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Abstract

Background: Persistent stimulation of cardiac f3,-adrenergic receptors by endogenous
norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter
receptor function or expression, as are polymorphisms of the o,--adrenergic receptor, which
regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was
to investigate possible synergistic effects of polymorphisms of these two intronless genes (ADRB/
and ADRA2C, respectively) on the risk of death/transplant in heart failure patients.

Methods: Sixteen sequence variations in ADRA2C and |7 sequence variations in ADRB[ were
genotyped in a longitudinal study of 655 white heart failure patients. Eleven sequence variations in
each gene were polymorphic in the heart failure cohort. Cox proportional hazards modeling was
used to identify polymorphisms and potential intra- or intergenic interactions that influenced risk
of death or cardiac transplant. A leave-one-out cross-validation method was utilized for internal
validation.

Results: Three polymorphisms in ADRA2C and five polymorphisms in ADRB/ were involved in eight
cross-validated epistatic interactions identifying several two-locus genotype classes with significant
relative risks ranging from 3.02 to 9.23. There was no evidence of intragenic epistasis. Combining
high risk genotype classes across epistatic pairs to take into account linkage disequilibrium, the
relative risk of death or transplant was 3.35 (1.82, 6.18) relative to all other genotype classes.

Conclusion: Multiple polymorphisms act synergistically between the ADRA2C and ADRB/ genes to
increase risk of death or cardiac transplant in heart failure patients.
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Background

Congestive heart failure can be caused by a wide array of
myocardial insults. Although this etiological heterogene-
ity has yet to be well characterized, the role of neurohor-
monal pathways in the progression of heart failure is well
established [1-3]. Prejunctional o,-adrenergic receptors
(a4 and o) regulate the release of norepinephrine from
cardiac sympathetic nerves in a negative feedback manner.
When these receptors are ablated in mouse models,
uncontrolled norepinephrine release causes a lethal cardi-
omyopathy [4,5]. Moreover, the released norepinephrine
activates P,-adrenergic receptors (3;AR) expressed on car-
diac myocytes which are coupled to stimulatory G-pro-
teins that propagate signals to downstream effectors such
as adenylyl cyclase, ion channels, and phospholipases [6].
Prolonged activation of cardiomyocyte 3;AR signaling by
any number of pharmacologic or genetic means typically
results in hypertrophy, ventricular dysfunction, ventricu-
lar remodeling, or frank failure [7]. Thus, sympathetic
activation of the heart is coordinated in part by these two
adrenergic receptors, in which genetic variation of expres-
sion or function could act to modify the progression of
heart failure. And indeed, substantial variation in the pro-
gression, mortality, and treatment response of heart fail-
ure between otherwise similar individuals is well
recognized [8-10].

Previous studies of a common single nucleotide polymor-
phism C->G in the ;AR gene (ADRBI) at codon 389,
which results in an arginine for glycine substitution
(Arg389Gly), have shown enhanced coupling of the Arg
variant to G, in recombinant cells [11]. Arg389 is associ-
ated with differential exercise capacity in heart failure
patients [12], response to beta-blockers [13,14], hyperten-
sion [15], and risk of myocardial infarction [16]. In trans-
genic mice, the Arg variant has been associated with early
enhanced cardiac function but in older mice a predisposi-
tion to heart failure [17].

A common insertion/deletion polymorphism in African-
Americans resulting in a consecutive four amino acid loss
(322-325) in the o,,cAR gene (ADRA2C) has been found
to reduce receptor function [18], leading to a loss of nor-
mal synaptic autoinhibitory feedback and concomitant
enhanced release of norepinephrine [19]. Given the
potential synergistic effects of these polymorphisms in the
ADRBI1 and ADRA2C genes, two previous studies have
investigated and identified epistatic interactions affecting
heart failure risk [20] and response to B-blockers in heart
failure patients [21]. In both studies, only two putative
functional polymorphisms (i.e., ADRB1 Arg389Gly and
ADRA2C ins/del 322) were examined. Multiple addi-
tional polymorphisms in both of these two intronless
genes have been recently identified and characterized in
whole-gene transfection studies, some of which alter pro-
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tein expression [22,23]. Here we examine whether there is
evidence for more complex intragenic and intergenic epi-
static effects on heart failure phenotypes and survival in
these genes utilizing 16 DNA sequence variations in the
ADRA2C and 17 DNA sequence variations in the ADRB1
genes.

