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First de novo KCND3 mutation causes severe
Kv4.3 channel dysfunction leading to early onset
cerebellar ataxia, intellectual disability, oral
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Abstract

Background: Identification of the first de novo mutation in potassium voltage-gated channel, shal-related subfamily,
member 3 (KCND3) in a patient with complex early onset cerebellar ataxia in order to expand the genetic and
phenotypic spectrum.

Methods: Whole exome sequencing in a cerebellar ataxia patient and subsequent immunocytochemistry,
immunoblotting and patch clamp assays of the channel were performed.

Results: A de novo KCND3 mutation (c.877_885dupCGCGTCTTC; p.Arg293_Phe295dup) was found duplicating
the RVF motif and thereby adding an extra positive charge to voltage-gated potassium 4.3 (Kv4.3) in the
voltage-sensor domain causing a severe shift of the voltage-dependence gating to more depolarized voltages. The
patient displayed a severe phenotype with early onset cerebellar ataxia complicated by intellectual disability,
epilepsy, attention deficit hyperactivity disorder, strabismus, oral apraxia and joint hyperlaxity.

Conclusions: We identified a de novo KCND3 mutation causing the most marked change in Kv4.3’s channel
properties reported so far, which correlated with a severe and unique spinocerebellar ataxia (SCA) type 19/22
disease phenotype.

Keywords: Early onset cerebellar ataxia, Epilepsy, Intellectual disability, KCND3, SCA19/22, Channelopathy,
Immunocytochemistry, Immunoblotting, Patch clamp study, Whole exome sequencing/WES

Background
The autosomal dominant spinocerebellar ataxias (AD
SCAs) are neurodegenerative disorders causing progres-
sive ataxia, dysarthria and eye movement difficulties [1].
Currently, more than 40 loci underlie the AD SCAs, in-
cluding repeat expansions, rearrangements and point
mutations [2, 3]. Recently, loss-of function mutations in
KCND3 (potassium voltage-gated channel, Shal-related

subfamily, member 3) have been identified causing
SCA19/22 [4, 5], whereas gain-of function mutations in
KCND3 were implicated in Brugada syndrome and atrial
fibrillation [6–8]. KCND3 encodes the voltage-gated po-
tassium channel Kv4.3, a membrane protein that consists
of six trans-membrane segments (S1-S6) and two intra-
cellular tails. Four Kv4.3 subunits co-assemble to form
the pore domain (helices S5-S6), the potassium selective
conduction pathway. The S1-S4 segments form a single
voltage-sensor domain that surrounds the pore domain,
connected by the S4-S5 loop, and responds to changes
in membrane voltages controlling the pore gates [9].
Kv4.3 rapidly activates and inactivates in response to
membrane depolarization, contributing to the neuronal
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subthreshold A-type potassium currents and controlling
the action potential repolarization and frequency, and
thus neuronal excitability [10, 11]. The channel char-
acteristics of Kv4.3 including protein trafficking, chan-
nel expression and activity can be modified by Kv
channel-interacting protein 2 (KChIP) [12]. Eight dif-
ferent mutations in 10 SCA19/22 families have been
published to date [4, 5, 8]. We expand the genetic and
phenotypic spectrum by the identification of a de novo
mutation in a patient with a severe and early onset
phenotype.

Methods
Study participant
The index patient, a boy with early onset cerebellar
ataxia, was investigated by a team of specialists in rare
neurogenic disorders in the University Hospital of
Antwerp (KS, BC, NVdA), laboratory serum tests for
biomarkers and uric acid analysis were performed.
Mutations in common ataxia genes were tested. Add-
itionally, the boy underwent neuropsychological testing,
nerve conduction studies, extensive cardiac evaluation
and routine brain magnetic resonance imaging (MRI).

Consent
Written informed consent was obtained from the par-
ents and their five children for the publication of this
report and any accompanying images. The Ethics
Committee of Antwerp University approved this study.

