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Abstract

Background: In family-based association analysis, each family is typically ascertained from a single proband, which
renders the effects of ascertainment bias heterogeneous among family members. This is contrary to case–control
studies, and may introduce sample or ascertainment bias. Statistical efficiency is affected by ascertainment bias, and
careful adjustment can lead to substantial improvements in statistical power. However, genetic association analysis
has often been conducted using family-based designs, without addressing the fact that each proband in a family
has had a great influence on the probability for each family member to be affected.

Method: We propose a powerful and efficient statistic for genetic association analysis that considered the
heterogeneity of ascertainment bias among family members, under the assumption that both prevalence and
heritability of disease are available. With extensive simulation studies, we showed that the proposed method
performed better than the existing methods, particularly for diseases with large heritability.

Results: We applied the proposed method to the genome-wide association analysis of Alzheimer’s disease. Four
significant associations with the proposed method were found.

Conclusion: Our significant findings illustrated the practical importance of this new analysis method.
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Background
Genome-wide association studies (GWASs) have been
used to identify many genes involved in human diseases,
and during the last decade, many disease-susceptibility
variants have been identified. However, despite these
successes, we have found that variants discovered from
GWASs often explain only a small proportion of the
heritability of diseases [1, 2]. For example, SNPs signifi-
cantly associated with human height explain only about
5 % of phenotypic variance, despite studies of tens of
thousands of people [3]. Many reasons, such as rare causal
variants and gene/gene interactions, have been attributed

to this so-called “missing heritability”. However, the low
power induced by the multiple-testing problem is still an
intractable issue in GWASs, and further investigations of
the most efficient strategies for genetic association analysis
are necessary.
Careful selection of samples based on phenotypes can

lead to improved power for the discovery of risk variants
[4–11]. One such example is the extreme discordant sib-
pair design in linkage analysis, which may result in a sub-
stantial increase in statistical power when compared to
other sib-pair designs [11, 12]. Similarly, ascertaining the
extremes of quantitative phenotypes from large population
cohorts has also been shown to increase the power to
identify associated variants [13–15]. In such a design, the
effect of ascertainment conditions are homogeneous be-
tween individuals, and existing methods, such as the
Cochran-Armitage(CA) trend test [16], can be an efficient
choice. However, in association analysis using extended
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families, the effects of ascertainment bias are often hetero-
geneous among family members, and depending on their
relationships with probands, different magnitudes of ascer-
tainment bias may be generated. In particular, the probabil-
ity of each individual being affected when his or her
relatives are affected is similar to the prevalence, if the her-
itability is small, which indicates that the heterogeneous ef-
fect of the ascertainment bias depends on the magnitude of
heritability. However, the heterogeneous effects of ascer-
tainment conditions and the influence of heritability on it
have not yet been investigated, and should therefore be
taken into account for association analysis.
Recently, the CA trend test was extended for association

analysis of dichotomous phenotypes with family-based
samples [17, 18]. These statistics compares the genotype
frequencies between affected and unaffected individuals,
and the genetic association with family-based samples is
tested by building a genotype correlation matrix with ei-
ther kinship coefficients or an empirical correlation matrix
estimated from large-scale genetic data. This approach has
been extended to include family members with known
phenotypes and missing genotypes or vice versa. By the
nature of these statistics, it performs well for ascertained
family-based samples and it can be an efficient choice,
even for a case–control design, if the relatives’ phenotype
information is available. However, their statistical effi-
ciency is affected by the heterogeneous effect of the
ascertainment bias on family members, and for ex-
tended families, its effects on statistical efficiency can
be substantial.
In this report, we consider the heterogeneous effects of

the ascertainment bias on family members for dichotom-
ous phenotypes. By the nature of the proposed methods,
individuals with missing genotypes and non-missing phe-
notypes can be utilized, and incorporation of the esti-
mated kinship matrix to the proposed statistic provided
robustness against the population substructure. The pro-
posed method consists of two steps; the probability for

each family member to be affected was calculated using
a latent continuous liability [19], and then this probability
is incorporated into a quasi-likelihood score test. With
an extensive simulation, we showed that the proposed
method performed better than the existing methods,
particularly for a disease with large heritability. Application
of our method to Alzheimer’s disease (AD) demonstrated
its practical use in the detection of genetic associations
in ascertained family-based samples.

