had been identified by Affymetrix GeneChip Human
Exon 1.0 ST arrays using manufacturer-recommended
protocols, with the criterion for differential expression
set at ≥ 1.5 absolute fold expression change with an
adjusted p-value < 0.05 and FDR < 0.1. Datasets for genes
differentially expressed in Werner Syndrome patient
fibroblasts were obtained from reference [17] uploaded
to GEO accession GSE48761. Genes in this dataset had
been identified using Human Gene 1.0 ST Array (Affy-
metrix) using standard procedures. Datasets were down-
loaded from the GEO repository and processed in R
using microarray analysis packages available from Bio-
conductor. Packages included hgu95av2cdf, hgu95av2.db,
limma, marray, affy, affyQCReport, and affyPLM. WS
datasets were normalized using the robust multiple-array
average (RMA) algorithm, and genes differentially-
expressed in WS patient samples were identified with the
criterion of ≥ 1.5 absolute fold expression change com-
pared to controls, with an adjusted p-value of < 0.05 and
FDR < 0.05 (Additional file 4).

Analysis of PQS in genes differentially expressed in BS
and WS
Genes differentially-expressed in BS and WS were di-
vided into up- and down-regulated gene sets. All TSS
were identified in genes differentially-expressed in BS
and WS, together with all PQS positioned within 2 kbp
of these TSS. PQS were annotated for sense or antisense
strand and positions assigned in 200 bp bins repeated at
a 10 bp interval from −2 kbp to +2kbp relative to TSS.
This approach was also applied to map all PQS in the
human genome, and an additional 100 times in a statis-
tical bootstrapping method using a randomly-generated
collection of genes of the same size as the test dataset.
Test datasets and randomly-generated datasets were
compared to the genome-wide dataset using a p-value
generated from the prop.test function in R. P-values and
the ratio of mean PQS per TSS for the comparison be-
tween the test datasets and genome-wide controls were
plotted as a function of bin position relative to the TSS.
The threshold for statistical significance was picked to
be the p-value below which a data point in the randomly
generated dataset has a 1 % chance of false rejection of
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the null hypothesis. FRD were calculated as the ratio of
predicted number of false positives data points (3.81 per
381 data points) to the number of data points in the test
dataset that pass the threshold p-value. R code for this
analysis can be found in Additional file 5.

Epigenetic prediction of gene expression
The generation of predictive models for gene expression
based on epigenetic data followed a method similar to that
previously described [19]. Epigenetic and gene expression
data were obtained from the ENCODE project through
the NCBI Gene Expression Omnibus online repository
(accession GSE34448, GSE32970, and GSE29611). Cell
lines used in the epigenetic modeling of gene expression
include H1-hESC (embryonic stem cell), HeLa-S3 (cer-
vical cancer), K562 (immortalized myelogenous leukemia),
HUVEC (human umbilical vein endothelial cell), HepG2
(hepatocellular carcinoma), NHEK (normal human epi-
dermal keratinocyte), and GM12878 (EBV-transformed
lymphoblastoid cell). For each of these cell lines, genome-
wide tracks for histone modifications H3K9ac, H3K4me3,
H3K4me2, H3K27ac, H3K79me2, H3K36me3, H3K4me1,
H3K27me3, H4K20me1, histone variant H2A.Z, and chro-
matin accessibility (quantified by digital DNAse I hyper-
sensitivity) were obtained, along with gene expression
datasets quantified by cap analysis of gene expression
(CAGE) technology.
GENCODE version 7 transcript annotations were

used to map individual CAGE-quantified transcript
levels to known TSS. Total transcriptional activity for
each TSS was calculated as the sum of the expression
values for all transcripts that originate from that TSS.
Since many genes contain multiple TSS, only the TSS
with the highest aggregate expression level for each of
the 59,005 unique genes in the genome was retained for
analysis. R code for these data manipulations can be found
in Additional files 6, 7, and 8.
The GC fraction for the 5 kbp upstream of each of the

identified strongest TSS was calculated using tools in
the R package Biostrings produced by the open source
Bioconductor software project. Computation for this
part of the analysis was run on the Mayo Research Com-
puting Facility (RCF) shared-resource, Beowulf-style
Linux cluster using R version 3.0.2, with scripts written
to accommodate batch mode execution managed by the
Open Grid Engine open-source batch-queuing system.
ENCODE data for DNAse I hypersensitivity, histone

modification, and histone variant tracks were obtained
from the GEO repository as described above. Track
signal files were downloaded in .bigwig format and proc-
essed using utilities in the R package rtracklayer from
Bioconductor. Track signals within 1 kbp upstream and
downstream of each TSS were extracted and the signal
within this region was split and averaged into twenty

100-bp bins, spanning from 1 kbp upstream to 1 kbp
downstream of each TSS. R code for this procedure can
be found in Additional files 9 and 10. For each of the 20
bins constructed for each genomic track, a correlation
coefficient was calculated between the log2-transformed
bin signal (with a small pseudocount added to avoid the
log2(0) issue) and log2-transformed gene expression sig-
nal quantified via CAGE, excluding TSS with a expres-
sion value of 0. For each genomic feature, the bin that
had the highest correlation with expression was selected
as the “best bin” for analysis. The optimal pseudocount
value for each genomic track was determined by repeat-
ing the correlation analysis described above, but with
pseudocounts ranging from 0.25-5 % of the maximal
binned signal for that track feature. For each genomic
track, the best pseudocount and “bestbin” combination
was selected by identifying the bin and pseudocount
combination that resulted in the highest absolute correl-
ation with gene expression. R code for this procedure
can be found in Additional file 11.
“Bestbin” and pseudocount combinations for each

epigenetic track, along with the GC% 5 kbp upstream of
each TSS were then used to construct predictive models
of gene expression. TSS with missing values for any of
the genomic tracks were excluded, leaving between
4,011 and 9,614 TSS, depending on the cell line. Data-
sets for the cell lines used in the analysis can be found
in Additional files 12, 13, 14, 15, 16, 17, and 18. The
subset of TSS containing no PQS within 2 kbp of the
TSS was then divided into equal training and test data-
sets using a random sampling approach. The subset of
TSS containing at least one PQS was included in the test
dataset. All data channels in training and test datasets
were normalized to be mean-centered at 0 and to have a
standard deviation of 1. A Bayesian linear regression
model for predicting gene expression from epigenetic
parameters and GC fraction was then generated using
the training dataset and the R package tgp. This model
was then applied to the test dataset (not used in the train-
ing of the model) to generate gene expression predictions.