Whole exome sequencing
Genomic DNA was obtained from patient, parents and
sibs. Exome capturing via the SureSelect, Human All
Exon5 kit (50 Mb) (Agilent) and sequencing on a Hiseq
2000 sequencer (Illumina) was performed on the DNA
of the patient. The Burrows-Wheeler Algorithm was
used to align 100 bp length paired-end reads to the hg19
version of the human Genome (Ensembl). Variants were
called with the Genome Analysis Toolkit (GATK) soft-
ware package and data were imported into the Genomes
Management Application (GEM-app) database [13]. A
total of 104.3 million reads were produced for this sam-
ple, 97.9 % of which could be aligned to the targeted
sequence. Mean coverage of the targeted sequence was
91-fold; 90322 single-nucleotide variations (SNV) and
9323 indels were called. Variants were filtered for oc-
currence in the normal population (minor allele fre-
quency < 1 % in dbSNP138 and the Exome Variant
Server), conservation (Genomic Evolutionary Rate Profiling
[GERP] score > 4 or PhastCons score > 0.9), quality (GATK
and Genotype Quality score > 75) and predicted impact on
the encoded protein according to the refGene annota-
tion (missense, nonsense, frame shift, inframe indels
and essential splice variants). The remaining set of

variants were filtered for a list of known ataxia genes,
resulting in this unique KCND3 variant.
This variant and its segregation was confirmed with

Sanger sequencing in the index patient, his parents
and four unaffected brothers. To proof the de novo
character, paternity was tested using 15 highly inform-
ative STR (short tandem repeat) markers, distributed
throughout the genome. STRs were PCR-amplified
and polymerase chain reaction (PCR) fragments were
loaded on an ABI 3730 automated DNA sequencer.
Genotypes were analysed using the ABI Prism Genescan
software (Applied Biosystems, Foster City, USA) and Trace
Inspector, an in-house developed software program (http://
www.vibgeneticservicefacility.be/).

Plasmids
The duplication of the nucleotides 877_885 (CGCGTC
TTC) in the human Kv4.3 cDNA was performed using
site-directed mutagenesis (forward primer: GGTCTTC
CGCGTCTTCCGCGTCTTCAGGATCTTCAAGTTTTC;
reverse primer: GAAAACTTGAAGATCCTGAAGACG
CGGAAGACGCGGAAGACC) and then subcloned
into pcDNA3.1 as described previously [4]. The Emerald-
KChIP2b was kindly provided by Dr. K. Takimoto
(Nagaoka University of technology, Kamitomoika, Japan).

Immunocytochemistry and immunoblotting
HeLa cells were transfected with pcDNA3.1-Kv4.3 wild
type (WT) or duplicationRVF (dupRVF) mutant with
or without Emerald-KChIP2 using polyethylenimine
(Polysciences), according to the manufacturer’s in-
structions. Immunological techniques were performed
as described previously [4, 8]. Anti-Kv4.3 (C-17; Santa
Cruz) and anti-Golgin 97 (CDFX; Santa Cruz) antibodies
were used for immunostaining, and anti-Kv4.3 (C-17;
Santa Cruz), anti-KChIP2 (Abcam) and anti-actin (MP
Biochemicals) antibodies for Western blot. Protein
densitometry was quantified using the Quantity One
program (Bio-Rad) and plotted. Data are represented
as mean ± SEM (standard error of the mean) and the sig-
nificance was calculated using Student’s t-test (*p < 0.01).
Images were obtained by a DMI 6000 Inverted microscope
(Leica) and processed using ImageJ software (National
Institutes of Health).

Electrophysiology
CHO-K1 cells (Chinese hamster ovary) were co-
transfected with plasmids containing Kv4.3 WT or Kv4.3
dupRVF and Emerald-KChIP2 in a 1:1 ratio. Whole-cell
patch clamp configuration was used to measure potas-
sium currents as previously described with some modifi-
cations [4]. Briefly, potassium current recordings were
evoked by depolarizing voltage steps (11 mV increments,
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200 ms) ranging from −90 mV to potentials between −82
and +83 mV; current densities were plotted against the
voltages. To compare the steady state properties of activa-
tion in WT and dupRVF channels, conductance was calcu-
lated from peak current amplitudes using reversal potential
determined for each experiment and normalized to the
maximum conductance value. Normalized conductance
was plotted against the voltage. To measure the
voltage-dependence of Kv4.3 steady-state inactivation,
currents were obtained with a double pulse protocol in
which a 200 ms conditioning pulse to potentials be-
tween −100 and +100 mV was applied from a holding
potential of −90 mV and the steady-state inactivation
was assessed from the peak outward current during the
subsequent step to +60 mV (80 ms). Maximum currents
of the second pulse were normalized against the max-
imum current of the first pulse. Normalized inactivation
values were plotted against the voltages. Activation and
inactivation curves were fitted in a single Boltzmann
equation to obtain the half-maximum activation and in-
activation voltages (V1/2) and slope factors. Data are pre-
sented as mean ± SEM (Standard Error of the Mean).
Statistical analysis was perfume using Student’s t-test.