Methods
Notations and statistic
We assumed that there were n families and ni family
members in each family. We considered the situation
where the family of size ni was ascertained because it
contained a particular set of pi members, and we let qi =
ni – pi. We called the members of the set of pi family
members “probands”, and the remaining qi individuals
“non-probands”. To provide a clearer motivation on this
concept, we randomly selected two families, family 1 and
2, from our AD data (see Fig. 1). In family 1 (Fig. 1-(a)), in-
dividual 9 was diagnosed as AD and individuals 3–8
were selected as her relatives for genetic analysis. In family
2 (Fig. 1-(b)), individual 3 was diagnosed as AD, and indi-
viduals 4–6 were selected. Therefore p1 = p2 = 1, q1 = 6
and q2 = 3 in this example. In real data analysis, pi is often
1 and qi = ni – 1. We assumed that N individuals were
available and thus N = ∑ini. The genotypes were coded as
0, 1, or 2, according to the number of disease alleles. xij

P

and xi ' j '
N were defined as the genotypes of proband j and

non-proband j' in family i and family i', respectively. Phe-
notypes were coded as 0 for an unaffected individual and
1 for an affected individual. If we let the prevalence of the
disease be p, a missing phenotype was coded as p. We de-
noted the phenotypes of a proband and non-proband by
yij
P and yi ' j '

N , respectively, and the vectors for genotypes
and phenotypes in family i were defined by

?
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(a) Sample pedigree 1

?

1
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3 4 5 6

(b) Sample pedigree 2

Fig. 1 Two sample pedigree structures from AD data; (a) individual 9 of family 1 was selected as a "proband" and individual 3–8 of family 1 were
selcted as "non-probands" (b) individual 3 of family 2 was selected as a "proband" and individual 4–6 of family 2 were selcted as "non-probands"
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We also denoted the w ×w identity matrix by Iw, and
the w × 1 column vector 1w indicated a vector in which
all elements were 1. Let πijj '

P and πijj '
N be the kinship coef-

ficient between probands j and j' in family i, and non-
proband j and j' in family i, respectively. In addition, we
let πijj '

PN be the kinship coefficient between proband j and
non-proband j' in family i, and let dij

P and dij'
N be the in-

breeding coefficient for proband j and non-proband j' in
family i, respectively. The inbreeding coefficient is the
parameter that quantifies the departure from Hardy-
Weinberg equilibrium (HWE) and ranges from 0 to 1.
Several approaches [20, 21] that can estimate dij have
been proposed. We let
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If we let qA be the disease allele frequency, E(Xi) was
2qA1ni , and qA is estimated with the best linear un-
biased estimator (BLUE). var(Xi) is expressed by σ2Ri,
and σ2 is equal to 2qA(1 –qA) under HWE.
When we analyzes the distribution of genotypes as in

the FBAT approach, the statistical efficiency of the test
statistic could be improved by adjustments of the pheno-
type with the so-called offset [22]. If we let μij

P and μi'j'
N be

offsets for proband j and non-proband j' in family i

and family i', respectively, the offset vector for family i is
defined as
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We denoted a minor allele frequency (MAF) of a vari-
ant in unaffected individuals by q. We assumed [18] that
for a constant γ,

EðX��TÞ ¼ 2p1N þ γT;

where 0 < 2p + γ < 1. Then, the score for a variant [18, 23]
can be defined by

S ¼ TtðX−Ê ðXÞ
�

and Ê ðXÞ ¼ 1N ð1tNR−11NÞ−11tNR−1X:

The variance of S is

varðSÞ ¼ σ2TtV−1ðR−1Nð1tNR−11NÞ−11tNÞV−1T;

and we considered the following statistic [17, 18]:

TtðIN−ð1tNR−11NÞ−11tNR−1ÞXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2TtðR−1Nð1tNR−11NÞ−11tNÞT

q ∼Nð0; 1Þifγ ¼ 0:

This statistic will be denoted by WL in the remainder
of this report.

Adjusting the heterogeneous ascertainment bias
Families are often selected based on some probands, and
the probability for family members to be affected depends
on their relationship with the probands. Additional file 1
shows that the incorporation of conditional probability
of each individual being affected to WL as offset lead to
asymptotically smaller variance and therefore the adjust-
ment of heterogeneous ascertainment bias is required to
improve the statistical power of WL. This probability could
be estimated with the liability model if the heritabilities, h2,
and prevalence, p, were available. We let lij

P and li ' j '
N be the

liability of proband j and non-proband j' in family i and
family i', respectively, and let LP

i ¼ ðlPi1 ;…; lPipiÞ and

LN
i ¼ ðlNi1 ;…; lNiqiÞ . We assumed that each liability
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followed the standard normal distribution, and their joint
distributions were

LPi
LNi

 !
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Benchek and Morris [24] reported that significant
asymptotic biases are likely to arise when the multivari-
ate normal (MVN) liability assumption is not met and in
such a case, different assumptions should be considered.
We assume that Mi

P * and Vi
P * are the expectation and

variances of Li
P when their disease statuses are condi-

tioned. If all probands are affected, they becomes

Mi
P�
≡EðLiPjli1P > c;…; lipi

P > cÞ

and

Vi
P�
≡varðLiPjli1P > c;…; lipi

P > cÞ:

They can be calculated with the numerical algorithms
[25]. If pi is 1, both can be simply calculated. We denote
the cumulative and probability density function of
standard normal distribution by Ф(·) and ϕ(·). If we let c
be the (1–p)th quantile of the standard normal distribu-
tion, Mi

P * and Vi
P * becomes

MP�
i
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if yPi1 ¼ 1
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(
; and
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With Pearson-Aitken formula [26, 27], we could ob-
tain the conditional mean and variance-covariance
matrix of Li

N given LP
i > 1pi ⋅c as follows:
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We denoted the jth element in Mi
N * by mj

N * and the
jth diagonal element in Vi

N * by vj
N *. Then the probability

of being affected for a non-proband under multivariate
normality of the liabilities could be calculated as

Φ
c−mN�

j

vN�
j

 !
;

and this will be incorporated into the proposed statis-
tic as offset. Thus far, we have assumed that there was a
well-designed set of pi individuals who were “probands”,
and for this situation, we calculated the statistic as indi-
cated and denoted FQLS1. However in practice, different
ascertainment condition such as sequential sampling
frame [28] are often utilized, and the set of pi individuals
will not be well defined. For this situation, we calculated
the probability for each individual to be affected under
the assumption that all the other family members were
“probands”, and thus pi = ni – 1 and qi = 1. The statistic
calculated this way was denoted by FQLS2.

Results
The simulation model
In our simulation studies, we considered two types of
family structures; nuclear families with five offspring and
the extended families that consist of 13 individuals along
3 generations (see Fig. 2). The latter will be called ex-
tended families in the remainder of this report. The dis-
ease allele frequency, p, was assumed to be 0.2. If we
denoted the disease allele frequency by qA, the genotype
frequencies for AA, Aa, and aa became qA

2 , 2qA(1 – qA),
and (1 – qA)

2 under HWE, respectively, and founders’
genotypes were generated under the corresponding
multinomial distribution. The genotypes for non-founders
were generated with randomly generated Mendelian trans-
mission. The disease status was generated with the liability

1 2

3 4 5 6 7

(a) Nuclear family 

1 2

7 3 4 5 6 8

9 10 11 12 13

(b) Extended family

Fig. 2 Family tree. There are two different types of family structures, including (a) nuclear family and (b) extended family, which were considered
in our simulation study
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Fig. 3 QQ plots for FQLS1 and FQLS2 under the null hypothesis. QQplots for FQLS1 and FQLS2 are obtaind when h2 is 0.2((a), (b)), 0.5((c), (d)), or
0.8((e), (f)). P-values were calculated based on 5000 replicates when the number of families was 900. The genetic effect β was assumed to be 0,
and the minor allele frequency was 0.2
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threshold model. Once continuous liabilities that consisted
of polygenic effects and random errors were generated, they
were transformed to being affected if they were larger than
the threshold; and otherwise, they were considered to
be unaffected. The threshold was chosen to preserve
the prevalence, and prevalence was assumed to be 0.2.
Continuous liability was determined by combining the
phenotypic mean, polygenic effect, main genetic effect, and
random error. The main genetic effect for each individual
was the product of β and the number of disease alleles. If
we denoted the relative proportion of the phenotypic
variance attributable to the main disease gene by ha

2,
and h2 was a heritability for continuous liability, β was
calculated by

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2a
2qAð1−qAÞð1−h2Þ

s
:

For the evaluation of type-1 errors and power, ha
2 was

assumed to be 0 and 0.005, respectively. Phenotypic cor-
relations between family-members were explained by the
polygenic effects. Parental polygenic effects were gener-
ated from N(0, h2), and h2 was assumed to be 0.2, 0.5, or
0.8. For non-founders, the average of maternal and pa-
ternal polygenic effects was combined with the values
independently sampled from N(0, 0.5 h2) for the poly-
genic effects of offspring. Random errors were generated
from N(0, σe

2 = 1–h2). For each replicate, sampling was
repeated until a given number of ascertained families
was generated. Type-1 error estimates were calculated
with 5000 replicates, and empirical power estimates were
calculated with 1000 replicates.

Evaluation of the proposed methods with simulated data
The empirical type-1 errors for FQLS1 and FQLS2 were eval-
uated from 5000 replicates under the situation of no associ-
ation (ha

2 = 0), and 900 nuclear families with five offspring in
Fig. 2 were generated for each replicate. Fig. 3 shows the
quantile quantile (QQ) plots from 5000 replicates, and the
nominal significance levels for both methods were preserved
for various significance levels. We also estimated the empir-
ical type-1 error rates at the 0.01 and 0.05 significance levels;
the empirical type-1 error estimates of FQLS1 and FQLS2
preserved these nominal significance levels (Table 1). These
results verified that the use of the approximation to the
standard normal distribution resulted in an accurate as-
sessment of significance for the proposed methods.

