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Abstract

transcriptional regulation of MDM2 in endometrial cancers.

Background: The functional single nucleotide polymorphism (SNP) in the MDM?2 promoter region, SNP309, is known
to be associated with various diseases, particularly cancer. Although many studies have been performed to
demonstrate the mechanism of allele-specific expression (ASE) on SNP309, they have only utilized in vitro techniques. It
is unknown whether ASE of MDM? is ascribed solely to SNP309, in vivo.

Methods: We attempted to evaluate ASE of MDM?2 in vivo using post-labeling followed by automated capillary
electrophoresis under single-strand conformation polymorphism conditions. For measuring a quantitative difference,
we utilized the SNPs on the exons of MDM?2 as markers, the status of which was heterozygous in a large population. To
address the cause of ASE beyond 20 %, we confirmed sequences of both MDM2-3'UTR and promoter regions. We
assessed the SNP which might be the cause of ASE using biomolecular interaction analysis and luciferase assay.

Results: ASE beyond 20 % was detected in endometrial cancers, but not in cancer-free endometria samples only when
an SNP rs1690916 was used as a marker. We suspected that this ASE in endometrial cancer was caused by the
sequence heterogeneity in the MDM2-P2 promoter, and found a new functional polymorphism, which we labelled
SNP55. There was no difference between cancer-free endometria and endometrial cancer samples neither for SNP55
genotype frequencies nor allele frequencies, and so, SNP55 alone does not affect endometrial cancer risk. The SNP55
status affected the DNA binding affinity of transcription factor Sp1 and nuclear factor kappa-B (NFkB). Transcriptional
activity of the P2 promoter containing SNP55C was suppressed by NFkB p50 homodimers, but that of SNP55T was not.
Only ASE-positive endometrial cancer samples displayed nuclear localization of NFkB p50.

Conclusions: Our findings suggest that both the SNP55 status and the NFkB p50 activity are important in the

Background

Normal mammalian somatic cells have a limited lifespan.
Cells are able to divide only a limited number of times, and
then undergo senescence. If the cellular senescence system
is impaired by an insult such as an epigenetic change or a
somatic mutation normal cells acquire the ability to prolif-
erate for an unlimited period (immortalization). This is an
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essential step that initiates tumorigenesis in the malignant
transformation of normal cells [1-6]. Inheritable genome
variations were also recently shown to disrupt cellular sen-
escence system [7-9]. Genome wide association studies
(GWAS) have revealed an association between genetic var-
iations and common diseases, and that most of these poly-
morphisms do not change the protein sequence [10, 11].
Some of the single nucleotide polymorphisms (SNPs) in
gene promoter regions, termed rSNPs, have a potential to
modulate gene expression.

If rSNP exists as a heterozygous state, a quantitative dif-
ference in gene expression between the two alleles should
be observed. This phenomenon is called allele-specific ex-
pression (ASE) [12-20]. A previous study about ASE
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revealed that six out of 13 genes showed more than a
20 % difference in gene expression between the two alleles
[12]. Lo et al. [17] showed that ASE was detected in 54 %
of genes (326/602), which was investigated using Affyme-
trix” HuSNP oligo array in the kidneys and livers from
seven individuals; they also identified that most imbal-
anced expression was associated with autosomal genes
and a few imprint genes. Another study detected ASE in
53 % of genes (731/1389) in the leukocytes from 12 unre-
lated individuals, [19]. Many studies have confirmed the
association between diseases, particularly cancer, and
rSNPs in various autosomal genes [APC [9], TGFBRI [21],
AGTRI [22], FSHB [23, 24], BRCAI and BRCA2 [25],
CRACI [26], CDHI [27], MDM2 [28-30]].

Mdm?2 was originally identified as an amplified proto-
oncogene in the BALB/c cell line 3T3DM [31]. The major
function of Mdm?2 is a negative regulation of the p53
tumor suppressor protein. Mdm2 has E3 ubiquitin ligase
activity; it binds to the transcriptional activation domain
of p53 leading to proteasome-mediated degradation [32—
35]. Cloning of the human homolog of Mdm?2 allowed the
confirmation of the interaction with p53, which indicated
that MDM2 contributes to tumorigenesis. MDM?2
[GenBank: AF527840] is amplified in 30-40 % of sarco-
mas [36, 37] as well as various cancers [38]. Several re-
ports describe MDM?2 overexpression in certain cancers
without gene amplification, such as leukemia [39], melan-
oma [40, 41], and breast cancer [42, 43].