Results
Clinical assessment
The patient was born a term after an uncomplicated
pregnancy and delivery. Both parents, non-consanguineous,

of Belgian origin, and four male sibs were unaffected by
history (Fig. 1, Pedigree). At the age of 3 years, clear
slowing of motor milestones was noted with a progres-
sive broad-based gait, staccato speech and intellectual
disability (ID). He underwent surgery for strabismus at
4 years of age. Frequent nocturnal muscle jerks, epi-
sodes of staring and severe concentration problems oc-
curred one year later. Attention deficit hyperactivity
disorder (ADHD) was diagnosed but methylphenydate
did not improve symptoms. Electroencephalograms
showed frequent paroxysmal rhythmic theta waves in
frontal and parietal regions. A diagnosis of generalized
epilepsy was made and treatment with valproate was
initiated alleviating the seizures. Treatment was stopped
successfully at 9 years of age. At the age of 10 years,
clinical examination showed a severe cerebellar atactic
gait, severe cerebellar limb ataxia, a clear cerebellar
dysarthria and saccadic eye movements. Reflexes and
sensory examination were normal. Continuous hyper-
salivation due to oral apraxia was seen and a daily
treatment with an anticholinergic drug, oral glycopyr-
ronium was started. Joint hyperlaxity was seen as
well.

Auxiliary investigations
Neuropsychological testing at the age of 6 years showed
a total IQ of 54 (verbal IQ 60, performal IQ 52). He
was diagnosed with mild ID, normal education was

Fig. 1 Pedigree and electropherogram of de novo KCND3 mutation. Pedigree of the Belgian family. Squares indicate males and circle represent
female. Filled symbol means affected individual. The affected boy carries the p.Arg293_Phe295dup mutation which is absent in the parents and
four healthy brothers
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impossible and he went to a special school. He was
unable to write and to read, he was unable to ride
his bike and used a tricycle. He needed daily physio-
therapy, logopaedic training and occupational ther-
apy. A brain MRI was performed, at the ages 6 and
10 years and was normal. Nerve conduction studies,
electromyography, cardiac ultrasound, holter monitor-
ing and ajmaline-testing at the age of 10 years were
unremarkable.

Serum Biomarkers and genetic analyses
The index patient was also assessed by extensive serum
testing for biomarkers indicative of recessive ataxias
(alpha-fetoprotein, lactate, vitamin E, very long fatty
acids, phytanic acid, coeruloplasmin, cholesteanol, lyso-
somal enzymes, quantitative assessment of amino acids)
[14], and genetic testing for SCA1,2,3,6,7 was performed.
All results were normal.

Whole exome sequencing
Subsequently whole exome sequencing (WES) was
peformed and this revealed a KCND3 mutation
(c.877_885dupCGCGTCTTC; p.Arg293_Phe295dup),
(RefSeq NM_004980.4), resulting in the duplication
of the RVF (Arginine-Valine-Phenylalanine) motif (Fig. 2a).
The mutation was confirmed to be de novo by Sanger
sequencing. The four healthy brothers did not carry the
mutation (Fig. 1, pedigree).