Table 2 Empirical power estimates for scenario 1 when h2 is 0.2.
The empirical power estimates for scenario 1 were calculated with
1000 replicates at the both 0.01 and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900 1200 1400

0.01 1 WL 0.027 0.062 0.129 0.219 0.293 0.369

FQLS1 0.029 0.064 0.122 0.220 0.304 0.372

FQLS2 0.029 0.059 0.129 0.230 0.306 0.385

2 WL 0.033 0.076 0.165 0.295 0.415 0.456

FQLS1 0.036 0.073 0.166 0.309 0.418 0.461

FQLS2 0.035 0.076 0.178 0.312 0.422 0.465

3 WL 0.040 0.103 0.257 0.398 0.519 0.609

FQLS1 0.039 0.112 0.257 0.404 0.526 0.623

FQLS2 0.036 0.110 0.253 0.407 0.527 0.621

4 WL 0.041 0.127 0.297 0.497 0.626 0.720

FQLS1 0.044 0.129 0.307 0.502 0.626 0.719

FQLS2 0.046 0.126 0.307 0.493 0.637 0.726

0.001 1 WL 0.005 0.012 0.038 0.075 0.113 0.153

FQLS1 0.005 0.012 0.038 0.076 0.115 0.157

FQLS2 0.003 0.010 0.038 0.076 0.106 0.163

2 WL 0.006 0.019 0.060 0.098 0.193 0.224

FQLS1 0.007 0.018 0.059 0.099 0.199 0.217

FQLS2 0.006 0.019 0.064 0.100 0.197 0.219

3 WL 0.004 0.018 0.086 0.164 0.267 0.337

FQLS1 0.007 0.020 0.091 0.162 0.275 0.333

FQLS2 0.008 0.023 0.087 0.165 0.275 0.348

4 WL 0.010 0.029 0.116 0.231 0.309 0.451

FQLS1 0.009 0.029 0.116 0.228 0.370 0.449

FQLS2 0.009 0.031 0.118 0.233 0.363 0.459

The bold text indicates the highest empirical estimate of the power for each
situation

Table 1 Empirical type-1 error estimates. The empirical type-1
error rates and their 95 % confidence intervals were estimated
with 5000 replicates at the 0.01 and 0.05 significance level for
h2 = 0.2, 0.5, and 0.8. The number of families was assumed to be
900, and the disease allele frequency was 0.2

h2 Statistics Type-1 error
estimates

95 % confidence interval

Lower Upper

0.01 0.2 FQLS1 0.011 0.008 0.014

FQLS2 0.011 0.008 0.013

0.5 FQLS1 0.010 0.007 0.013

FQLS2 0.009 0.007 0.012

0.8 FQLS1 0.009 0.006 0.011

FQLS2 0.009 0.007 0.012

0.05 0.2 FQLS1 0.049 0.043 0.055

FQLS2 0.049 0.043 0.055

0.5 FQLS1 0.050 0.044 0.056

FQLS2 0.053 0.047 0.059

0.8 FQLS1 0.047 0.042 0.053

FQLS2 0.053 0.047 0.059
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The empirical powers at the various significance levels
were measured based on 1000 replicates at the 0.01 and
0.001 significance levels. The relative proportion, ha

2, of
phenotypic variance attributable to the main disease gene,
2pA(1 – pA)β

2, was assumed to be 0.005, and nuclear and
extended families in Fig. 2 were considered for the power
comparison. In the first simulation setting, the numbers of
nuclear families were assumed to be 100, 300, 600, 900,
1200, and 1400, and half of the families were ascertained if
the number of affected family members was larger than or
equal to nproband, and the other half of the families were
ascertained if the number of unaffected family members
was larger than or equal to nproband. Therefore, if 100 nu-
clear families were generated, half of nuclear families
should have more than or equal to nproband affected family

members, and the other half should have at least nproband
unaffected family members. We assumed that the herita-
bilities were 0.2, 0.5, and 0.8, and results are shown in
Tables 2, 3, 4, respectively. In the second simulation
setting, the numbers of extended families were assumed to
be 100, 300, 600, and 900, and all families were ascertained
if the number of affected amily members was larger than
or equal to nproband. Empirical power estimates for scenario
2 were calculated when h2 = 0.2, 0.5, and 0.8, and the data
are shown in Tables 5, 6, 7, respectively. Our results showed
that either FQLS1 or FQLS2 was usually the most efficient
statistic, and the least efficiency was provided from WL. In
particular, the power gap between the proposed methods
and WL was largest if h2 was 0.8, which indicates that
power improvement may be proportional to the heritability.