Modeling PQS correlation with transcription
For each TSS in the epigenetic modeling of gene expres-
sion test dataset, a prediction error was calculated as the
CAGE-determined TSS-specific expression value minus
the Bayesian linear regression model prediction from the
epigenetic data. The portion of the test dataset TSS con-
taining at least one PQS was extracted and the position
and strand of the nearest PQS to each TSS was deter-
mined. Using an iterative approach, TSS-specific predic-
tion error data for sense and antisense strands were
aggregated based on the location of the nearest PQS,
using a 200 bp bin size, and running 2 kbp upstream to
2 kbp downstream at an iteration interval of 10 bp. For
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each bin, the distribution of prediction errors was com-
pared to the prediction errors of the TSS in the test
dataset containing no PQS using the oneway.test() func-
tion in R for one-way ANOVA. As a statistical control to
assess the likelihood of obtaining a low p-value in the
comparison by random chance, a statistical bootstrap-
ping approach was employed in which the prediction
errors in the PQS dataset were replaced with random
prediction errors from the test dataset, and the p-values
were calculated as above. This comparison was repeated
100 times and the threshold p-value for determining
statistical significance of the test dataset comparison was
picked to be the p-value below which a data point in the
control dataset has a 1 % chance of false rejection of the
null hypothesis. P-values in the test dataset below this
threshold value were selected as statistically significant.
FDR were calculated as the ratio of significant p-value
data points in the test dataset compared to the average
number of false positives in the control datasets (3.81
false discoveries per 381 data points). R code for this
entire analysis can be found in Additional file 19.

PQS motif analysis
The number of G stacks containing at least 3 contiguous
guanine nucleotides in each PQS within 2 kbp of a TSS
was calculated for all human genes using a pattern-
matching algorithm. The nucleotide fractions of adenine,
thymine, and cytosine in each PQS were calculated using
the package Biostrings. For the subset of PQS containing
4 G stacks, with each G stack containing 3 bases, lengths
of loop sequences between G stacks were also calculated.
In order to avoid ambiguity in this analysis, it was re-
quired that the first and last base in a loop sequence not
be guanine. Computation was performed on the Mayo
Research Computing Facility (RCF) shared-resource,
Beowulf-style Linux cluster using R version 3.0.2, with
scripts written to accommodate batch mode execution
managed by the Open Grid Engine open-source batch-
queuing system.
PQS were binned based on position, using a 200 bp

bin width calculated at a 50 bp interval, spanning from 2
kbp upstream to 2 kbp downstream of the TSS. Subsets
of PQS data for genes up- and down-regulated in BS
and WS were extracted, and PQS features (total length,
loop lengths, number of G-stacks, fractions adenine,
cytosine, and thymine) were compared individually be-
tween genes differentially expressed in BS and WS and
the remainder of the genome, bin by bin, using one-way
ANOVA. Comparisons were done independently for
PQS in the sense and antisense DNA strands. This bin-
based comparison was repeated 100 times in a statistical
bootstrapping method using a randomly-generated col-
lection of genes of the same size as the test dataset. The
threshold for statistical significance was picked to be the

p-value below which a data point in the randomly gener-
ated dataset has a 1 % chance of false rejection of the
null hypothesis. False discovery rates were calculated as
the ratio of predicted number of false positives data
points to the number of data points in the test dataset
that pass the threshold p-value. R code for this analysis
can be found in Additional file 20.

Self-organizing map multidimensional classification of
PQS
From the entire human genome, the subset of PQS with
4 G-stacks and 3 loops within 2 kbp of a TSS was
selected, excluding PQS in which the first or last base in
a loop was guanine. This selection criterion reduced the
number of surveyed PQS from 88,058 to 17,795. Each
PQS in this selected dataset was classified for total
sequence length, loop lengths, and fractions of adenine,
cytosine, and thymine. Self-organizing map artificial
neural network analysis was implemented in R using the
package kohonen. Maps consisting of 25 nodes in a hex-
agonal grid were trained using the PQS dataset, 100
iterative presentations of the data to the model, and a
learning rate with linear decline from 0.05 to 0.01. The
average number of PQS per gene per node was calcu-
lated and compared to the same calculation repeated for
the PQS and gene subset for genes up- and down-
regulated in BS and WS. Log2 enrichment ratios were
calculated for each node in the BS and WS datasets. As
a means to ascertain whether the enrichment of PQS in
certain nodes could arise by chance, a statistical boot-
strapping method was employed in which enrichment
ratios of nodes on the PQS map were calculated for 100
randomly-generated gene sets of the same size as the BS
and WS datasets. Mean and 2σ values were calculated
node by node for these random distributions. Statistical
significance for enrichment ratios of nodes in the BS
and WS datasets was assigned on the basis of lying
outside of the 95 % CI for the random distributions.
R code for this analysis can be found in Additional file 21.
Motif classifications of all genomic PQS can be found in
Additional file 22.