Immunocytochemistry, immunoblotting and patch
clamp studies
To test whether the duplication of the RVF motif in
the S4 segment of Kv4.3 (Fig. 2a) alters the intracel-
lular trafficking and the stability of the channel we
performed immunocytochemistry and time-course cy-
cloheximide (CHX) experiments on fixed HeLa cells
expressing Kv4.3 WT or dupRVF mutant. Kv4.3 har-
boring the dupRVF was mainly detected at the cell
surface similar to the WT, as was shown by confocal
microscopy (Fig. 2b). Despite proper cellular localization,
dupRVF mutant Kv4.3 showed significant decreased pro-
tein stability compared with WT after 6 h of CHX treat-
ment (Fig. 2c; grey-black bars). KChIP2 could rescue the
protein instability of dupRVF mutant Kv4.3 (Fig. 2c;
pink bars).
To determine the effect of the dupRVF mutations on

channel activity, we measured the currents of Kv4.3 WT
and dupRVF in the presence of KChIP2 (1:1) in CHO
cells. The average peak outward current at +83 mV for
dupRVF was strongly reduced (55 %) compared to WT
(Fig. 2d; Table 1). Additionally, the dupRVF induced a
dramatic depolarizing shift in the voltage dependence of
Kv4.3 activation of about +59.3 mV, with no changes in
the slope factor (Fig. 2e, Table 1), and a dramatic

depolarizing shift in the voltage dependence of inactiva-
tion of about +62 mV, with an increased slope factor
(Fig. 2f; Table 1).
These data show that the duplication of the RVF motif

in the voltage-sensor of Kv4.3 does not affect channel
trafficking to the plasma membrane but does cause pro-
tein instability that could be corrected with the regula-
tory KChIP2. This mutation caused a strong shift in the
voltage-dependence of activation and inactivation that
very likely explains the disease symptoms.

Discussion
Mutations in KCND3 are an uncommon cause of cere-
bellar ataxia [4, 5]. Eight different KCND3 mutations
have been described in one large Dutch family [4], one
large Chinese family [5] and in eight smaller Dutch,
Ashkenazi-Jewish American, Japanese and French fam-
ilies [4, 8]. We describe the first de novo KCND3 muta-
tion in a Belgian patient. Our patient has an unusually
severe and complex phenotype with onset at the age of
3 years, the youngest onset reported so far. The previ-
ously described SCA19/22 families had disease-onset at
10–55 years of age and presented with milder cerebellar
ataxia [4, 5]; even in those with earlier onset of disease,
the progression of cerebellar ataxia was slower compared
to our case. Our patient exhibited mild intellectual dis-
ability (ID) and ADHD; while moderately reduced IQ
has been described in one of the Dutch families, ADHD
was not reported [15]. Neither cognitive impairment nor
behavioural dysfunction were noticed in the large
Chinese KCND3 kindred [5]. Our patient also had mild
generalized seizures responding well to valproate.
Epilepsy has previously not been linked to SCA19/22, al-
though two Dutch patients had clinical and electro-
physiological findings indicative of cortical (and spinal)
myoclonus [15]. Genes encoding potassium channels
have been frequently reported in epilepsy and ataxia syn-
dromes, including KCNQ2/KCNQ3 in benign familial
neonatal convulsion syndromes [16, 17], KCNCI in pro-
gressive myoclonus epilepsy [18], KCNQ2 in epileptic
encephalopathy syndromes [19], KCNA1 in episodic
ataxia type 1 [20], KCNC3 in SCA13 [21] and recently
myoclonic epilepsy and ataxia in KCNA2 [22]. Other
unique phenotypic features in our case were strabismus,
severe oral apraxia, and joint hyperlaxity, which are all
supposedly part of the phenotype of this de novo
KCND3 mutation.
In our patient, we did not observe the cerebellar ver-

mis atrophy that was documented in previous SCA19/22
cases [15]. The patient’s young age and relatively short
disease duration might account for this.
Cardiac evaluation was normal in our patient, in

particular there were no cardiac arrhythmias or other con-
duction abnormalities. The duplication of codons 293–295
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does not target the S6 and C terminal tail, where most
Brugada syndrome or atrial fibrillation mutations reside
[6, 7]. Some mutations may cause either ataxia or Brugada
syndrome/atrial fibrillation, however, the co-occurrence of
both diseases has not been reported [8].