MDM?2 is transcribed from two promoters; the one that
is upstream of exon 1 (the P1 promoter) and the other that
is in intron 1 (the P2 promoter) [44—46]. The MDM2-P1
promoter works for basal transcription independently of
p53, whereas the MDM?2-P2 promoter is considered to be
inducible by p53. There is a difference in the 5 un-
translated region (UTR) sequence between P1- and P2-
derived mRNAs. ASE was reported in both MDM2-P1
and MDM?2-P2 promoters. C1797G (rs937282; C/G)
polymorphism in the MDAM2-P1 promoter may affect
transcription by altering the binding affinity of CCAAT-
enhancer-binding protein (C/EBPa) to the promoter. It is
also associated with bladder cancer risk [29]. In the
MDM?2-P2 promoter, SNP285 (rs117039649; C/G) [30, 47,
48], SNP309 (rs2279744; G/T) [28, 49], and SNP344
(rs1196333; A/T) [50] were reported, of which SNP309 is
particularly well investigated. SNP309G enhances MDM?2
expression from the P2 promoter by increasing the bind-
ing affinity of the transcription factor Spl. Therefore, a
large number of retrospective analyses were conducted
showing an association between SNP309G and cancer risk
[51-56]. However, other studies have failed to confirm this
association [57-61], and the results remain inconsistent
for endometrial cancer [51, 62—66].

In this study, we attempted to confirm that ASE of
MDM?2 occurs in vivo in cancer-free endometria and in
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endometrial cancer. We identified a new functional
polymorphism, SNP55 (rs2870820; C/T), which causes
ASE of MDM?2. SNP55 status alone had no association
with endometrial cancer risk. We revealed that SNP55C
suppressed the transcriptional activity of the AMDM2-P2
promoter by recruiting the nuclear factor kappa-B (NF«B)
p50 homodimer.

Methods

Tissue samples and cell culture

The use of human tissue in this investigation was
reviewed and approved by the ethical committee of Kyu-
shu University. Cancer-free endometrial tissues (n =45)
were collected from hysterectomy specimens removed
for the treatment of uterine myomas. Endometrial can-
cer samples (n =45) were obtained from women who
underwent surgery. In all case, written consent for tissue
donation was obtained from participants. COS-1 cells
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma) supplemented with 10 % calf serum
(Nichirei Biosciences) and 1 % penicillin/streptomycin
(Gibco). Cells were cultured at 37 °C in a humidified
5 % CO, atmosphere.

Preparation of genomic DNA, RNA, and cDNA

Genomic DNA and RNA were concurrently extracted
from endometrium specimens (both with cancer and
cancer-free) using AllPrep DNA/RNA Mini Kit (Qiagen).
An aliquot of the total RNA (500 ng) was reverse tran-
scribed to ¢cDNA using random primer and ReverTra
Ace-a® (Takara).

Genotyping

Both SNP55 and SNP309 in the MDM?2-P2 promoter re-
gion were identified via PCR amplification followed by
sequencing the amplified PCR fragments. PCR primers
(Forward: 5-CGAGCTTGGCTGCTTCTGGG-3’, Re-
verse: 5'-GCTGGAATCTGTGAGGTGGT-3") were de-
signed against the sequence around these two SNPs to
amplify approximately 1 kbp of the product using KOD-
FX (TOYOBO). PCR products were separated by a 1 %
agarose gel and excised. They were purified using GEX™
PCR DNA and Gel Band Purification Kit (GE Healthcare).
Purified PCR products were sequenced using a sequencing
primer (5'-AGCAAGTCGGTGCTTACCTG-3’). Sequen-
cing reactions were conducted using BigDye Terminator
v3.1 Cycle Sequencing Kits (Applied Biosystems). Two
marker SNPs, rs1690916 (A/G) and rs937283 (A/QG), were
genotyped by post-labeling followed by automated capil-
lary electrophoresis (PLACE) under single-strand con-
formation polymorphism (SSCP) conditions (the PLACE-
SSCP method) using genomic DNA.
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In order to determine the haplotype involving SNP55
and SNP309, we cloned the relevant region and sequenced.
The MDM2-P2 promoter region of genomic DNA was
amplified by PCR with KOD-FX (TOYOBO) using forward
primer, 5'-TATCTCGAGGTACTGGCCCGGCAGCGA-3’
and reverse primer, 5-TATAAGCTTGAACACAGCTG
GGAAAATGC-3". PCR products were inserted into EcoRV
site of pBluescript® (Stratagene) and the insert regions were
sequenced.