Results
PQS abundance in genes differentially expressed in BS
and WS
We hypothesized that PQS abundance in promoters of
genes differentially expressed in BS and WS reflects tran-
scriptional sensitivity to RecQ helicase activity. We used
published gene expression array datasets comparing BS
and WS patient fibroblasts to normal control fibroblasts
to identify genes that are significantly up- and down-
regulated in BS and WS [absolute fold expression
change ≥ 1.5 with an adjusted p-value < 0.05 and false dis-
covery rate (FDR) < 0.1 for BS genes and FDR < 0.05 for
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WS genes] [16, 17]. The BS dataset consisted of 1012 up-
regulated genes and 141 down-regulated genes [16], and
the WS dataset consisted of 1046 up-regulated genes and
540 down-regulated genes. Comparing genes identified as
differentially-expressed in each syndrome, we find them to
be largely non-overlapping (Additional file 23: Figure S1).
Notably, the fraction of these differentially-expressed
genes that contains at least one PQS within 2 kbp of a
TSS (BS: 84 % of up-regulated genes and 90 % of down-
regulated genes, WS: 74 % of up-regulated genes and 84 %
of down-regulated genes), is high compared to the gen-
omic average of 55 % (Additional file 23: Table S1).
We analyzed how PQS abundance varies as a function

of position and strand (sense or antisense) near promoters
of genes differentially expressed in BS and WS, compared

to other genes. Histograms showing PQS abundance (raw
counts) as a function of position upstream and down-
stream of the TSS on sense and antisense strands are
shown in Additional file 23: Figure S2. We then compared
PQS abundance between genes differentially expressed in
BS and WS vs. all other genes. A heat map showing PQS
abundance (raw counts) as a function of position, normal-
ized to total number of TSS in the respective datasets, is
presented in Fig. 1a. We also conducted quantitative ana-
lysis of PQS abundance in genes differentially expressed in
BS and WS vs. all other genes, using 200 bp bins, repeated
at a 10-bp interval, spanning 2 kbp upstream and down-
stream of known TSS on both strands. For each bin, 1-
way ANOVA p-values were calculated comparing PQS
abundance in the differentially-expressed gene dataset to
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Fig. 1 PQS occurrence in genes differentially expressed in BS and WS. PQS occurrence in sense (S) and antisense (AS) strands was analyzed
independently. a Heat map showing PQS occurrence genome-wide and in genes differentially-expressed in BS and WS, represented as raw counts
normalized to total number of TSS in each dataset. b Top panels show p-values for comparing PQS abundance per TSS between genes differentially
expressed in BS and WS and all other genes. Dotted lines represent p-value cutoffs for determining statistical significance, with less than 1 % of data
points from a random gene dataset of the same size as the test dataset having a p-value below this threshold. Bottom panels show PQS enrichment
ratio in genes differentially expressed in BS and WS, with values > 1 indicating that PQS are more abundant in the differentially-expressed gene set.
Both p-values and enrichment ratios were calculated using a 200 bp bin value repeated at a 10 bp interval. Regions with shaded peaks represent
locations of statistically-significant PQS excess or scarcity
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all other genes. The statistically-significant result, shown
in Fig. 1b, is intriguing. Genes up- and down-regulated in
BS and WS tend to have opposite patterns of PQS abun-
dance near TSS. Relative to the remainder of the genome,
genes up-regulated in BS and WS tend to have fewer PQS,
while genes down-regulated in BS and WS tend to have
more PQS. An exception to this pattern is that BS up-
regulated genes have more PQS between 160 and 680 bp
downstream of the TSS on the sense strand. Other PQS
abundance patterns are listed in Additional file 23: Table
S2. Threshold p-values and FDR for the analysis, deter-
mined by statistical simulation with randomly-generated
gene sets, are presented in Additional file 23: Table S3.

Correlation of PQS patterns and transcription
To interpret PQS abundance for genes differentially
expressed in BS and WS, we studied how PQS location
relative to the TSS correlates with gene expression for
all human genes. A previous study correlated PQS pos-
ition and gene transcription while controlling for gene
family, function, and promoter similarity [18]. In that
work, PQS from 0 to 500 bp downstream of TSS were
correlated with increased gene expression. PQS from 0
to 500 bp upstream of the TSS were not significantly
correlated with gene expression. In our analysis, posi-
tions found to have altered PQS abundance in genes dif-
ferentially expressed in BS and WS often occur more
than 500 bp from TSS (86 % for BS, 71 % for WS). No
data were available for genome-wide correlation between
transcription and PQS in such positions.
We therefore implemented a novel analysis combining

published epigenetic and gene expression data from 7
human cell lines (H1-hESC, HeLa-S3, K562, HUVEC,
HepG2, NHEK, and GM12878) to correlate PQS positions
within 2 kbp of TSS genome-wide with gene expression.
The method successfully predicts gene expression
using epigenetic data, and sorts calculated prediction
errors (actual expression minus predicted expression)
by PQS position near TSS. The method is unique in its
robust statistics that control for gene epigenetic signature
to isolate regulatory effects not detectable by standard
association-based methods. Our approach to modeling
gene expression was inspired by a prior publication [19].
Bayesian linear regression models were trained on TSS-
specific cap analysis of gene expression (CAGE) measure-
ments, epigenetic data including abundance of local
histone modifications (H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K27ac, H3K27me3, H3K36me3, H3K79me2,
H4K20me1), histone variant H2A.Z, and GC fraction 5
kbp upstream of the TSS. For each histone modification
and variant, we identified the position near the TSS where
the epigenetic signature best correlated with gene expres-
sion (Fig. 2a, Additional file 23: Figure S3). Model training
was conducted using half of the PQS-free TSS (i.e.no PQS

within 2 kbp of the TSS) for each cell line. Resulting
models were then applied to the remaining TSS in the
dataset (the remaining half of all PQS-free TSS as well as
all PQS-containing TSS) to generate gene expression
predictions (Additional file 23: Tables S4, S5, and S6).
Thus, each TSS in the test dataset has both predicted and
measured transcription values. A representative plot of
predicted vs. measured transcription is shown in Fig. 2b.
The difference between measured and predicted transcrip-
tion is the prediction error. Prediction error values > 0 in-
dicate greater-than-predicted transcription, and values < 0
indicate less-than-predicted transcription. Prediction er-
rors for genes with ≥ 1 PQS within 2 kbp of the TSS were
sorted based on PQS position and this distribution com-
pared to the distribution of prediction errors for PQS-free
TSS using 1-way ANOVA. Statistical methods were used
to determine threshold p-values and to estimate the FDR
by repetition of the analysis after replacement of the pre-
diction error values with randomly sampled values from
the control distribution. A representative plot for this type
of analysis is shown in Fig. 2c.
This analysis was repeated for each of 7 human cell

