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Abstract

future studies of WDR62.

Background: Primary microcephaly is a disorder of the brain resulting in a reduced head circumference that can
come along with intellectual disability but with hardly any other neurological abnormalities.

Case presentation: In this study we report on three Pakistani males from a consanguineous family with 2, 4 and
25 years, diagnosed with autosomal recessive primary microcephaly. By genotyping, Sanger sequencing and using
bioinformatical approaches the disease causing mutation was identified and evaluated.

Conclusion: By using a 250K SNP array, we were able to detect an 11Mb large autozygous region in the MCPH2
locus on chromosome 19q13.12. Sequencing of the associated gene, WDR62, revealed the frameshift causing single
base pair duplication, c.2527dupG. This mutation is predicted to affect the structural features of WDR62 which in
turn changes the conformation and function of the protein. Aspartic acid (D) at position 843 was found to be
conserved among various ortholog species. The present findings will be helpful in genetic diagnosis of patients and
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Background

Autosomal recessive primary microcephaly (MCPH) is a
rare malformation of the head resulting in a circumfer-
ence of at least 3 standard deviations below the mean
for a given population, gender and age [1-3]. To date, 13
MCPH loci and their genes (MCPH1, WDR62, CDK5RAP2,
CASC5, ASPM, CENPJ, STIL, CEP63, CEP135, CEP152,
PHC1, CDK6 and HsSAS-6 respectively) have been
mapped and identified, making this disease a genetically
heterogeneous disorder, affecting 1 in 10 000 children that
result from consanguineous marriages [4-17]. Recent stud-
ies in Drosophila revealed the influence of mutations
in MCPH genes on asymmetrical cell division having
an adverse effect on neuronal growth in the central ner-
vous system during embryogenesis [18-20]. Beside a re-
duced cerebral cortex, a mild-to-moderate intellectual
disability that strongly correlates with the head circumfer-
ence, and sometimes also a delay in the linguistic develop-
ment, primary microcephaly patients in general have no
other developmental or neurological deficits [10,14,18,21].
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Although sloping foreheads and reduced intelligence are
very common, they are not listed as a basic criteria for the
diagnosis of microcephaly [19,22]. The loci for MCPH2 on
chromosome 19q13.12 has already been discovered in
1999 by Roberts et al. [23] but although excessive sequen-
cing of this locus has been performed since then the cor-
responding gene, WDR62, remained undiscovered until
only recently [5,13,16]. In human, two alternative tran-
scripts are expressed. The full-length WDR62 gene con-
sists of 32 exons resulting in a genomic size of 50230bp. It
encodes for a 1523 amino acid long protein that comprises
15 WD-40 repeats, one CpG signal and a polyadenylation
signal [13,19,24-26]. The homodimerization region can be
found on the C-terminal domain which shows no se-
quence homologies to any known oligomerization signals
[27]. First studies on WDR62 revealed it as a JNK scaffold
protein that associates with the two JNK-signalling path-
way proteins JNK (c-Jun N-terminal kinase) and MKK7
(MAP kinase kinase 7) and is recruited to stress granulaes
upon cellular stress induction [28]. Although Bilgtivar
et al [5] showed in expression experiments that WDR62
was rather a nuclear than a centrosomal protein, Bhat
et al. [24] proved its centrosomal localization during mi-
tosis as well as its nuclear localization but also suggested
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that the localization of WDR62 strongly depends on cell
cycle phase and cell type. Only recently, WDR62 was iden-
tified as a phosphoprotein associated with mitotic spindle
poles during prophase to metaphase transition but lacked
its centrosomal localization during ana- and telophase.
Depletion experiments led to a mitotic delay and to abnor-
mal spindle formation as well as an increased formation of
multipolar spindles [29].

A wide range of cortical malformations have been de-
scribed for mutations in this gene, including microceph-
aly, pachygyria with cortical thickening, hypoplasia of
the corpus callosum, polymicrogyria, simplified gyral
patterns, cerebral hypoplasia, band heterotopias, lissen-
cephlay and schizencephaly [5,13,16,17,19,24,30]. Due to
the increased incidence of autozygous regions in children
from consanguineous families, the probability of carrying
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a disease causing identical-by-decent mutation is in-
creased in patients with autosomal recessive disorders
[30]. Following this assumption, we were able to identify a
novel homozygous mutation in WDR62 in a consanguin-
eous Pakistani MCPH2 family.

Case presentation

Sample collection

After obtaining informed consent, blood was drawn and
DNA was isolated from 9 family members, including
two affected brothers and their affected relative, accord-
ing to standard protocols.