PLACE-SSCP and in vitro transcription

DNA fragments around marker SNPs were amplified by
PCR. For marker SNP rs1690916, PCR amplification was
performed using Ampli Taq DNA polymerase (Applied
Biosystems) and the following primers: forward, 5'-attA
TCAGGCCCTTTTTCACACA-3" and reverse, 5'-gttACC
CAGGCCAAGAAGGTACT-3" (product size 122 bp). The
“att” and “gtt” sequences were tags attached for the purpose
of fluorescent post-labeling [67]. For marker SNP rs937283,
PCR was performed using KOD-FX (TOYOBO) and the
following primers: forward, 5 -att CTGGCCCGGAGAGTG
GAAT-3" and reverse, 5" -gttAATGGTCCCGTTTTCGCG
CTTGGAGTC-3" (product size 124 bp), and because the
initial attempt revealed poor separation of the two alleles
of SNP rs937283, we attached 9-bp extra-sequences
(underlined) to the N-terminus of the reverse primer,
so that only the PCR product from the G-allele of SNP
rs937283 could form a stem-loop structure. The details
of the PLACE-SSCP method have been described previ-
ously [67]. The analysis of marker SNP rs937283 was per-
formed using 0.094 pl of Thermo Sequenase (GE
Healthcare) per sample for post-labeling, which was ten
times greater than usual, and SSCP electrophoresis was
performed at 42 °C.

Precise quantification of the alleles in cDNA was per-
formed by synthesizing four RNA fragments correspond-
ing to the two marker SNPs (A/G for rs937283 and G/A
for rs1690916) by in vitro transcription. Templates were
produced by PCR amplification using the same primers
as those used for PLACE-SSCP. Templates were sub-
cloned into pBluescript® (Stratagene) and subjected to
in vitro transcription using an in vitro transcription T7
kit (Takara). Template DNA was digested with DNase
(Promega). Following phenol and chloroform extrac-
tions, the produced RNA was purified and concentration
was measured by NanoDrop™ (Thermo Scientific).

Transcription factor Sp1 and NFkB p50-DNA binding
analysis

Biomolecular interaction analysis (BIA) was performed on
the Biacore3000 (GE Healthcare). Sensor chip SA was used
to anchor one of the two different double-stranded DNA
22-mers (5'-GACGGTGTCCC/TTTCTATCGCTG-3’) rep
resenting the AMDAM?2-P2 promoter with different SNP55
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status, of which the N-terminus was biotinylated. To con-
firm that only double-stranded DNA fragments were immo-
bilized, single-stranded binding proteins were injected at a
concentration of 2.5 pg/ml with a flow 5 pl/min for 1 min
and no signals were detected (data not shown). At a level of
2000 response units (RU), DNA fragments were immobi-
lized in each flow cell. Transcription factor Sp1 (Proteinone),
extracted from HeLa cells, or recombinant NF«B p50 (Enzo)
was prepared at a concentration of 1 pg/ml, in advance.
Both proteins were injected in flow cells and a reference sur-
face (blank) for comparison with a 5 pl/min flow for 5 min
at 25 °C. Biosensor data were analyzed using the BIA evalu-
ation software.

Construction of plasmids

The MDM2-P2 promoter region of genomic DNA was
amplified by PCR. PCR products containing either SNP55T
or SNP55C were inserted in tandem into a pGL4 luciferase
reporter plasmid (Promega). PCR of the MDM2-P2 pro-
moter region was performed using the following primers:
forward, 5'-TATCTCGAGGTACTGGCCCGGCAGCGA-
3" and reverse, 5'-TATAAGCTTGAACACAGCTGGGAA
AATGC-3’, including the Xhol and HindlIll restriction site.
We confirmed that the clones had different SNP55 sta-
tuses only, and that the other sequences were identical.
We constructed expression vectors, pcDNA-myc-Spl
and pcDNA-FLAG-NFkB p50, as follows. Transcription
factor Spl and NFkB p50 were amplified from the
c¢DNA of MCF-7 cell lines by KOD-FX (TOYOBO).
During PCR, we attached a myc-tag to the N-terminus
of transcription factor Spl using the following primers:
forward, 5'-TATGAATTCGCCACCATGGAACAGAA
ACTGATCTCTGAAGAAGACCTGAGCGACCAAGA
TCACTCC-3" and reverse, 5'-ATACTCGAGgTCAGA
AGCCATTGCCACTGAT-3" and the FLAG tag to the
N-terminus of NFkB p50 using the following primers:
forward, 5 -TATGAATTCGCCACCATGGACTACAAA
AGACGATGACGACAAGGCAGAAGATGATCCATAT-
3" and reverse, 5'-ATACTCGAGCTAACTTCCAGTGCC
CCCTCC-3’, including the EcoRI and Xhol restriction site.
The amplified fragments and pcDNA3 (Invitrogen) were li-
gated using the EcoRI and Xhol enzymes (Takara Biotech
Co) and were subcloned into pcDNA3.