lines, generating a composite analysis of all statistically-
significant PQS positions correlated with gene expres-
sion (Fig. 2d). False discovery rates (FDR) for the analysis
of sense and antisense strands were below 10 % for four
of the seven cell lines tested, indicating that the observed
correlations have very low probability of being statistical
noise (Additional file 23: Tables S4). The GM12878 cell
line notably had a very high FDR for both DNA strands
(47 % for antisense strand and 54 % for sense strand).
The reason for this is unclear, but the high FDR reflects
the presence of fewer identified positions where PQS
significantly correlated with altered transcription. This is
the first PQS correlation analysis incorporating epigen-
etic data from multiple cell lines and extending the study
region to 2 kbp upstream and downstream of TSS. Inter-
estingly, the general agreement for data from different
cell lines suggests that PQS position correlates with gene
expression regardless of epigenetic context. The analysis
correlates PQS position in the antisense strand with
lower gene expression, regardless of PQS position up-
stream or downstream of the TSS. In contrast, PQS in
the sense strand show different correlations depending
on position. PQS in the sense strand are correlated with
lower gene expression, except for PQS positioned down-
stream of the TSS between 140–270 bp, 1750–1770 bp,
and 1900 bp. PQS at these three sense strand positions
were correlated with increased gene expression. This
analysis did not find PQS correlations with gene expres-
sion at all locations. In total, 33 % and 35 % of analyzed
PQS positions in the antisense and sense strands,
respectively, displayed statistically-significant PQS abun-
dance correlated with gene expression. These data
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represent a large improvement over previous studies in
terms of resolution and coverage.
It was then possible to compare position-dependent

PQS correlations with gene expression for all genes to
data for genes differentially expressed in BS and WS
(Fig. 3). For both DNA strands of genes up-regulated in
BS and WS, TSS-proximal PQS are under-represented at
positions correlated with low gene expression. Similarly,
for both DNA strands of genes down-regulated in BS and
WS, TSS-proximal PQS are over-represented at positions
correlated with low gene expression. These observations

are together consistent with a model in which the BLM
and WRN helicases suppress some inhibitory effect of
PQS during transcription. It is tempting to speculate that
this suppression involves destabilizing non-B-DNA struc-
tures at PQS. Interestingly, genes up-regulated in BS tend
to feature a region of increased PQS abundance 160–
680 bp downstream of the TSS on the sense strand, over-
lapping a region 140–270 bp downstream of the TSS
correlated with increased gene expression. It is difficult to
account for this observation, and it suggests a possible
BLM helicase-independent correlation between gene

B

CA

D

SenseAntisense

Sense

Antisense

Fig. 2 Epigenetic prediction of gene expression to identify PQS positions correlated with altered gene expression. a Correlation of log2-transformed
epigenomic track signals with log2-transformed gene expression represented as a function of location 1 kbp upstream and downstream of TSS. Bin
size is 100 bp. Prior to log2-transformation, 0.25 % of the maximal bin value was added to each bin feature to avoid the log2(0) issue. b Representative
correlation of CAGE TSS-specific gene expression measurements with epigenetic model predictions generated through Bayesian linear regression.
Models were trained on datasets containing half of all PQS-free TSS in the human genome. Gene expression predictions were then generated for the
remainder of the PQS-free TSS. c Analysis of model prediction error as a function of PQS position, assigned to sense (S) and antisense
(AS) strand effects. Prediction error estimates were sorted into 200-bp bins iterated at a 10-bp interval, based on the position of the PQS
nearest to the TSS, and then compared to the prediction error estimates for PQS-free TSS using 1-way ANOVA. The top panels show the
p-value from this analysis as a function of position with respect to the TSS. The dashed line represents the p-value threshold used for
determining statistical significance in the analysis. The bottom panels show prediction error averages for the binned values. Areas with
shaded peaks represent locations where the p-value is statistically significant for rejection of the null hypothesis. Prediction error value > 0
represent positions where PQS presence correlates with higher gene expression. Prediction error values < 0 represent positions where PQS
presence correlates with lower gene expression. d Aggregate map of all statistically-significant positions from prediction error analysis
based on seven human cell lines
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expression and PQS positioned 140–270 bp downstream
of the TSS on the DNA sense strand.

PQS motifs in genes differentially expressed in BS and WS
To examine whether particular PQS motifs are correlated
with transcription effects upon RecQ helicase loss, we an-
alyzed PQS length, number of G-stacks, base composition,
and loop lengths for genes differentially expressed in BS
and WS, comparing these results to all other PQS. Loop
lengths were calculated only for PQS containing four G-
stacks, and lacking guanine at the first or last position of

any loop sequence. PQS motifs in genes differentially-
expressed in BS and WS were then compared to all other
genes as a function of position upstream or downstream
of the TSS (Fig. 4). The results illustrate the interesting
finding that PQS motifs in genes differentially expressed
in BS and WS are statistically different from PQS in the
remainder of the genome. Interestingly, these differences
are consistent regardless of PQS position upstream or
downstream of the TSS. FDR for this analysis was deter-
mined by statistical modeling using randomly-generated
gene datasets, and is presented in Additional file 23:

Werner SyndromeBloom Syndrome

Fig. 4 PQS motif characteristics in genes differentially expressed in BS and WS analyzed via ANOVA. PQS motif characteristics (total sequence
length, loop lengths, base fractions, and number of G-stacks) in genes differentially expressed in BS and WS. P-values and ratios for comparison to
the genome-wide distribution are calculated using a 200 bp bin selection, repeated at a 50 bp interval, and in reference to corresponding PQS
position on antisense (AS) strand or sense (S) strand for all genes. Red = genes up-regulated in BS and WS. Blue = genes down-regulated in BS
and WS. Solid line = AS. Dashed line = S

Down-Regulated

Down-Regulated
Up-Regulated

Up-Regulated

Down-Regulated

Down-Regulated
Up-Regulated

Up-Regulated

WS

PQS Effect

PQS Effect

= Expression Activating Effect

= Expression Repressing Effect

= PQS Number Enrichment

= PQS Number Depletion

BS

WS

BS

Fig. 3 Analysis of PQS abundance in BS and WS along with position-dependent correlations with transcription. Heat map showing PQS excess or
scarcity in genes differentially expressed in BS and WS (yellow = excess, blue = scarcity), as well as the correlation of PQS at these positions with
transcription (green = high transcription, red = low transcription)
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Table S7A. The position-independent similarity of PQS
motifs in genes differentially expressed in BS and WS
allowed an aggregate analysis of these motifs in com-
parison with all other PQS motifs near promoters of
other genes (Additional file 23: Table S7B).