Intergenic epistasis, or interaction between two genes,
occurs when the phenotypic effects of a variation in one
gene is affected by a variation in a second gene. This could
result from conformational changes that prevent physical
interaction between the two gene products, or from a
change in the ability of one gene to regulate the expression
of the other or, the pathologic pathway involves both
genes in a manner that their downstream effects converge
to alter critical events. Intragenic epistasis occurs when a
variation in one location of a gene influences the pheno-
type differently depending on other variations within the
same gene. This type of epistasis is most notable when two
different amino acid substitutions within a gene result in
differentially functioning the resulting protein. However,
it is also seen to have an effect on gene expression and
processing.

Methods

Study Population

The 655 Caucasian heart failure patients were identified
and enrolled in the study at the University of Cincinnati,
Cincinnati, OH, between 1999 and 2004. The study was
restricted to Caucasians because of the significant differ-
ences in the allele frequencies between those of African-
and European-descent in these two genes [22,23], and a
smaller number of potential black enrollees. Other enroll-
ment criteria were: age of 18 to 80 years, left ventricular
ejection fraction (LVEF) of less than 40%, and New York
Heart Association heart failure class II-IV. The primary
study endpoint was the combined event of death or car-
diac transplantation. Descriptive statistics of this cohort
are given in Table 1. The human study protocols were
approved by the institutional review board of the Univer-
sity of Cincinnati, and subjects provided written informed
consent.

Genotyping

Sequence variants have been previously identified for
ADRA2C [22] and ADRBI1 [23] and the nomenclature
used in these papers is retained in the current work to
maintain consistency. Both genes are intronless, and the A
of the initiation codon is denoted as +1, proceeding in the
positive direction 5' -3' through the coding and 3' UTR. In
the 5' -flanking region the most 3' non-coding nucleotide
prior to the ATG is denoted as -1 and the numbering pro-
ceeds in the negative direction. The genotyping was per-
formed on the variant sites shown in Table 2. For
orientation purposes +1 of ADRA2C is nucleotide 2638 of
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Table I: Descriptive statistics for the heart failure cohort
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Variable N Mean = SD
Age at onset of heart failure (yrs) 655 53.79 £ 12.73
Follow-up time (yrs) 655 3.16 £2.70
Height (cm) 554 172.2 + 10.06
Weight (kg) 560 85.82 +20.73
Left Ventricular Ejection Fraction 415 27.72 £ 13.72
Left Ventricular Mass indexed to Body Surface Area 456 189.14 + 69.04
Fractional Shortening 492 2197 £ 11.16
Variable N %
Males 453 69.2
Hypertension 310 47.9
Beta Blocker Use 455 69.6
ACE Inhibitor Use 550 84.0
Had Endpoint:
Death 127 19.4
Cardiac Transplant 171 26.1
Heart Failure Etiology:
Dilated Cardiomyopathy 382 583
Ischemic Cardiomyopathy 259 39.5
Other 14 2.1

AY605898, and +1 of ADRBI is nucleotide 36085 of
AL355543. The variants are deposited in the PharmGKB
(ADRA2C) and SeattleSNPs (ADRB1) public databases
(http://www.pharmgkb.org/ and http://pga.gs.washing
ton.edu/, respectively). Genotyping was performed on
genomic DNA derived from blood samples, by sequenc-
ing PCR products spanning one or two variant positions,
using an ABI 3730 sequencer. Variants detected by align-
ment to a reference were verified by visual electrophero-
gram examination.