Transfection and luciferase assay

COS-1 cells (2 x 10° cells/6 wells) were transfected with
1 pg of pGL4 reporter plasmids using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s in-
structions. Reporter plasmids and expression vectors
were co-transfected (Fig. 6). Cells were harvested 24 h
after transfection. Luciferase activity was determined
using the Luciferase Assay System (Promega). For cor-
rection of variations, the cultured cells were co-
transfected with a [-galactosidase expression vector,
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a) The transcription start sites of the two promoters are indicated. (b) The two
transcriptional products from the P1 and P2 promoters have different 5" (untranslated region) UTR sequences. All MDM2 RNAs have the
same 3' UTR sequences, in which single nucleotide polymorphism (SNP) rs1690916 is located. SNP rs937283 is on exon 1, therefore only

P1 transcript
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rs1690916
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P2 transcript

pcDNA-LacZ. Luciferase activity was normalized ac-
cording to the [B-galactosidase activity. Each transfec-
tion was performed in triplicate.

Western blot analysis

Cell extracts were prepared using an ice-cold lysis buffer
(50 mM Tris—HCI [pH7.6], 300 mM NaCl, 0.5 % Triton-
X, 400 pM NazVO, 400 pM EDTA, 10 mM NaF,
10 mM Na pyrophosphate, 10 pg/ml Aprotinin, 10 pg/
ml Leupeptin, 10 mM lodoacetamide, and 1 mM PMSF)
for 15 min. Protein concentrations were measured by
Protein Assay (Bio-rad). An equal amount of cell lysate
was separated by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) (10 % gel). Proteins
were then transferred to polyvinylidene difluoride mem-
branes (GE Healthcare). To avoid nonspecific binding,
the membranes were incubated for 1 h at room
temperature with tris-buffered saline (TBS) containing
0.05 % Tween-20 and 5 % nonfat dry milk, before being
probed by respective antibodies. The primary antibodies
used were transcription factor Spl, NFkB p50, and glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH; Santa
Cruz Biotechnology). After washing in TBS containing
0.05 % Tween-20, the membranes were incubated with
the secondary antibodies, anti-mouse or anti-rabbit
horseradish peroxidase (HRP) (Promega). Chemilumin-
escence was visualized using the Clarity Western ECL
substrate (Bio-rad).

Immunohistochemistry
Immunohistochemical staining of NF«B p65 and p50
were performed on four endometrial cancer sections

(two sections were ASE-positive and the other two were
ASE-negative) as follows. For pretreatment, sections
were blocked by the Protein block (Dako) for 10 min at
room temperature and incubated overnight at 4 °C with
the primary antibodies, p65 (1:100) and p50 (1:100)
(Santa Cruz Biotechnology) diluted in antibody diluent
(Dako). Endogenous peroxidase was inactivated using
3 % hydrogen peroxidase (Sigma). The primary antibody
in control experiments was replaced with normal goat
IgG (Santa Cruz Biotechnology). After incubation with
Envision™ + Rabbit/HRP (Dako) for 30 min, signals were
developed using 3.3-diaminobenzidine (DAB). The sec-
tions were then counterstained with hematoxylin and
mounted.

Statistical analysis

Differences between two groups were evaluated using
the Student ¢ test. The genotype frequencies and allele
frequencies were compared using Fisher’s exact test. The
P-values given were two-sided and a P-value of <0.05 was
considered statistically significant.

Results

Selection of marker SNPs and optimization of PLACE-SSCP
The SSCP method is sensitive for detecting single base
sequence differences in PCR-amplified DNA fragments
as separated peaks in electrophoretic analysis, whereas
the subsequent development of PLACE-SSCP is suitable
for precise estimation of SNP-allele frequency when ap-
plied to pooled DNA [67]. Here, we attempted to utilize
the PLACE-SSCP method for evaluating ASE. To distin-
guish mRNAs produced from two alleles and measure a
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(See figure on previous page.)

Fig. 2 Application of PLACE-SSCP methods for the evaluation of ASE. a, d Genotyping marker single nucleotide polymorphism (SNP) rs1690916
(a) and rs937283 (b) by genomic DNA from cancer-free endometria. ¢, d Confirmation of precise measurement by PLACE-SSCP with marker SNP
rs1690916 (c) and rs937283 (d) cDNA. RNA was transcribed in vitro and reverse-transcribed. The mixture rate between each allele is shown on

the left

quantitative difference, we utilized the SNPs on the
exons of MDM?2 as markers, the status of which was
heterozygous in a large population. Because SNP
rs1690916 is located at the 3'UTR of MDAM?2, it was used
to detect ASE in the MDM?2 total mRNA. We selected
SNP rs937283, located at exon 1 of MDM?2, as another
candidate marker SNP. Using SNP rs937283 as a marker,
we can measure only the quantitative differences in
mRNAs produced from the MDM2-P1 promoter (Fig. 1a,
b). At first, we confirmed whether each marker SNP sta-
tus was detectable by genomic DNA (Fig. 2a, b). Initial
experiments revealed poor separation of the two alleles
of SNP rs937283 (data not shown). Clean separation,
with two fluorescent signal peaks, was achieved by
attaching a short complementary sequence to the G-
allele marker of SNP rs937283 at the 5’ position.