Multidimensional PQS motif clustering
We further analyzed PQS motifs present in genes differen-
tially expressed in BS and WS using a multidimensional
self-organizing map (SOM) neural network classification.
SOMs were historically designed to represent a high-
dimensional space as a simple two-dimensional topo-
logical map [20]. We implemented SOM clustering of all
PQS containing four G stacks. Using a 5X5 input matrix,
SOM clustering was conducted using PQS total motif
length, loop lengths, and base composition as the input
dataset for training. PQS features for motif centroids of
the 25 nodes resulting from the clustering protocol are

presented in Fig. 5a. The number of PQS counts per node,
calculated on the basis of shortest multidimensional dis-
tance, is presented in Fig. 5b. The multidimensional dis-
tance between nodes is represented in Fig. 5c. To
ascertain whether particular PQS motifs are associated
with genes differentially expressed in BS and WS, we ex-
tracted these PQS motifs for these genes and calculated
the average number of PQS per node, normalized to the
total number of genes in the dataset. The same gene
number-normalized calculation was repeated for the gen-
ome-wide dataset. A 95 % confidence interval for nor-
mal statistical variability in cluster composition was
also determined by statistical modeling conducted by
repeating the same calculation on randomly-generated
gene sets of the same size as the differential expression
gene datasets. This comparison of PQS motif clusters
from genes differentially expressed in BS and WS con-
firmed that certain PQS motifs are enriched in a

Node Features Counts Distance Between Nodes

Werner SyndromeBloom Syndrome

Up-Regulated Down-Regulated Up-Regulated Down-Regulated

BA C

D

-2.5 0
Log2 Enrichment

2.5

Fig. 5 Self-organizing map analysis of PQS motifs in genes differentially-expressed in BS and WS. Multidimensional self-organizing map clustering
of all human genome PQS within 2 kbp of TSS, based on total sequence length, loop lengths, number of G-stacks, and nucleotide base fractions.
a PQS parameters for node centroids. b Counts of PQS binned by distance in multidimensional space to closest node. c Distance between nodes.
d PQS node bias in genes differentially expressed in BS and WS. Bias represents number of unique PQS per node, normalized to dataset gene
number, compared to the same calculation for all genes genome-wide. Green and red nodes represent positive (excess) or negative (scarcity)
bias values that are outside of the 95 % CI for randomly-generated gene datasets of the same size. Green = excess. Red = scarcity. Gray = no
statistically-significant difference
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statistically-meaningful fashion (Fig. 5d). This provocative
finding reveals a PQS motif bias in genes differentially
expressed upon loss of RecQ helicases.

Discussion
We hypothesized that PQS patterns in genes differentially
transcribed in BS and WS reveal transcriptional effects of
PQS. In essence, BS and WS are natural RecQ helicase
knockout experiments where transcriptional effects of
persistent PQS non-B DNA structures are revealed. We
further hypothesize that PQS in genes differentially-
expressed in BS and WS are biased in their composition.
We report analyses that support these hypotheses.

Promoter PQS abundance correlates with transcriptional
effect upon RecQ helicase loss
Regarding the first hypothesis, our analysis of PQS in
promoters of genes differentially-expressed in BS and
WS shows that patterns of PQS abundance in up- and
down-regulated genes are opposite (Fig. 1). Genes up-
regulated upon RecQ helicase loss have a scarcity of pro-
moter PQS and down-regulated genes have an abundance
of PQS. This is reflected in the higher or lower numbers
of PQS per TSS calculated for these gene sets compared
to the genomic average (BS up-regulated: 1.61, BS down-
regulated: 2.80, WS up-regulated: 1.58, WS down-
regulated: 2.42, genome-wide average: 1.80; Additional file
23: Table S3). Interestingly, up- and down-regulated genes
in BS and WS are more likely to have at least one PQS
within 2 kbp of a TSS (BS: 84 % of up-regulated genes and
90 % of down-regulated genes, WS: 74 % of up-regulated
genes and 84 % of down-regulated genes, genome-wide
average: 55 %; Additional file 23: Table S1). The implica-
tion of these results is that genes up-regulated in BS and
WS have fewer PQS per TSS than the genomic average,
but, surprisingly, are unlikely to have zero PQS motifs.
Our results support a model in which promoter PQS gen-
erally repress transcription and RecQ helicases tend to
moderate this repression.

Promoter PQS abundance is altered at discrete positions
in genes sensitive to RecQ helicase loss
Beyond PQS abundance, we find that PQS position is
important. We have demonstrated that PQS abundance
in genes differentially expressed in BS and WS is not
randomly distributed across promoters, but discrete po-
sitions of abundance/scarcity are detected. The most
striking example of this position-dependence is on the
sense strand of genes up-regulated in BS (Fig. 1b). Here
PQS are scarce > 1 kbp upstream and downstream, but
abundant 160–680 bp downstream of the TSS. This sub-
tle and perplexing PQS position-dependence is missed
when evaluating only aggregate PQS numbers per TSS.