Statistical Methods

Allele frequencies were estimated using standard gene
counting methods. Hardy-Weinberg disequilibrium was
tested using Weir's method [24]. Linkage disequilibrium
was assessed using the 12 statistic [24]. Cox Proportional
Hazards modeling [25]. was used to test for significant
effects for each polymorphism (separately) and pairwise
epistatic effects after adjustment for age at initial diagno-
sis, B-blocker usage, hypertension status, and sex. Geno-
types for each polymorphism were coded using two
dummy variables where the most frequent genotype was
considered the reference group. Epistasis was assessed by
including interaction terms into the Cox models.

To adjust for multiple testing we used Storey's modifica-
tion of the false discovery rate (FDR) method of Ben-
jamini and Hochberg [26] that takes into account the
correlation among tests due to linkage disequilibrium. We
used an FDR cutpoint of 0.30. To assess whether the infor-
mation from the Cox proportional hazards modeling of

genetic effects provides a useful prediction of a new
patient's risk of death or cardiac transplant, we imple-
mented a leave-one-out cross-validation approach [27].
Each individual was sequentially left out and a Cox pro-
portional hazards model for time from study enrollment
to death or cardiac transplant was estimated. Using the
coefficients estimated with the n-1 individuals, a survival
risk was calculated for the individual left out. These risks
were then used as the predictor in a new Cox proportional
hazards model. Because each individual was omitted from
the model used to calculate their survival risk, the per-
formance of a model using these risks as predictors
approximates the predictive ability of the association in
an independent sample drawn from the same population.

In order to assess the overall impact of high-risk two-locus
genotype classes on risk of death or cardiac transplant, a
pooling procedure was performed. If an individual pos-
sessed one or more two-locus genotype class that had a
relative risk whose 95% confidence interval was greater
than 1.0, they were assigned the label "has high-risk gen-
otype." All other individuals were assigned the label "does
not have high-risk genotype.”" Cox proportional hazards
modeling was then performed with this label as the
explanatory variable.

Results

The 655 subject heart failure cohort was 69.2% male, with
47.9% having a history of hypertension, 84.0% receiving
ACE inhibitor therapy and 69.6% receiving B-blocker
therapy (Table 1). Ischemic cardiomyopathies made up
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Table 2: Summary of the SNP frequency distributions
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SNP Genotype (N) Minor Allele Minor Allele Freq H-W P-value
ADRA2C(-2579 TIC) 568 C 0.013 0.000
ADRA2C(-2416 C/G) 613 G 0.001 1.000
ADRA2(C(-2357 CIT) 615 T 0.001 1.000
ADRA2(C(-2280 G/T) 612 T 0.002 1.000
ADRA2C(-2069 C/T) 602 T 0.111 0.151
ADRA2C(-1926 G/A) 608 A 0.031 1.000
ADRA2C(-1692 T/G) 624 G 0.069 0.066
ADRA2C(-1513 T/G) 626 G 0.018 1.000
ADRA2C(-965 G/C) 634 C 0.001 1.000
ADRA2C(-940 G/A) 634 A 0.136 0.615
ADRA2C(-933 C/A) 634 A 0.028 1.000
ADRA2C(-696 C/G) 426 G 0.058 0.640
ADRA2C(-241 C/G) 644 G 0.001 1.000

ADRA2C(-230 T/C) 644 C 0.019 1.000
ADRA2C(+964 ins/del) 587 del 0.066 0.010
ADRA2C(+1736 GIC) 651 C 0.235 0.387