We also noted that the fluorescence signal ratio of two
alleles of SNP rs937283 was not close to 1.0 in cancer-
free heterozygous samples. To precisely quantitate the
expression of the two alleles in ¢cDNA, via in vitro tran-
scription we created two RNA fragment patterns in
which only the marker SNP status was different. We
then made an equal concentration mixture of these arti-
ficial RNAs and reverse-transcribed them to cDNA.
PLACE-SSCP using these cDNA demonstrated equal ex-
pression levels of cDNA from heterozygote of cancer-
free samples (Fig. 2¢, d).

ASE was detected in endometrial cancers, but not in
cancer-free endometria

We genotyped the marker SNPs in cancer-free endome-
tria (n=45) and identified heterozygous SNP rs937283
(m=23) and SNP rs1690916 (n =23; Tables 1 and 2).
Their genomic DNA and c¢DNA were analyzed by
PLACE-SSCP. The fluorescence signal ratio of each al-
lele (SNP rs1690916: G-peak height A-peak height, SNP

Table 1 Genotype of marker SNP rs1690916 in samples of
cancer-free endometria and endometrial cancer

rs937283: A-peak height/G-peak height) was used to
evaluate ASE and we could accurately measure quantita-
tive differences between the two alleles (Fig. 2¢, d). At
SNP rs1690916, the ratio in cDNA from all 23 measured
cancer- free endometria was similar, and no significant
difference (more than 20 %) was detected between allelic
ratios in genomic DNA and cDNA of each sample
(Fig. 3a). Yan and colleagues employed the threshold of
the 20 % relative difference to evaluate ASE [12]. Next,
we observed ASE using SNP rs937283, but ASE from
the MDM2-P1 promoter was not identified (Fig. 3c).

We applied the same methods to endometrial cancer
samples. Of the total 45 endometrial cancer patients, 20
showed heterozygous SNP rs1690916 and SNP rs937283
(Tables 1 and 2, respectively). Three endometrial cancer
samples (EMCA-19, 27, 34) represented mono-allelic
amplification; thus, they were excluded from the ASE
evaluation. ASE beyond 20 % at marker SNP rs1690916
was observed in 2 of 17 heterozygous specimens (Fig. 3b).
With regard to the cancer-free individuals, we attempted
to examine ASE at SNP rs937283 but were unable to de-
tect expression differences of more than 20 % in all sam-
ples that were heterozygous for this marker SNP (Fig. 3d).

ASE in endometrial cancer is associated with a new
functional SNP

ASE was not identified in endometrial cancer samples
using marker SNP rs937283, suggesting that expres-
sion differences between alleles did not originate from
the MDM?2-P1 promoter. Thus, it was assumed that
there are two possible mechanisms of generating
quantitative differences from each allele, degradation
of mRNA or different transcription levels (more/less)
between alleles. To address the cause of ASE in endo-
metrial cancer, we assessed these two hypotheses. We
checked the former hypothesis by confirming the 3’

Table 2 Genotype of marker SNP rs937283 in samples of
cancer-free endometria and endometrial cancer

3'UTR marker SNP Cancer-free Endometrial cancer Exon1 marker SNP Cancer-free Endometrial cancer
rs1690916 endometria (EMCA) 1s937283 endometria (EMCA)

A/A 4 6 A/A 18 19

A/G 23 20 A/G 23 20

G/G 18 19 G/G 4 6

total 45 45 total 45 45
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Fig. 3 ASE of MDM2 mRNA analyzed by PLACE-SSCP method. Allelic ratio in genomic DNA and relative allele-specific expression ratio in cDNA from
the same samples that analyzed by the post-labeling followed by automated capillary electrophoresis under single-strand conformation polymorphism
conditions (PLACE-SSCP) method with either marker single nucleotide polymorphism (SNP) rs1690916 (a), (b); or marker SNP rs937283 (c), (d); in
cancer-free endometria (a), (c); and endometrial cancer (b), (d). The y-axis represents the fluorescent signal ratio from each allele (SNP rs1690916:
G-peak height/A-peak height; SNP rs937283: A-peak height/A-peak height). Dark grey bars indicate the corrected genomic allelic ratios and light grey
bars indicate the corrected cDNA allelic ratios

UTR sequences of two ASE-positive samples; how-
ever, we identified no genomic variations that affected
the stability of transcribed mRNA, such as consensus
sequences of microRNAs.