Our analysis expands the current state of knowledge
regarding PQS abundance in genes differentially expressed
in BS and WS. Johnson et al. have shown that PQS are
more abundant in non-coding regions of genes up-
regulated in BS and WS [14]. This study, however, did not
find statistically-significant correlation between PQS and
genes down-regulated in BS and WS. Recent work
improved upon this analysis by demonstrating increased
PQS abundance in genes down-regulated in BS up to
250 bp upstream of the TSS on the antisense strand and
at the 5′ end of the first intron on the sense strand [16].
Genes up-regulated in BS were also found to have in-
creased PQS abundance flanking the TSS (within
250 bp) on the antisense strand and at the 5′ end of
the first intron on both sense and antisense strands.
Interestingly, our analysis does not corroborate the find-
ings of Nguyen et al. that PQS abundance is increased up
to 250 bp upstream of the TSS on the antisense strand in
genes down-regulated in BS, nor the finding that PQS
abundance is increased flanking the TSS on the antisense
strand for up-regulated genes. We suggest that the dis-
crepancy is due to the rigorous statistical criteria in our
analysis, and the higher resolution (smaller bin size) than
was used by Nguyen et al. Thus, our data analysis exam-
ines PQS patterns further upstream and downstream of
the TSS (a full 4 kbp window), and at a higher resolution
(200 bp) than any previous study. We provide the first evi-
dence that PQS abundance is significantly lower in the
promoter-proximal region of genes up-regulated in BS
and WS. The finding that PQS abundance is generally
higher in genes down-regulated in BS and WS and lower
in genes up-regulated genes in BS and WS, compared to
the genomic average, provides an important insight.
Again, these results support a model in which promoter
PQS are generally repressive of transcription and RecQ
helicases tend to modulate this repression.

PQS position correlates with transcriptional effect
genome-wide
We have also correlated PQS position with gene expres-
sion while controlling for epigenetic status to isolate
intrinsic PQS transcriptional effects (Fig. 2). For 33 % and
35 % of analyzed PQS positions in the antisense and sense
strands, respectively, there was a statistically-significant
correlation between PQS abundance and gene expression.
Of these statistically-significant regions, 100 % and 84 %
on antisense and sense strands, respectively were corre-
lated with reduced expression. This suggests that tran-
scriptional repression may be the dominant effect of
promoter-proximal PQS, although certain PQS positions
are correlated with increased gene expression (e.g. 140–
270 bp downstream of TSS on the sense strand). The find-
ing that PQS are correlated with increased or decreased
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transcription in a position-dependent manner is extremely
intriguing and has never been reported before.
While there is general agreement with results of previ-

ous work, our genome-wide correlation of promoter
PQS with gene expression provides a significant im-
provement over previous analyses. A prior analysis [18]
also correlated PQS in the sense strand up to 500 bp
downstream of the TSS with higher gene expression.
This prior analysis, which controls for attributes of gene
family, function, and promoter similarity, did not find
statistically significant correlation of PQS upstream of
the TSS with gene expression. In contrast, the robust
statistical analysis reported here, which controls for epi-
genetic status, shows that PQS upstream of the TSS on
both DNA strand are correlated with lower gene expres-
sion. In addition to this greater sensitivity, our genome-
wide correlation of promoter PQS and gene expression
covers a larger genomic window (2 kbp upstream and
downstream of each TSS) at a higher resolution (200 bp)
than previously reported by Zhuo et al. (500 bp). For
many of the genes differentially expressed in BS and WS,
important PQS positions are > 500 bp distal from the TSS
(86 % for BS, 71 % for WS). The study by Zhuo et al. was
not able to provide insight into gene expression correla-
tions for PQS in these positions. Additionally, the method-
ology of our study utilizing simultaneous analysis of PQS
abundance in genes differentially expressed in BS and WS,
and genome-wide correlation of promoter PQS with gene
expression are unique (Fig. 3).

PQS motifs are biased in genes sensitive to RecQ helicase
loss
Regarding the second hypothesis of this work, we show
that PQS motifs in genes differentially expressed in BS
and WS are significantly biased in their composition
(Figs. 4 and 5). This indicates that specific sequence pat-
terns may be important in PQS biological function. The
reason for this is not clear, but it could reflect specificity
in the PQS-helicase interaction or else selection of cer-
tain motif patterns for yet unknown reasons. This is the
first demonstration of PQS motif bias in a differentially-
expressed gene set.

PQS abundance and correlations with transcription
suggest a hypothetical transcriptional regulatory model
The data from the present study clearly correlate PQS
motifs with increased or decreased transcription in a pos-
ition- and strand-dependent manner. In the absence of bio-
chemical evidence, however, caution is urged in attributing
PQS transcriptional correlation to effects due to non-B
DNA structures. Nonetheless, these data might be inter-
preted as evidence that non-B DNA G-quadruplex struc-
tures have position-dependent regulatory effects on gene
expression, and these effects can be modified by RecQ

helicases. We therefore propose a hypothetical transcrip-
tional model that can account for the observed PQS tran-
scriptional correlations via position- and strand-dependent
effects of intrastrand G-quadruplex structures (Fig. 6).
In this model, PQS located between 140 and 270 bp

downstream of the TSS on the sense strand have a
transcription-activating effect mediated by sense strand
G-quadruplex formation, resulting in greater accessibil-
ity of the antisense strand to RNAPII, facilitating tran-
scriptional initiation. This model for PQS-mediated
transcriptional activation has previously been described
by Du et al. [18]. A slight difference, however, is that we
propose that this mechanism only applies to the sense
strand at 140–270 bp downstream, verses both DNA
strand located 0–500 bp downstream. An intriguing
addition to the model includes the RecQ helicases as
inhibitors of intrastrand G-quadruplex formation, which
may functionally inhibit this transcriptional activation
mechanism. The rationale for this addition to the model
is the known function of the RecQ helicases as G-
quadruplex resolving enzymes [7, 8], and also to the fact
that both BS and WS have many more up-regulated
genes than down-regulated genes (BS: 1012 up-regulated,
141 down-regulated, WS: 1046 up-regulated, 540 down-
regulated (Additional file 23: Table S1)). RecQ helicases as
inhibitors of G-quadruplex formation at this location may
account for the fact that many genes are transcribed at
higher levels upon RecQ helicase loss.
The majority of PQS positions near the TSS, however,

are correlated with decreased transcription. In our model,
we account for this by proposing that downstream PQS in
both strands spontaneously form intrastrand G-quadruplex
structures that hinder the passage of RNAPII, effectively
reducing the level of transcription. We propose that the
RecQ helicases resolve intrastrand G-quadruplex struc-
tures, partially relieving the G-quadruplex mediated tran-
scriptional repressive effect. This model is consistent with
our analysis of BS and WS showing that down-regulated
genes have an abundance of PQS in positions correlated
with reduced expression. This model also has support from
in vitro experiments performed by others studying individ-
ual genes with promoter-proximal PQS using stabilizing
ligands [21, 22].
It is slightly more challenging to explain the correl-

ation of upstream PQS and reduced transcription. Our
data is the first to suggest a function role of upstream
PQS, and no mechanism currently exists to explain our
observations in this region. This is a topic that clearly
requires further investigation.