ADRBI(-4415 T/C) 572 C 0.287 0.477
ADRB(-4267 ins/del) 573 ins 0.001 1.000

ADRBI(-3641 C/T) 593 T 0.146 0.073

ADRBI(-3598 C/T) 593 T 0.066 1.000

ADRB(-3255 A/C) 608 C 0.141 0.243

ADRBI(-2915 G/A) 643 A 0.001 1.000

ADRBI(-2853 G/A) 644 A 0.001 1.000

ADRB(-2827 C/A) 644 A 0.030 0.447

ADRBI(-2639 T/C) 637 C 0.433 0.568

ADRBI(-2297 T/G) 607 G 0.151 0.082

ADRBI(-2142 T/C) 608 C 0.146 0.250

ADRBI(-1294 G/A) 579 A 0.003 1.000

ADRBI(-1121 T/C) 580 C 0.003 1.000

ADRBI(-517 TIC) 627 C 0.131 0.015

ADRBI(+145 A/G) 584 G 0.146 0.018

ADRBI(+315 G/T) 587 T 0.002 1.000

ADRBI (+1165 G/C) 557 G 0.268 0.665

39.5% of the cohort, idiopathic dilated cariomyopaties
comprised 58.3% of the cohort, and the remaining 2.1%
of the cohort had other causes of heart failure, such as pri-
mary valvular defects. They had an average age of heart
failure onset of 53.8 years and an average follow-up time
of 3.16 years. Figure 1 shows a Kaplan-Meier curve of time
from heart failure diagnosis to death or cardiac transplant
for this cohort. The minor alleles and the frequencies of
the 16 DNA sequence variations in the ADRA2C and 17
DNA sequence variations in the ADRBI genes are dis-
played in Table 2. Eleven of the 16 variants genotyped in
the ADRA2C gene and 11 of the 17 in the ADRB1 gene had
frequencies greater than 1% and are considered polymor-
phic. Four polymorphisms, ADRA2C(-2579 T/C),
ADRA2C(+964/965 ins/del), ADRBI1(-517 T/C), and
ADRBI1(+145 A/G), were significantly out of Hardy Wein-
berg equilibrium (HWE) (P < 0.05). The linkage disequi-
librium between polymorphisms is illustrated in Figure 2
and indicates that several polymorphisms within each
gene have significant frequency correlations.

Given the large number of tests for main effects and epi-
static effects using these 22 polymorphic loci we used
both the false discovery rate and cross-validation methods
to reduce the probability of false positive results. Table 3
provides a summary of the tests of association between
the polymorphism and age of onset, LVEF, LV mass, and
survival. Overall, only two polymorphisms had signifi-
cant main effects on the survival distribution and 8 pairs
of polymorphisms had epistatic effects on survival that
were significant (after adjustment by FDR) and cross-vali-
dated.

The relative risks (RR) associated with these polymor-
phisms are listed in Table 4. The two polymorphisms with
single locus effects were ADRA2C(-1692 T/G) and
ADRA2C(+964/965 ins/del). However, both of these pol-
ymorphisms were involved in significant epistatic interac-
tions making the interpretation of the relative risks of
their main effects impossible. Even though we equally
tested for interactions within and among the two genes,
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Kaplan-Meier curve of time from heart failure diagnosis to death or cardiac transplant.

somewhat surprisingly, we only found evidence of inter-
genic epistasis. The interaction between ADRA2C(+964/
965 ins/del) and ADRBI1(+145 A/G) arises from the
10:AG genotype class having elevated risk of death or
transplant with RR = 5.12 (2.66,9.88). With respect to the
interaction between ADRA2C(-230 T/C) and ADRB1(-517
T/C), the TC:CT genotype class has much higher risk of
death or transplant with RR = 8.31 (3.32, 20.75) com-
pared to the reference genotype class of TT:TT. The inter-
action between ADRA2C(-230 T/C) and ADRB1(-2297 T/
G) appears to be due to the TC:TG genotype class (RR =
9.23 (3.67,23.16)), and the interaction between
ADRA2C(-1692 T/G) and ADRB1(+145 A/G) is associated
with an increased risk of death or transplant in the TG:AG
genotype class with RR = 4.59 (2.31, 9.12). Likewise, the
interaction between ADRA2C(-1692 T/G) and ADRBI(-

3641 C/T) identifies the TG:CT genotype as the high risk
group with RR = 3.56 (1.80, 7.05). Finally, the ADRA2C(-
1692T/G) and ADRB1(-3255 A/C) polymorphism appear
to be interacting and again the TG genotype of the
ADRA2C(-1692 T/G) gene has a significant increase risk in
a particular ADRB1 genotype background - namely, AC
genotype - such that the TG:AC genotype class has a rela-
tive risk of 3.02(1.53,5.97).