To examine the latter hypothesis, we checked MDM2-
P2 promoter sequences. In two ASE-positive individuals
with endometrial cancer, one had T/T and the other had
T/G at SNP309. SNP55 (rs2870820) was also heterozy-
gous (Fig. 4a).

We genotyped both SNP55 and SNP309 status in
both cancer-free endometria (7 =45) and endometrial
cancer samples (n =45) analyzed by genome DNA se-
quencing (Table 3). Both genotype frequencies were
found to be consistent with the Hardy-Weinberg’s
equilibrium. There was no difference between cancer-
free endometria and endometrial cancer samples nei-
ther for the genotype frequencies, nor allele frequen-
cies (Table 4). We then investigated the haplotype
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C-allele TCTGACGGTGTCCCCTCTATCGCTGGTG

Fig. 4 MDM2-P2 promoter contains a SNP which affects the binding affinity of transcription factors. a Schematic illustration of the MDM2-P2
promoter. Single nucleotide polymorphism (SNP) 55 is upstream of SNP309 and two p53 responsive elements. b SNP55 alters transcription factors
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frequency of the region involving SNP55 and SNP309
in cancer-free endometria. Frequency of each haplotype
is as follows: (55C-309 T)=0.178; (55C-309G) = 0.467;
(55 T-309 T)=0.356; (55 T-309G) = 0.000. Linkage dis-
equilibrium (r*) between SNP55 and SNP309 was calcu-
lated as 0.483 from these haplotype frequencies.

The effect of SNP55 on the binding affinity of
transcription factors to the MDM2-P2 promoter region

To investigate the effect of SNP55 on the MDM2-P2 pro-
moter transcriptional activation, we utilized a computer al-
gorithm (Alibaba 2.1) and found that both the SNP55T and
SNP55C alleles could bind transcription factor Sp1, but that
only SNP55C had consensus sequence to NF«B (Fig. 4b).
This result indicated that the SNP55 status may affect the
binding affinity of transcription factor Spl and NF«B. To
confirm the hypothesis, we conducted BIA. We focused on
the p50 transcription factor, from the NF«kB/Rel family, be-
cause both transcription factor Spl and NF«B p50 recog-
nized the same DNA binding site and functionally interfere
with each other [68]. Transcription factor Sp1 bound, insig-
nificantly, but more easily to SNP55T than SNP55C (Fig. 5a,
b). On the other hand, NFkB p50 significantly generated
more DNA-protein complexes with SNP55C (Fig. 5¢, d; P
<0.05). These results indicate that the SNP55 status may
affect the transcription activity of the MDM2-P2 promoter.

Only the SNP55C allele was suppressed by NFkB p50 in a
dose-dependent manner

To evaluate the effect of the SNP55 status on MDM?2-P2
promoter activity, we attempted a luciferase assay.

When the Spl expression vector and either SNP55T or
SNP55C reporter plasmid were co-transfected with
COS-1 cells, a slightly higher luciferase activity was
detected with SNP55T compared with SNP55C (Fig. 6a).
Next, we tested the functional interference between
transcription factor Spl and NF«B p50 at the SNP55
site. In addition to the first luciferase experiment, we
co-transfected a gradually increased amount of the
NFkB p50 expression vector (0-0.8 pg; Fig. 6b), and
found that activity of MDM2-P2 promoter with
SNP55C was suppressed in a concentration-dependent
manner (Fig. 6¢, d; P <0.05) while that with SNP55T was
not (Fig. 6d).

Thus, NFkB p50 appeared to affect MDM2-P2 promoter
activity, resulting in ASE of MDM2.

Subcellular localization of NFkB p50 in ASE-positive and
-negative endometrial cancer tissues

NF«B proteins translocate from the cytoplasm to nu-
cleus and exert transcriptional activity. The p50 factor
can form a heterodimer with the NFxB/Rel family
member p65, and the p50—p65 complex then functions
as a transcriptional activator. However, p50 can also
form a p50—p50 homodimer, complex that acts as a tran-
scriptional repressor. Therefore, we attempted to con-
firm the subcellular localization of NFkB p50 and p65 in
two ASE-positive and two ASE-negative endometrial
cancer specimens by immunohistochemistry. Although
we failed to identify a nuclear localization for p50 in
ASE-negative endometrial cancer samples (Fig. 7h, k),
NF«B p50 localized to the nucleus in ASE-positive
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Table 3 Histological classification and genotype of endometrial cancer (EMCA) samples