Relevance to other RecQ helicases
It is intriguing to consider whether correlations of PQS
abundance/location with transcriptional sensitivity to
RecQ helicase loss observed in this study may similarly
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be found for other DNA helicases such as the RecQ4
helicase (deficient in Rothmund-Thomson photosensitiv-
ity- and cancer-associated syndrome), FANCJ helicase
(deficient in Fanconi Anemia), and RecQ1 and RecQ5
helicases (members of the RecQ helicase family, but
lacking evidence of a human phenotype). Of these heli-
cases, BLM, WRN, RecQ4, and FANCJ reportedly have
measurable affinity and helicase activity for G-
quadruplex DNA in vitro, in addition to other diverse
specificities and activities that are unique to each heli-
case. It is possible that similar patterns to those observed
for BLM and WRN helicases in the present work may
also be observed for RecQ4 and FANCJ helicases,

although testing this experimentally is beyond the scope
of the present work. There is less experimental evidence,
however, that RecQ1 and RecQ5 have significant affinity
and helicase activity for G-quadruplex DNA, although
these helicases do have affinity and helicase activity for
other DNA structures. It would therefore be less likely
that significant correlation would be observed between
PQS abundance/location and transcriptional change in
RecQ1 and RecQ5-deficient cell lines.

Conclusions
We have used analysis of PQS in BS and WS in com-
bination with genome-wide correlation of PQS motif
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Fig. 6 A model to account for PQS transcriptional correlations. Model summarizes PQS position- and strand-dependent correlations with gene
transcription determined from the present work and possible molecular mechanisms to explain these observations. An increase in transcription
may be facilitated by the formation of intramolecular G-quadruplex structures between 140–270 bp downstream of the TSS on the sense strand
(a), resulting in the release of the antisense strand from Watson-Crick base pairing and enabling easier access of the antisense strand to RNAPII,
aiding transcription initiation (b). Formation of G-quadruplex structures in this region may also recruit G-quadruplex DNA-binding proteins (c)
which may further stabilize G-quadruplex structures and enhance transcription. Resolution of G-quadruplex structures by BLM and WRN helicases
(d) attenuates this transcriptional-activating effect. Transcriptional decrease mediated by PQS downstream of the TSS on both DNA strands may
be facilitated by intramolecular G-quadruplex formation, resulting in a biophysical roadblock which prevents the passage of RNAPII and hinders
transcript elongation (e). Resolution of G-quadruplex structures by BLM and WRN helicases in this region attenuates the transcriptional-repressing
effect of the biophysical roadblock (f). Transcriptional decrease mediated by PQS upstream of the TSS may be recruitment of trans-acting factors
that attenuate transcription (g). Resolution of G-quadruplex structures in this region attenuates this transcriptional repressing effect (h)
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position with transcription using data from seven hu-
man cell lines to imply the functional roles of PQS
motifs. Our studies reveal that PQS have position-
and strand-dependent correlations with both increased
and decreased transcription, and suggest that the
RecQ helicases are functionally important in moderat-
ing PQS transcriptional effects. Particularly novel in-
sights this these high-resolution analyses are that i)
PQS abundance in BS and WS differentially-expressed
genes varies strongly with both position and strand;
ii) PQS motifs in BS and WS differentially expressed
genes are significantly biased in composition; and iii)
PQS in multiple human cell lines are associated with
activated or repressed transcription in a strand- and
position-dependent manner.

Availability of supporting data
Supporting data are included as additional files.

Additional files

Additional file 1: Genomic coordinates and motif features for all
PQS. Reference coordinates from GRCh37 calculated using the
Quadparser algorithm, and analysis of individual PQS sequence features
including total length, loop lengths, number of G stacks, and base
fractions of adenine, thymine, and cytosine. (ZIP 13239 kb)

Additional file 2: R code used for mapping genomic PQS to known
TSS. Program written in R, used for mapping PQS motifs to known TSS.
Takes GENCODE annotations in .csv format and Additional file 1 as input.
(R 7 kb)

Additional file 3: Mapped coordinates of all PQS within 2 kbp of
known TSS. Genomic coordinates and gene localization of all PQS
within 2 kbp of known TSS. Each row contains data on a PQS motif and
its host gene. PQS entries are repeated multiple times if a given motif is
within 2 kbp of multiple TSS. Genes without any PQS motifs are
represented as single rows with missing PQS motif data. (ZIP 11660 kb)

Additional file 4: Differentially expressed genes in Werner
Syndrome. List of genes that are differentially expressed in human
fibroblasts in Werner Syndrome. (CSV 116 kb)

Additional file 5: R code for PQS abundance analysis in BS and WS
differentially-expressed genes. Program written in R for analyzing
differences in PQS abundance between BS/WS differentially-expressed
genes and the rest of the genes in the genome. Takes Additional files 3
and 5 as input. (R 50 kb)

Additional file 6: R code for GENCODE annotation processing
protocol for epigenetic modeling of gene expression method.
Program written in R for filtering low quality transcript annotations,
assigning unique TSS numberings, and unique gene numberings.
Takes GENCODE annotations in .gtf format as input. (R 3 kb)