Table 4 Empirical power estimates for scenario 1 when h2 is 0.8.
The empirical power estimates for scenario 1 were calculated with
1000 replicates at the both 0.01 and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900 1200 1400

0.01 1 WL 0.068 0.233 0.470 0.699 0.819 0.903

FQLS1 0.071 0.238 0.471 0.717 0.841 0.896

FQLS2 0.078 0.298 0.559 0.817 0.899 0.943

2 WL 0.071 0.222 0.521 0.708 0.881 0.937

FQLS1 0.080 0.304 0.568 0.788 0.907 0.942

FQLS2 0.085 0.311 0.605 0.830 0.930 0.948

3 WL 0.075 0.253 0.555 0.786 0.911 0.931

FQLS1 0.079 0.298 0.592 0.813 0.921 0.972

FQLS2 0.078 0.311 0.629 0.823 0.941 0.982

4 WL 0.081 0.307 0.585 0.800 0.917 0.951

FQLS1 0.088 0.325 0.622 0.828 0.928 0.957

FQLS2 0.092 0.318 0.614 0.832 0.929 0.962

0.001 1 WL 0.016 0.074 0.229 0.444 0.602 0.710

FQLS1 0.017 0.072 0.221 0.436 0.643 0.693

FQLS2 0.021 0.120 0.309 0.573 0.739 0.820

2 WL 0.020 0.074 0.251 0.436 0.676 0.778

FQLS1 0.017 0.103 0.313 0.540 0740 0.798

FQLS2 0.024 0.116 0.350 0.589 0.782 0.845

3 WL 0.024 0.081 0.278 0.513 0.734 0.810

FQLS1 0.016 0.124 0.341 0.581 0.769 0.864

FQLS2 0.017 0.129 0.365 0.604 0.802 0.881

4 WL 0.015 0.109 0.310 0.542 0.756 0.830

FQLS1 0.021 0.118 0.335 0.588 0.783 0.867

FQLS2 0.021 0.133 0.345 0.597 0.790 0.874

The bold text indicates the highest empirical estimate of the power for each
situation

Table 3 Empirical power estimates for scenario 1 when h2 is 0.5.
The empirical power estimates for scenario 1 were calculated with
1000 replicates at the both 0.1 and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900 1200 1400

0.01 1 WL 0.052 0.142 0.369 0.518 0.682 0.765

FQLS1 0.053 0.145 0.352 0.523 0.681 0.766

FQLS2 0.056 0.151 0.389 0.543 0.702 0.796

2 WL 0.053 0.174 0.396 0.616 0.761 0.829

FQLS1 0.054 0.183 0.400 0.619 0.780 0.834

FQLS2 0.053 0.202 0.422 0.658 0.799 0.859

3 WL 0.068 0.118 0.470 0.692 0.808 0.818

FQLS1 0.073 0.216 0.489 0.705 0.826 0.905

FQLS2 0.067 0.232 0.498 0.729 0.826 0.904

4 WL 0.066 0.222 0.528 0.755 0.860 0.938

FQLS1 0.068 0.250 0.560 0.774 0.882 0.939

FQLS2 0.072 0.244 0.544 0.766 0.870 0.935

0.001 1 WL 0.012 0.034 0.143 0.247 0.376 0.505

FQLS1 0.015 0.046 0.142 0.245 0.387 0.496

FQLS2 0.013 0.046 0.169 0.305 0.442 0.567

2 WL 0.008 0.060 0.151 0.342 0.494 0.612

FQLS1 0.014 0.055 0.163 0.357 0.512 0.640

FQLS2 0.012 0.055 0.184 0.378 0.538 0.648

3 WL 0.005 0.033 0.223 0.404 0.579 0.595

FQLS1 0.008 0.076 0.235 0.432 0.604 0.717

FQLS2 0.010 0.078 0.236 0.438 0.610 0.699

4 WL 0.010 0.079 0.274 0.484 0.655 0.763

FQLS1 0.008 0.088 0.296 0.490 0.677 0.783

FQLS2 0.014 0.084 0.280 0.474 0.671 0.769

The bold text indicates the highest empirical estimate of the power for each
situation
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If h2 was 0.2, the proposed methods were only slightly
better than WL. While all methods in our power com-
parison focused on the distribution of genotypes to calcu-
late statistics, the proposed methods uniquely considered
the heterogeneous effects of ascertainment bias among
family members which were proportional to the magnitude
of heritability; this explained the power improvement of the
proposed methods. Furthermore the differences of empir-
ical power estimates from WL and the proposed methods
are larger for Tables 5, 6, 7 than Tables 2, 3, 4, which indi-
cates that the heterogeneity of ascertainment condition
may be positively related with family size and the proposed
methods become more efficient for large families. Last
our simulation results show that FQLS2 was slightly
better than FQLS1, and this may be induced by the un-
certainty of probands in our simulation studies. Therefore,
we concluded that the incorporation of a sampling scheme
to the offset could make a substantial difference, and test
statistic should be carefully selected depending on type of
sampling scheme.The bold text indicates the highest em-
pirical estimate of the power for each situationThe bold
text indicates the highest empirical estimate of the power