Genotyping
Autozygosity mapping was performed with the Affymetrix
GeneChip Human Mapping 250K Nsp Array according to
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Figure 1 Family Pedigree and Genotypes: a) Members of families MCP1 displaying autosomal recessive primary microcephaly:Patient
MCP1-2 (A), his brother MCP1-5 (B), patient MCP1-6 (C). b) Family pedigree and genotypes for 3 specific markers around chromosome 19q13.12.
Affected individuals share homozygous allele 1 for D195414 and homozygous allele 2 for marker D195220. Relative distances in Kosambi cM were
achieved from the Marshfield linkage map (http://research.marshfieldclinic.org): cen-D195414-7 48cMWDR62-0.54cM-D15220-4.27cM-D15420-tel.
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the manufacturer’s protocol. The physical distance of the
LOH region was determined via University of California
Genome Browser UCSC [25]. Microsatellite markers in
this region (D19S414, D19S220 and D19S420) were se-
lected from ABI PRISM® Linkage Mapping Set v2.5 for
fine-mapping the disease locus and to analyze the segrega-
tion among the available family members. The resulting
data were analyzed with Peak Scanner Software v1.0
(Applied Biosystems).

Sanger sequencing

WDR62 exons and their flanking intron junctions were de-
termined with UCSC Browser. Primers were designed
using ExonPrimer (http://ihg.helmholtzmuenchen.de/ihg/
ExonPrimer.html) and synthesized by Microsynth. Primer
sequences are available on request.
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WDR62 exons and their flanking intron sequences were
amplified with HotStarTaq Master Mix Kit (Qiagen) using
a standard amplification protocol, the sequencing reac-
tion was set up with Big Dye Terminator 3.1 (Applied
Biosystems) and remaining dye nucleotides were removed
with Sephadex™ G-50 superfine (GE Healthcare). Analysis
of the amplicons was performed on ABI 3130x/ Genetic
Analyzer.

Computational analysis

To predict the secondary structure of WDR62 protein,
the online server Psipred [31] was used. MSA (Multiple
Sequence Alignment) was performed using T-Coffee
[32] to show the sequence consistency among various
ortholog species of Human WDR62. Thirteen ortholog
species with reference to Human (Homo sapiens) have

Heterozygous parent MCP1-8

Affected individual MCP1-6
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—
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Heterozygous carrier MCP1-3

for ¢.2527dupG.

Figure 2 Results of Array and Sequencing: a) SNP NSP 250K array (Affimetrix) of Chromosome 19 of individuals (MCP1-5 and MCP1-6).
Blue and red areas indicate homozygous regions, while yellow areas indicate heterozygous regions. Patients share the same homozygous haplotype
on chr. 19g12-g13.2, indicating an autozygous region. Borders are defined as the first heterozygous SNP above and under the homozygous
locus. b) Sanger sequencing traces confirm the homozygous mutation, ¢.2527dupG, in all affected individuals and heterozygous mutations in
the parents (underlined in black). Despite having the same microsatellite marker alleles as the affected, individual MCP1-3 is heterozygous
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been considered for this study. These species include:
Chimpanzee (Pan troglodytes), Macaque (Macaca mulatta),
Mouse (Mus musculus), Guinea Pig (Cavia porcellus),
Megabat (Pteropus vampyrus), Dog (Canis familiaris),
Opossum (Monodelphis domestica). Sequences of all ortho-
log species were collected through ensemble database.

Findings

Five individuals of a consanguineous Pakistani family
from Kotli, in the Pakistani administered Kashmir, dis-
played phenotypical and behavioral characteristics for
primary microcephaly. An autosomal recessive inherit-
ance was assumed according to the pedigree. DNA was
available from three patients, the brothers, MCP1-2 and
MCP1-5, and their more distant relative, MCP1-6.

With 4 years and 6 months, male individual MCP1-2
(Figure 1a A) had a head circumference of only 37.47 cm
and a height of 91.44 cm. He was reported to show aggres-
sive behavior, being unable to walk due to a disabled left
leg and to have an abnormally watery mouth. Beside a head
circumference of only 35.94 cm and a height of 74.93 cm
his 2 year old brother, patient MCP1-5 (Figure la B),
displays no other abnormalities.

The third 25 years old patient, MCP1-6 (Figure la C),
has a head circumference of 39.37 cm and a height of 170
cm. As for patient MCP1-2, aggressiveness and a watery
mouth have been observed. The computed tomography
(CT) scan of this individual revealed a reduced volume of
the right cerebral hemisphere and prominent extra axial
cerebrospinal (CSF) spaces with ill-defined gryal and nu-
clei pattern (Data not shown here). However, no local area
of brain attenuation and intracerebral blood was observed.
Due to the non-cooperative behavior of two other affected
individuals (MCP1-2 and MCP1-5) detailed magnetic res-
onance imaging (MRI) scan could not be performed.