Age Histological classification Exon 1 marker SNP 3" UTR marker SNP SNP55 SNP309
(grade) (rs937283) (rs1690916) (rs2870820) (rs2279744)
EMCA-1 53 Endometrioid(G1) A/G A/G T T/G
+ Squamous cell
EMCA-2 80 Endometrioid(G3) A G C
EMCA-3 50 Endometrioid(G2) A/G A/G T T
+ Squamous cell
EMCA-4 51  Serous A/G A/G T T
EMCA-5 71  Endometrioid(GT1) G A T T
EMCA-6 74  Serous G G T T
EMCA-7 76  Mixed + Serous A/G A/G T T
EMCA-8 42  Endometrioid(G1) A G C T/G
EMCA-9 58  Endometrioid(G1) A G C €]
54 Endometrioid(G3) A/G A/G T T/G
EMCA-10
EMCA-11 39  Endometrioid(G1) A/G A/G (@2} T/G
EMCA-12 62  Endometrioid(G2) A/G A/G T
EMCA-13 71 Hetero G A T
EMCA-14 66  Endometrioid(G2) A G C G
EMCA-15 81  Serous A G C T/G
EMCA-16 37  Endometrioid(GT1) A G C G
EMCA-17 70  Endometrioid(G1) A/G A/G T T/G
EMCA-18 43  Endometrioid(G1) G A T T
EMCA-19 61  Serous A/G A/G T T/G
EMCA-20 77  Endometrioid(G2) A/G A/G T T/G
EMCA-21 74  Endometrioid(G1) A G C G
EMCA-22 56  Endometrioid(G2) A/G A/G T T/G
EMCA-23 42  Endometrioid(G1) A G C G
EMCA-24 55  Endometrioid(GT1) A/G A/G aT T/G
EMCA-25 69  Endometrioid(G1) A/G A/G T T/G
EMCA-26 65  Endometrioid(G1) A G C T/G
EMCA-27 56  Endometrioid(G2) A/G A/G (@4}
EMCA-28 83  Endometrioid(G2) A G G
EMCA-29 58  Endometrioid(G2) A G
EMCA-30 78  Serous A/G A/G T T/G
EMCA-31 74  Endometrioid(GT1) A G C G
EMCA-32 35  Endometrioid(G1) A/G A/G T T/G
EMCA-33 57  Endometrioid(G1) A/G A/G T T/G
EMCA-34 52  Endometrioid(G3) A/G A/G T T/G
+ Clear cell
EMCA-35 55  Endometrioid(G2) G A T T
EMCA-36 49  Endometrioid(G2) A G T/G
EMCA-37 60  Endometrioid(G1) A G G
EMCA-38 56  Endometrioid(G3) A G T T/G
EMCA-39 60  Endometrioid(G1) G A T T
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Table 3 Histological classification and genotype of endometrial cancer (EMCA) samples (Continued)

EMCA-40 64  Endometrioid(G1) A/G
EMCA-41 60 Endometrioid(G2)

EMCA-42 48  Endometrioid(G1)

EMCA-43 58  Clear cell

EMCA-44 58  Clear cell

EMCA-45 55  Endometrioid(G1) A/G

A/G T T/G
T T
G

T/G

T/G
A/G aT T

samples (Fig. 7b, e); however, p65 did not (Fig. 7c, f).
These data indicate that NFkB p50 may have a central
role in the ASE of MDM?2 in endometrial cancer.

Discussion

MDM?2, one of the most investigated proto-oncogene,
plays an important role in tumorigenesis. For a long
time, many investigators have attempted to reveal an as-
sociation between MDAM2-overexpression, amplification,
or genetic variation and increased cancer risk. Ever
since the first report by Bond et al. [28], many case—
control studies have looked into the roles of SNP309 of
MDAM?2 in various diseases, particularly cancer, includ-
ing endometrial cancer. However, the association be-
tween endometrial cancer risk and the MDM2-SNP309
polymorphism remains controversial.

Our group had previously doubt the association be-
tween the status of SNP309 only and endometrial can-
cer risk [66]. This corresponded to our expectation that
the SNP309 status may not affect the transcriptional
activity of the MDM?2-P2 promoter. We also demon-
strated that the Ras /ER/MDM2 pathway was critical for
NIH3T3 cell line transformation and the blockage of
this pathway resulted in an inhibitory effect in estrogen-
depended gynecological cancers such as ovarian cancer
and endometrial cancer [69-71]. This indicated that
MDM?2 is critical to the development of endometrial
cancer. Several studies have attempted to demonstrate
the molecular mechanism of the promoter activity of
MDM?2-P2 [28, 30, 72]. These studies conducted by
in vitro experimentation, because of the difficulty in
measuring a quantitative difference in RNA transcription

between paternal and maternal alleles. Therefore, it
remained unclear whether the phenomenon truly existed
in vivo.