Additional file 7: R code for CAGE data processing for epigenetic
modeling of gene expression method. Program written in R that takes
CAGE data in .gtf format and the output of Additional file 6 as input,
merges rows with GENCODE annotation table (output of Additional file
6), calculates aggregate expression of all transcripts originating from a
given TSS, and identifies TSS for each gene with the highest expression.
(R 4 kb)

Additional file 8: R code for mapping PQS to TSS for epigenetic
modeling of gene expression method. Program written in R that
identifies all PQS within 2 kbp of TSS, calculates relative distance between
PQS and TSS, identifies whether PQS are located on sense or antisense

strand. Takes Additional file 1 and the output of Additional file 8 as input.
(R 13 kb)

Additional file 9: R code for extracting DNAse 1 genomic track
signal near TSS for epigenetic modeling of gene expression
method. Program written in R that calculates DNAse track signal in 100
bp bins spanning 1 kbp upstream and downstream of the TSS. Takes
.bigwig file of DNAse 1 hypersesitivity epigenomic track and output of
Additional file 8 as input. (R 4 kb)

Additional file 10: R code for extracting histone modification
track signal near TSS for epigenetic modeling of gene
expression method. Program written in R that calculates histone
modification track signal in 100 bp bins spanning 1 kbp upstream
and downstream of the TSS. Takes multiple .bigwig files of histone
modification epigenomic tracks and the output of Additional file 9 as
input. (R 5 kb)

Additional file 11: R code for determining optimal pseudocount
and bin for epigenetic modeling of gene expression method.
Program written in R that identifies optimal pseudocount and bin for
calculating correlations of epigenomic track signals with gene expression.
Takes output of Additional file 10 as input. (R 5 kb)

Additional file 12: GM12878 epigenetic modeling of gene
expression dataset. Expression modeling dataset used for epigenetic
modeling of gene expression analysis. Each row corresponds to a TSS
and contains information on positions of PQS within 2 kbp of the TSS as
well as “bestbin” epigenomic track signals for DNase hypersensitivity and
histone modifications. This file is an output of Additional file 11 and is
taken as input by Additional file 19. (CSV 2493 kb)

Additional file 13: H1-hESC epigenetic modeling of gene
expression dataset. Expression modeling dataset used for epigenetic
modeling of gene expression analysis. Each row corresponds to a TSS
and contains information on positions of PQS within 2 kbp of the TSS as
well as “bestbin” epigenomic track signals for DNase hypersensitivity and
histone modifications. This file is an output of Additional file 11 and is
taken as input by Additional file 19. (CSV 6250 kb)

Additional file 14: HeLa-S3 epigenetic modeling of gene expression
dataset. Expression modeling dataset used for epigenetic modeling of
gene expression analysis. Each row corresponds to a TSS and contains
information on positions of PQS within 2 kbp of the TSS as well as
“bestbin” epigenomic track signals for DNase hypersensitivity and histone
modifications. This file is an output of Additional file 11 and is taken as
input by Additional file 19. (CSV 4263 kb)

Additional file 15: HepG2 epigenetic modeling of gene expression
dataset. Expression modeling dataset used for epigenetic modeling of
gene expression analysis. Each row corresponds to a TSS and contains
information on positions of PQS within 2 kbp of the TSS as well as
“bestbin” epigenomic track signals for DNase hypersensitivity and histone
modifications. This file is an output of Additional file 11 and is taken as
input by Additional file 19. (CSV 4911 kb)

Additional file 16: HUVEC epigenetic modeling of gene expression
dataset. Expression modeling dataset used for epigenetic modeling of
gene expression analysis. Each row corresponds to a TSS and contains
information on positions of PQS within 2 kbp of the TSS as well as
“bestbin” epigenomic track signals for DNase hypersensitivity and histone
modifications. This file is an output of Additional file 11 and is taken as
input by Additional file 19. (CSV 3089 kb)

Additional file 17: K562 epigenetic modeling of gene expression
dataset. Expression modeling dataset used for epigenetic modeling of
gene expression analysis. Each row corresponds to a TSS and contains
information on positions of PQS within 2 kbp of the TSS as well as
“bestbin” epigenomic track signals for DNase hypersensitivity and histone
modifications. This file is an output of Additional file 11 and is taken as
input by Additional file 19. (CSV 4722 kb)

Additional file 18: NHEK epigenetic modeling of gene expression
dataset. Expression modeling dataset used for epigenetic modeling of
gene expression analysis. Each row corresponds to a TSS and contains
information on positions of PQS within 2 kbp of the TSS as well as
“bestbin” epigenomic track signals for DNase hypersensitivity and histone
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modifications. This file is an output of Additional file 11 and is taken as
input by Additional file 19. (CSV 2268 kb)

Additional file 19: R code for implementing epigenetic modeling of
gene expression and analyzing PQS transcriptional effects. Program
written in R that takes Additional files 12, 13, 14, 15, 16, 17, 18 as inputs
and trains a Bayesian linear regression model upon epigenomic data to
predict gene expression levels. Models are then applied to gene sets not
used for training, and the subsequent sorting of modeling prediction
errors by PQS position is used to calculate PQS transcriptional effects.
Also conducts statistical bootstrapping simulations to estimate the FDR
for this analysis. (R 44 kb)

Additional file 20: R code for PQS feature analysis in BS and WS via
ANOVA. Program written in R that analyses promoter-proximal PQS motif
length, loop lengths, and base fraction in differentially expressed genes
in BS and WS and compares the result to the genomic distribution.
Takes Additional file 1 an Additional file 4 as input. (R 78 kb)

Additional file 21: R code for PQS motif analysis in BS and WS
differentially-expressed genes via SOM method. Program written in
R for conducting self-organizing map classification of PQS motifs and
analyzing enrichment of certain types of motifs in genes differentially
expressed in BS and WS. (R 11 kb)

Additional file 22: PQS motif classifications from SOM method.
PQS motif classifications from self-organizing map analysis. Number of
nearest multidimensional cluster is given as the last column in the
dataset. (CSV 8064 kb)

Additional file 23: Supplemental Figures S1 to S3 and Tables S1 to
S7 with corresponding legends. (PDF 677 kb)
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