The insertion of the RVF motif at amino acid
position 296–298 in Kv4.3 introduces an extra argin-
ine in the S4 segment resulting in a more positively
charged alpha helix S4 (Fig. 2a). Changes in the con-
formation of the voltage-sensor domain (S1-S4) may

Fig. 2 Biochemical and functional analysis of Kv4.3 dupRVF mutant channel. a Sequence comparison of the S4 transmembrane segment for Kv1.2
and Kv4.3 WT and dupRVF mutant channels. Insertion of RVF at amino acid position 296–298 is underlined. b Co-immunostaining of Kv4.3 WT or
dupRVF mutant (red) and golgin97 (Golgi apparatus marker; green) in transfected HeLa cells. Nuclei were stained using Dapi (blue). Scale bar = 50 μm.
c Percentage of remaining Kv4.3 protein after 0, 3 h or 6 h cycloheximide (CHX) treatment. In absence of KChIP, the remaining dupRVF mutant protein
was significantly lower compare with the WT at 3 h (dupRVF: 43.9 ± 0.9 % vs WT: 93.1 ± 6 %) and at 6 h (dupRVF: 24.4 % vs WT: 62.2 ± 5 %). In presence
of KChIP, no significant differences were detected at 3 h (dupRVF: 100.4 ± 15 % vs WT: 97.2 ± 11 %) and at 6 h (dupRVF: 105.2 ± 8 % vs WT: 91.3 ± 10 %).
Graph represents the Western blot densitometries and is representative of 3 independent experiments. Significant differences are depicted by
the Student’s t test (p > 0.01). d Averaged current density-voltage relationships of Kv4.3 WT and dupRVF mutant, expressed in CHO cells with
KChIP2 (ratio 1:1). e Normalized conductance-voltage relationship for Kv4.3 WT and dupRVF mutant. f Voltage-dependent inactivation curves of
Kv4.3 WT and dupRVF. Data were fitted to Boltzmann function (solid curves) and parameters summarized in Table 1
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alter the voltage-dependent gating properties of the
Kv4.3 channel [23, 24]. No trafficking deficit was ob-
served for the dupRVF mutant suggesting that the
RVF duplication does not markedly alter the S4 do-
main alpha-helix structure, but does cause protein
instability. However, this mutation caused a strong
shift in the voltage-dependence of activation and in-
activation of Kv4.3. The alteration in channel gating
observed for dupRVF mutant may underlie the neur-
onal death due to marked changes in neuronal excit-
ability. Moreover, the protein instability of dupRVF
mutant suggests that haploinsufficiency could also
contribute to the disease pathology.
From all the described and characterized Kv4.3 muta-

tions, the p.F227del causes similar alterations in Kv4.3
channel functioning as the p.Arg293_Phe295dup [5, 25].
However, the effects of p.F227del on channel gating are
minor compared to p.Arg293_Phe295dup, as p.F227del
led to activation (+28 V) and inactivation (+8 V) shifts
to more positive voltages in oocytes [25]. These rela-
tively minor changes in channel gating are reflected in
the late age of onset and mild SCA19/22 disease symp-
toms [5].
Previous work showed that replacing positively

charged arginines in S4 of Kv4.3 by non-charged amino
acids, shifted activation and inactivation of Kv4.3 to
more negative voltages [23]. This links SCA19/22 to
other neurological potassium channelopathies where an
alteration of the gating properties of voltage-gated potas-
sium channels is caused by alterations of positive resi-
dues in their voltage-sensor domains [19], e.g. KCNQ2
in peripheral nerve hyperexcitability with myokymia
[26], KCNQ2/KCNQ3 in benign familial neonatal con-
vulsions [16, 17, 27] and KCNQ2 in epileptic encephal-
opathy [19].

Conclusions
While most SCA subtypes are inherited in a clear auto-
somal dominant fashion, our case adds evidence that de
novo inheritance must be increasingly taken into consid-
eration when analyzing ataxia pedigrees and SCA
exomes. This is also of particular importance given the
fact that the phenotype of our case - severe early onset
ataxia with multisystemic neurological damage and lack
of neurological disease in the parental generation - closely

resembles the phenotype known from many other re-
cessive ataxias, thus mimicking autosomal recessive
inheritance.
To our knowledge, this de novo mutation causes the

most marked change in Kv4.3’s channel properties re-
ported so far and leads to a uniquely severe early onset
SCA19/22 phenotype.
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