Given some degree of non-independence among these
epistatic effects, we performed an a posteriori pooling of all
high risk two locus genotype classes with RR's whose 95%
confidence interval exceed 1.0 to attempt to identify the
extent of overlap between the effects from the pairs of loci.
These were compared to all other genotype classes com-
bined, which provides a way to interpret these very spe-
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Table 3: Summary of the significant, false discovery rate adjusted, and cross-validated ADRA2C and ADRBI polymorphism effects and
interactions on age of onset, LVmass, LVEF, and heart failure survival

ED (N = 655)
Age of Onset LVMass Adj* LVEF Adj** Survival
SNP Main SNP-SNP SNP Main SNP_SNP SNP Main SNP_SNP SNP Main SNP_SNP
Effects Interaction Effects Interaction Effects Interaction Effects Interaction

Number of 22 209 22 200 22 204 22 231
tests
P<0.10 2 24 | 8 2 16 4 50
FDR (<0.30) 0 0 0 0 2 0 4 44
Cross 0 0 0 0 | 0 3 10
Validation™**
FDR and 0 0 0 0 | 0 2 6
Cross-
validation

* LVMass was adjusted for age of onset, sex, height, weight, hypertension

** LVEF was adjusted for age of onset, sex

¥ For survival analysis, Risk Index was used to cross-validate, P-value for Cox model with Risk Index <0.1 is considered as crossvalidated. For
continuous outcomes, 4-fold CV was used. Press-Rsquared >0.005 (SNP univ model) or Press-Rsquared for full model >0 and Press-Rsquared
Difference between full model and submodel >0.005 (Epistasis) is considered to be crossvalidated for interaction.

cific sets of polymorphisms as if being used clinically.
Here we found that the combined relative risk was 3.35
(1.82, 6.18).

Discussion

In this study, we identified multiple polymorphisms
within the ADRA2C and ADRBI genes that interact to
increase risk of death or transplant in heart failure
patients. We investigated these genes because numerous
studies in human patient populations [20,12,14], animal
models [17], and in vitro cell systems [18,11,22,23] have
demonstrated their relevance to heart failure phenotypes
or receptor expression/function.

As noted in the Results, four of the polymorphism signif-
icantly deviated from Hardy-Weinberg equilibrium. How-
ever, a previous study that genotyped the ADRA2C
polymorphisms in a cohort of unaffected individuals did
not show evidence of deviations from HWE [22]. Simi-
larly, genotyping of the ADRB1 polymorphisms in unaf-
fected individuals for the Seattle SNPs database http://
pga.gs.washington.edu/ do not show significant devia-
tions from HWE. The HW deviations we observed could
be due to an underlying association with heart failure [28]
since our sample is exclusively heart failure patients and
these genes have been previously associated with this dis-
ease, but random chance and genotyping error cannot be
excluded.

The a,ARs expressed on the presynaptic cardiac sympa-
thetic nerves inhibit the release of norepinephrine when
they are bound by the neurotransmitter [5], and thus pro-