for each situationThe bold text indicates the highest em-
pirical estimate of the power for each situationThe bold
text indicates the highest empirical estimate of the power
for each situationThe bold text indicates the highest em-
pirical estimate of the power for each situationThe bold
text indicates the highest empirical estimate of the power
for each situation

Robustness of the proposed methods against the
misspecification of prevalence
The statistical powers of the proposed methods may de-
pend on the accuracy of the prevalence and we evaluated
the sensitivity of the proposed method to the misspecified
prevalence with simulated data. ha

2 and h2 were assumed
to be 0.05 and 0.8, and nuclear families (Fig. 2-(a)) were
considered in this simulation. The number of nuclear
families was assumed to be 900 and nproband was as-
sumed to be 1, 2, or 3. Prevalence was assumed to be
0.2 for phenotype generation, and the offset for which
we recommended prevalence was set to be 0.1, 0.2 or
0.3 for calculation of FQLS1 and FQLS2. In particular, yij
for individuals with missing phenotypes are coded by the

Table 6 Empirical power estimates for scenario 2 when h2 is 0.5.
The empirical power estimates for scenario 2 were calculated with
1000 replicates at the both 0.1 and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900

0.01 1 WL 0.130 0.293 0.567 0.787

FQLS1 0.130 0.295 0.568 0.773

FQLS2 0.140 0.323 0.603 0.823

2 WL 0.093 0.332 0.645 0.864

FQLS1 0.094 0.357 0.654 0.871

FQLS2 0.108 0.354 0.694 0.902

3 WL 0.100 0.382 0.735 0.904

FQLS1 0.108 0.406 0.751 0.915

FQLS2 0.130 0.408 0.772 0.932

0.001 1 WL 0.046 0.148 0.341 0.560

FQLS1 0.050 0.149 0.353 0.559

FQLS2 0.047 0.166 0.386 0.617

2 WL 0.019 0.127 0.387 0.634

FQLS1 0.021 0.119 0.394 0.648

FQLS2 0.017 0.144 0.432 0.695

3 WL 0.023 0.166 0.481 0.749

FQLS1 0.026 0.183 0.511 0.772

FQLS2 0.028 0.196 0.532 0.782

The bold text indicates the highest empirical estimate of the power for each
situation

Table 5 Empirical power estimates for scenario 2 when h2 is 0.2.
The empirical power estimates for scenario 2 were calculated with
1000 replicates at the both 0.01, and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900

0.01 1 WL 0.072 0.149 0.304 0.409

FQLS1 0.072 0.147 0.305 0.415

FQLS2 0.075 0.158 0.312 0.434

2 WL 0.042 0.137 0.300 0.448

FQLS1 0.039 0.136 0.303 0.455

FQLS2 0.041 0.139 0.295 0.471

3 WL 0.058 0.188 0.410 0.608

FQLS1 0.054 0.191 0.424 0.620

FQLS2 0.055 0.190 0.423 0.615

0.001 1 WL 0.025 0.059 0.147 0.211

FQLS1 0.023 0.062 0.152 0.197

FQLS2 0.022 0.055 0.152 0.212

2 WL 0.010 0.038 0.123 0.229

FQLS1 0.012 0.036 0.123 0.232

FQLS2 0.010 0.036 0.127 0.227

3 WL 0.006 0.055 0.182 0.342

FQLS1 0.007 0.055 0.182 0.355

FQLS2 0.009 0.057 0.182 0.356

The bold text indicates the highest empirical estimate of the power for each
situation
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assumed prevalence, and sensitivity of the proposed
methods can be substantial when there are individuals
with missing phenotypes. Therefore, individuals were ran-
domly selected from non-probands, and their phenotypes
were assumed to be unknown for calculation of the pro-
posed statistics. The number of family members with
missing phenotypes in each family was denoted by nmissing.
The empirical powers were calculated at the 0.01 signifi-
cance level with 1000 replicates. Table 8 shows that the re-
sults obtained by setting prevalence to be 0.1 and 0.3 are
similar to the results when the prevalence was set to be
0.2, which indicates that the power loss attributable to the
misspecified prevalence is not substantial. Furthermore
the empirical power estimates are positively related with
nproband and inversely related with nmissing. If nmissing is lar-
ger than 3, the power loss may be more substantial.The
bold text indicates the reference for the proposed statistics
to compare with the misspecified prevalence.