We overcame this problem by utilizing PLACE-SSCP
with genomic DNA and RNA prepared from the same
clinical samples at the same time. PLACE-SSCP is
based on technology developed for precise estimation
of SNP-allele frequencies in pooled DNA [67]. We
could not detect quantitative differences in transcrip-
tion beyond 20 %, between the two alleles in all 23
cancer-free endometria analyzed; however, 17 were het-
erozygous in SNP309.

Two of the other 17 heterozygous samples showed more
than 20 % differences in the total mRNA quantity between
two alleles in MDM?2, but none had such transcriptional
quantitative differences from the MDM2-P1 promoter.
Moreover, there were no genetic variations, such as SNPs
or microdeletions, to affect the binding affinity of
microRNA in the 3" UTR of ASE-positive samples.
These findings suggest that ASE of MDAM?2 in endomet-
rial cancer was caused by the MDAM2-P2 promoter.

We identified a new functional SNP, SNP55, which
appeared to be regulated by NF«kB. Then we examined
SNP55 status in both cancer-free endometria and
endometrial cancer samples analyzed by genome DNA
sequencing, and found no difference between cancer-
free endometria and endometrial cancer samples nei-
ther for the genotype frequencies, nor allele frequen-
cies. Thus, we could not show the association of
SNP55 polymorphism with endometrial cancers. We
then determined the haplotype involving SNP55 and
SNP309 in cancer-free endometria (n=45), and

Table 4 Genotype and allele frequencies of MDM2 SNP55 and SNP309 in cancer-free endometria and endometrial cancer samples

Genotype Alleles
SNP55 152870820 c/C [@2) /T p-value C T p-value
Cancer-free endometrial (n = 45) 17 (37.8 %) 24 (53.3 %) 4 (89 %) 58 (64.4 %) 32 (356 %)
Endometrial cancer (EMCA) (n =45) 17 (37.8 %) 22 (489 %) 6 (13.3 %) 0.87 56 (62.2 %) 34 (37.8 %) 0.88
SNP309 rs2279744 /T T/G G/G p-value T G p-value
Cancer-free endometrial (n = 45) 12 (26.7 %) 24 (53.3 %) 9 (20.0 %) 48 (533 %) 42 (46.7 %)
Endometrial cancer (EMCA) (n =45) 14 (31.1 %) 21 (46.7 %) 10 (22.2 %) 0.85 49 (54.4 %) 41 (45.5 %) 1.00
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assessed linkage disequilibrium. These two SNPs were
in moderate-linkage disequilibrium with each other
(r* = 0.483).

We expected that both SNP55 status and transcription
factor activity may affect on promoter transcriptional ac-
tivity, and result in allelic expression differences. As ex-
pected, two ASE-positive endometrial cancer samples
presented nuclear localization of NFkB p50 observed by
immunohistochemistry, although two ASE-negative endo-
metrial cancer samples did not. We attempted to find a
quantitative difference in MDM2 protein levels, but failed

to detect any difference (data not shown). This was prob-
ably because the SNP55 status and NFkB p50 activity were
dependent only on P2 promoter activity even though
MDM?2 was produced from mRNAs transcribed from
both P1 and P2 promoters.

NF«B is a transcription factor that is important to vari-
ous physiological processes, particularly inflammation.
The NFkB family comprises five members, p50, p52, p65
(Rel A), c-Rel, and RelB, which form homodimers or het-
erodimers with each other. These proteins share the
highly conserved region, the Rel homology domain, which
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is essential for DNA binding. Only p65, c-Rel, and RelB
have a transcriptional activation domain. Because the
others lack such a domain, the p50-p50 complex acts
as a transcriptional repressor [73]. Although activation
of the p65-p50 complex has been intensively investi-
gated, the mechanisms of p50 production, homodimer
formation, nuclear translocation, and activation still
need to be determined [74]. Hirano et al., showed func-
tional interference between transcription factor Spl
and the p50 homodimer at the same DNA binding site
[68], same as our observation.

Conclusions

In this study, we identified a new functional SNP on the
MDM?2-P2 promoter, SNP55. We then demonstrated the
MDM2-P2 promoter was regulated by both transcription
factors Spl and p50, and that the p50 homodimer sup-
pressed MDM?2-P2 promoter activity through the tran-
scription factor Sp1/NF«kB binding site including SNP55.
These findings suggest that both genetic variations and
transcription factor activity affect MDM?2 activation in
endometrial cancer. Given that MDM?2 appears to play a
critical role in endometrial cancer, control of NF«kB p50
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homodimer provides the possibility for a new therapeutic
target.
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