vide a mechanism to regulate release of the neurotrans-
mitter as sympathetic nervous system activity markedly
increases in progressive heart failure. And indeed, in stud-
ies of gene-targeted mice where a,,ARs have been ablated,
severe cardiomyopathy results due to norepinephrine car-
diotoxicity exerted through myocyte B;ARs [5]. The
human ADRA2C ins/del polymorphism previously
denoted Del322-325, and here denoted ADRA2C(+964/
965 ins/del) significantly reduces the function of a,-AR
receptors in transfected cells [18]. While Caucasians have
a very low prevalence of this allele [20] it appears that
other common polymorphisms within this racial group,
in the promoter and 3' UTR region of the gene, affect
receptor expression [22]. Of note, evidence suggests that
there are few "spare receptors" in the complement of
o,ARs expressed in cardiac presynaptic nerves since het-
erozygous a,cAR knock-out mice (~50% less receptor)
also develop cardiomyopathy under pressure overload
[29]. Thus relatively small changes in expression due to
polymorphisms may have physiologically relevant effects
on the heart during heart failure progression. For the
B,AR, the most frequently studied polymorphic variation
is at nucleotide 1165, where Arg or Gly can be commonly
found at amino acid 389. This lies within a G-protein cou-
pling domain, and in transfected cells the Arg variant
exhibits enhanced coupling to adenylyl cyclase [11]. In
transgenic mice, with matched cardiac expression of the
human ;AR Arg or Gly389 receptors, Arg hearts have
enhanced contractility, but progress to failure by 9-
months of age, while Gly hearts show less contractile
enhancement and no pathologic effects [17]. The Arg389
phenotype also revealed a gene dose-response, and given
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Table 4: FDR Significant and Cross-Validated Epistatic Effects of ADRA2C and ADRBI polymorphisms on survival

SNPI SNP2 Genotypel Genotype2 Relative Risk N Model P-value Cross-Validation P-
value
Main Effects
ADRA2C(-1692 T/G) TT | 544 0.029 0.031
TG 1.34(0.91, 1.95) 74
GG n/a 6
ADRA2C I | 516 0.065 0.018
(+964 ins/del)
10 0.51(0.07, 3.64) 65
00 1.58(1.07,2.32)* 6
Epistatic Effects
ADRA2C ADRBI(+145 A/G) 00 AA n/a 5 <0.001 0.069
(+964 ins/del)
10 AA 1.20 (0.74,1.95) 39
10 AG 5.12 (2.66,9.88)* 17
I AA | 349
I AG 0.86 (0.59, 1.25) 108
I GG 0.70 (0.31, 1.61) 15
ADRA2C(-230 T/C) ADRBI(-517 TIC) TC CT 8.31(3.32,20.75)* 7 <0.001 <0.001
TC TT 0.46(0.15, 1.42) 16
TT CcC 0.51(0.21,1.24) 17
TT CT 0.88 (0.62,1.26) 121
TT TT | 455
ADRA2C(-230 T/C) ADRBI(-2297 TIG) TC TG 9.23(3.67,23.16)* 7 0.001 0.014
TC TT 0.61(0.22, 1.64) 16
TT GG 0.61(0.27,1.38) 18
TT TG 0.99 (0.71,1.36) 137
TT TT | 422
ADRA2C(-1692 T/IG) ADRBI(+145 A/IG) GG AA n/a 5 0.001 0.097
TG AA 0.99 (0.62,1.61) 44
TG AG 459 (2.31,9.12% 17
TG GG n/a 2
TT AA | 371
TT AG 0.85(0.59, 1.22) 111
TT GG 0.61(0.27, 1.38) 17
ADRA2C(-1692 T/IG) ADRBI(-3641 CIT) GG CcC n/a 6 0.005 <0.001
TG CC 0.95 (0.60, 1.53) 52
TG CcT 3.56 (1.80,7.05)* 18
TT CcC | 369
TT CT 0.84 (0.58,1.21) 116
TT TT 0.62 (0.27, 1.42) 17
ADRA2C(-1692 T/IG) ADRBI(-3255 AIC) GG AA n/a 6 0.010 <0.001
TG AA 1.08 (0.68,1.71) 52
TG AC 3.02(1.53,597) 19
TT AA | 379
TT AC 0.83(0.58,1.21) 116
TT CcC 0.73 (0.32,1.66) 16

* RR is significant at a < 0.05

that promoter SNPs of the ADRB1 gene alter expression in
cell-based systems [23], the potential for cardiac relevance
of non-coding ;AR SNPs is apparent.