Application of the proposed method to AD
AD is an irreversible, progressive brain disorder charac-
terized by genetic heterogeneity. However, the genetic

variations that contribute to AD still remain elusive.
Thus, we applied the proposed method for identification
of the disease susceptibility loci for AD. The heritability
and prevalence of AD are approximately 0.8 [29, 30] and
0.1, respectively; therefore, we chose heritabilities of 0.8,
and a prevalence of 0.1 for the calculation of proposed
methods. Samples were collected as part of the National
Institute of Mental Health Genetics Initiative (NIMH).
The NIMH Alzheimer’s Disease Genetics Family Sample
was used along with the information about the genotype
platform (Affy 6.0) [20, 31], and ethical approach and
participant approval were obtained through the NIMH
IRB panel. Families were selected based on the disease
status of a certain family member. However the proband
for each family was not clear, and FQLS2 was uniquely
applied for the proposed method. 1376 individuals from
410 families were available, and all families were nuclear.
All individuals were of self-reported European ancestry.
HWE for each single nucleotide polymorphism (SNP)
was tested, and MAFs were estimated. SNPs for which
p-values for HWE were less than 10−6 or MAFs less than

Table 8 Empirical power estimates for three situations when h2

is 0.8. The empirical power estimates for three situations were
calculated with 1000 replicates at the 0.01 significance levels.
Phenotypes were generated under the assumption that the
prevalence was assumed to 0.2. Prevalence was set to be 0.1, 0.2
or 0.3 to calculate the proposed statistics. The relative phenotypic
variance attributable to the main disease gene was assumed to be
0.005

nmissing nproband Statistic Prevalence to be set for statistics

0.1 0.2 0.3

0 1 FQLS1 0.486 0.479 0.464

FQLS2 0.572 0.539 0.525

2 FQLS1 0.562 0.557 0.532

FQLS2 0.606 0.621 0.624

3 FQLS1 0.632 0.642 0.634

FQLS2 0.644 0.647 0.654

1 1 FQLS1 0.432 0.434 0.418

FQLS2 0.468 0.469 0.462

2 FQLS1 0.522 0.530 0.519

FQLS2 0.547 0.554 0.559

3 FQLS1 0.580 0.584 0.576

FQLS2 0.575 0.584 0.585

2 1 FQLS1 0.415 0.412 0.399

FQLS2 0.428 0.420 0.412

2 FQLS1 0.482 0.487 0.468

FQLS2 0.483 0.495 0.492

3 FQLS1 0.487 0.497 0.490

FQLS2 0.500 0.515 0.511

The bold text indicates the reference for the proposed statistics to compare
with the misspecified prevalence

Table 7 Empirical power estimates for scenario 2 when h2 is 0.8.
The empirical power estimates for scenario 2 were calculated with
1000 replicates at the both 0.01 and 0.001 significance levels. The
disease allele frequency was assumed to be 0.2, and the prevalence
was assumed to 0.2. The relative phenotypic variance attributable to
the main disease gene was assumed to be 0.005

nproband Statistic N

100 300 600 900

0.01 1 WL 0.164 0.445 0.749 0.906

FQLS1 0.156 0.441 0.751 0.905

FQLS2 0.194 0.508 0.817 0.944

2 WL 0.132 0.473 0.823 0.970

FQLS1 0.131 0.505 0.861 0.969

FQLS2 0.150 0.564 0.905 0.978

3 WL 0.140 0.475 0.835 0.958

FQLS1 0.134 0.520 0.867 0.970

FQLS2 0.167 0.556 0.886 0.981

0.001 1 WL 0.059 0.230 0.519 0.759

FQLS1 0.053 0.236 0.519 0.757

FQLS2 0.070 0.311 0.632 0.841

2 WL 0.039 0.239 0.561 0.858

FQLS1 0.033 0.250 0.594 0.884

FQLS2 0.053 0.300 0.702 0.924

3 WL 0.033 0.215 0.629 0.865

FQLS1 0.046 0.247 0.671 0.900

FQLS2 0.044 0.287 0.713 0.925

The bold text indicates the highest empirical estimate of the power for each
situation
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0.05 were excluded, and therefore, 417,680 SNPs were
analyzed for genetic association analysis.
The choice of kinship coefficient matrix for the pro-

posed method depends on the presence of population
substructure. To confirm the presence of population
substructure, multidimensional-scaling [32] analysis was
performed with PLINK1.07 [20], and we constructed a
multidimensional-scaling plot (Fig. 4) to provide evi-
dence concerning the presence of population substruc-
ture. Therefore, the genomic control method [31, 33, 34]
was used for explicit detection and correction of popula-
tion stratification with common SNPs, and they were
incorporated into both FQLS2 and WL. Fig. 5 shows