Autozygosity mapping of individuals MCP1-5 and MCP1-
6, revealed a single homozygous stretch on chromosome
19, reaching from q13.11 to q13.12, bounded by the SNP
markers rs12460899 (29,899 Mb) and rs4622626 (40,933
Mb) (Figure 2a). Previously, the MCPH2 locus has been
linked to 19q13.12, with the only recently indentified cor-
responding gene WDR62 [5,13,16,23]. Fine-mapping of
this locus with 3 microsatellite markers, D19S414 (31, 9
Mb), D195220 (38,3 Mb) and D19S420 (43,7 Mb), identi-
fied a common homozygous stretch among the affected
between markers D195414 and D19S220 (Figure 1b). With
WDR62 lying at 36,545-36,596 Mb, we screened individual
MCP1-6 by Sanger sequencing for mutations within this
gene and revealed a homozygous duplication (insertion) in
exon 22, ¢.2527dupG. This duplication leads to a frame-
shift with a premature stop codon 4 amino acids after the
start of the exon (p.Asp843Glyfs*3).

Segregation of the duplication in the family was con-
firmed by sequencing (Figure 2b). Surprisingly healthy

Page 4 of 6

individual MCP1-3 displays the same marker alleles as
the affected but is heterozygous for the mutation in exon
22. This can be explained by the obviously non-
polymorphic nature of the microsatellite markers we
used for analyzing this family. Compared with the alleles
of his brother, MCP1-9, a crossing over after the marker
D19S414 has probably occurred. All known mutations
for WDRG62, including the one reported in this paper, are
summarized in Table 1. According to Psipred results
(Figure 3a) the mutated WDR62 structure was predicted

Table 1 Cerebral cortical malformations causing
mutations detected in WDR62

Mutation

DNA level Protein level Typea) Exon First reported
c193G>A p.Val65Met M 2 [13]
€332G>C p.Arg111Thr M 3 [33]
c.363delT p.Asp122Metfsx5  SD 4 [16]
€.535_536insA p.Met179fsx21 SI 5 [24]
c671G>C p.Trp224Ser M 6 [13]
c.900C > A p.Cys300Term N 8 [24]
c1043+1G>A p.Ser348ArgfsX63 S 8 [16]
c.1142delA p.H381PfsX48 SD 9 [33]
c.1194G > A p.Trp398Term N 9 [33]
c.1198G > A pGlu400Lys M 9 [34]
c1313G>A p.Arg438His M 10 [13]
c.1408C>T p.GIn470Term N 1 [5]
c.1531G> A p.Aps511Asn M 11 [13]
c1576G > A p.Glu526Lys M 12 [5]
c1576G>T p.Glu526Term N 12 [5]
c1942C>T p.GIn648Term N 15 [35]
€.2083delA p.Ser696AlafsX4  SD 17 [36]
c2115C>G p.Gly705Gly cs 17 37]
€2527dupG p.Asp843GlyfsX3 Sl 22 Present study
C.2472_2473delAG p.GIN918GlyfsX18  SD 23 [36]
2867 +4_c2867 +  p.Ser956CysfsX38  SD 23 [16]
7delGGTG

€.2864-2867delACAG  p.D955AfsX112 SD 23 [38]
€3232G>A p.Ala1078Thr M 27 [13]
c3361delG p.Ala1121GInfsX5  SD 28 [33]
c3503G> A p.W1168Term N 29 [33]
€3839_3855delGCC  p.Gly1280AlafsXx21  SD 30 [5]
AAGAGCCTGCCCTG

€3936dupC pVal1314ArgfsX18 Sl 30 [13]
€4205delTGCC p.V1402GfsX12 SD 31 [5]
c4241dupT pleul414Leufsx41 Sl 31 [13]
c.1821dupT p.Arg608SerfsX26 | 14 [39]

@M = Missense, N = Nonsense, S = Splice-site affecting mutation, SI = small
insertion, SD = Small deletion, CS = Cryptic splice site.
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Figure 3 Bioinformatics Analysis: a) Comparison of predicted numbers of structural features using Psipred for normal and mutated
WDR62; b) T-Coffee Results: Multiple Sequence Alignment for Human WDR62 gene. Conservation of amino acid D at position 843 among

to consist of 61 coils, 60 strands and 1 helix compared to
64 coils, 58 strands and 7 helixes in the wild type. This not
only affects the conformation but also the function of the
protein. T-Coffee result (Figure 3b) shows that Aspartic
acid (D, replaced by Glycine as a result of the mutation) at
position 843 (indicated by an arrow head) is highly con-
served among various orthologous species which indicates
the importance of this amino acid.

Conclusion

According to Mahmood et al. [19] ASPM (MCPH5
locus) and WDR62 (MCPH2) are the two most common
genes for primary microcephaly found mutated in more
than 55% of the affected families. 4% of all MCPH cases
are only due to mutations in WDR62 [35].

Due to the high prevalence of MCPH2 in primary
microcephaly cases among consanguineous families more
mutations in this gene will probably be revealed in the
upcoming years. However, the high frequency of WDR62
mutations in consanguineous primary microcephaly pa-
tients will especially simplify the clinical counseling and
diagnostic screening of non-consanguineous primary
microcephaly patients.
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the patient for publication of this case report and any ac-
companying images. A copy of the written consent is
available for review from the Editor of this journal.
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