QQ plots for FQLS2 and WL; these plots revealed that
the presence of population substructure was appropriately
adjusted. Results showed four genome-wide significant re-
sults for FQLS2 and one significant result for WL.
Detailed information for these significant results is

provided in Table 9. We also considered FBAT statistics
[35]. FQLS2 identified four genome-wide significant SNPs,
whileWL and FBAT identified one genome-wide significant
SNP. In addition, one SNP that was significant according
to WL was more significant according to FQLS2. The most
significant result acquired using FQLS2 was SNP4 (p =
2.10× 10−10). The other three SNPs, i.e., SNP1, SNP2 and
SNP3, reached the genome-wide significance level.

Discussion
Although major advances in high-density genome scans
have enabled the genetic association analysis of more
than 10,000 individuals, disappointing results in the map-
ping of many common diseases have illustrated the need
for more powerful methods for detecting disease suscepti-
bility loci. Statistical efficiency is known to being affected
by the ascertainment bias, and its careful adjustment can

Fig. 4 Multidimensional scaling plots from samples for the GWAS for
AD. Founders were selectively used, and multidimensional scaling
plots were obtained with the first and second PC scores

Table 9 Top significant results of GWAS for AD. For the
genome-wide significant SNPs from FQLS2 and WL, their
p-values are given

SNP WL FQLS2 FBAT

SNP1 3.53× 10−7 1.94× 10−8 4.23× 10−4

SNP2 5.74× 10−7 4.45× 10−8 4.9× 10−5

SNP3 1.69× 10−7 8.36× 10−9 8.6× 10−5

SNP4 2.79× 10−9 2.86× 10−10 6.94× 10−12

Fig. 5 QQ plots of results from GWAS for AD. QQ plots are provided with the results from (a) WL and (b) FQLS2

Park et al. BMC Medical Genetics  (2015) 16:62 Page 10 of 12



lead to substantial improvement of statistical power
[36–38]. In particular, genetic association analysis has
often been conducted using family-based designs, but
without addressing the fact that the probability for each
family member to be affected is inversely related with
the familial relationship with affected probands. In this
report, we proposed new methods to adjust this hetero-
geneity with known prevalence and heritability. Our
simulation studies showed that the proposed methods
provided substantial power improvement. In particular,
the mis-specified heritability and prevalence can lead to
the statistical power loss for the proposed methods, but it
was found to be not substantial at least in our simulation
studies. FQLS1 and FQLS2 were suggested, and FQLS1 is
an efficient choice if probands for each family are clearly
defined and all remaining family members are incorpo-
rated to the genetic analysis. However, these conditions
are often not satisfied, and different methods such as se-
quential sampling frame [28] are usually utilized. Simula-
tion studies showed that FQLS2 is usually better than
FQLS1 if the ascertaining condition is not clearly defined
and thus we recommend FQLS2 unless probands are
clearly defined. However we considered the limited ascer-
tainment conditions and comprehensive simulation stud-
ies are still necessary.
Furthermore, the proposed method was conceptually

simple and can be applied to the large families. Our
methods require only a single calculation of offset for all
markers, and the real data analysis could be completed
with a single CPU in a few hours. For M markers and N
individuals, the time complexity is O(N3 +MN2) for the
proposed method. The proposed method was implemented
with C++, and can be downloaded from http://healthstat.
snu.ac.kr/mfqls/.
Heterogeneity between samples is an important issue in

large-scale genetic analysis, and the proposed method can
likely be applied to various additional scenarios with some
modifications. For instance, the disease status of relatives
reveals the importance of genetic components for each in-
dividual, and for this reason, such information has been
used, albeit only on occasion, in genetic association ana-
lysis. The effect of relatives’ disease statuses is dependent
on prevalence and heritability, and the probability for each
individual to be affected could be calculated with the pro-
posed method. This probability can be used to improve
the statistical efficiency of genetic association analysis. In
addition, the heterogeneity of the ascertainment bias is
often an important issue for genome-wide meta-analysis
because samples are collected from multiple medical
centers [39, 40], and different sampling schemes among
studies need to be adjusted to improve statistical efficiency.
Therefore, we believe that proposed method can be ex-
tended to provide a statistical framework that adjusts
the heterogeneity between samples.

Conclusions
We proposed FQLS method to adjust this heterogeneity
with known prevalence and heritability and the software
was implemented with C++. We identified several sig-
nificant associations between AD and SNPs, and their
potential functional information will provide the better
understanding of the pathogenesis of AD. Although this
study has some limitations, our proposed methods illus-
trated important features required for genetic analysis
with family-based samples, and an extension of the pro-
posed method to rare variant association analysis such
as FARVAT [41] will be investigated in future studies.
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