The previous studies of interactions between one ADRA2C
and one ADRB1 polymorphism illustrate that the physio-
logical effects of variations in these two genes act synergis-
tically to increase risk of heart failure [20] and influences
patient responsiveness to beta-blocker therapy as assessed

by short-term improvements in LVEF [21]. Our study indi-
cates that there may be several other polymorphisms
within these genes that have important physiological and
clinical consequences for heart failure patients. Specifi-
cally, the ADRA2C(-1692 T/G) was involved in three epi-
static interactions with ADRB1 polymorphisms (+145 A/
G,-3641 C/T, and -3255 A/C) and the ADRA2C(-230 T/C)
polymorphism was involved in two epistatic interactions
with ADRB1 polymorphisms (-2297 T/G and -517 T/C).
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Only one ADRBI polymorphism (+145 A/G) was
involved in more than one epistatic interaction with the
ADRA2C polymorphisms (-1692 T/G and +964/965 ins/
del). In total, three polymorphisms in the ADRA2C gene
and five polymorphisms in the ADRBI gene appear to be
implicated in epistatic effects on heart failure survival.

Because of the relatively large number of polymorphisms
investigated in each gene one natural analytical approach
might have been to investigate haplotypes within each
gene and to test for potential interaction between haplo-
types in their influence on risk. However, one of the main
drawbacks of such an approach is reducing the haplotype
space to the relevant set with phenotypic effects that could
potentially interact within or across genes. Since we did
not find any evidence of significant intragenic epistasis, it
becomes even more difficult to analyze the diverse set of
haplotypes - many with low frequency - to identify
potentially relevant interactions across genes.

One of the short-comings of genetic association studies is
that they have often failed to replicate and Manly [30] sug-
gests that internal validation, common to good experi-
mental practices, is one way to avoid the publication of
spurious findings. In our study, we used cross-validation
methods to significantly reduce the chance of false posi-
tives. Cross-validation methods were developed as a way
to incorporate a measure of predictive accuracy (and cor-
respondingly, a measure of prediction error) for an esti-
mated model based on its performance predicting the
outcome for independent test cases [31]. During the last
decade, cross-validation methods have been used widely
for everything from robust variable selection in gene
expression array studies [32] to reducing false positives in
gene-gene interaction studies [33,34] to evaluating the
predictive accuracy of molecular or genetic classifiers of
disease before clinical implementation [35]. It has
become a standard in the field of metabolomic [36], pro-
teomic [37,38], and transcriptomic [39] studies because
of its ease of execution and its emphasis on prediction in
independent test cases as a method of discriminating
between true associations and false associations.

The epistatic interactions identified here occur between -
1692, -230, and the +964/965 polymorphisms of
ADRA2C and -3641, -3255, -2297, -517 and +145 poly-
morphisms in ADRAB1. We have previously generated
constructs that mimic these polymorphisms and by tran-
sient transfection of cells ascertained expression pheno-
types (5' and 3' -flanking regions) or signaling phenotypes
(nonsynonymous coding polymorphisms) [11,22,23,18].
All but one of the ADRA2C 5' promoter and 5' UTR poly-
morphisms found here that interact with ADRAB1 have
been found to influence a,AR expression in these model
systems. (The ADRA2C(-1692) polymorphism has not

http://www.biomedcentral.com/1471-2350/9/93

been studied in this manner.) And, the +964/965 deletion
polymorphism results in depressed agonist-promoted
function [18]. For the ADRABI, the aforementioned poly-
morphisms of the promoter region (except for -1294
which has not been studied) have also been shown to
alter ;AR expression [23]. The nonsynonymous poly-
morphism at nucleotide position +145 (representing
Gly49) results in a ;AR that undergoes enhanced agonist-
promoted downregulation compared to the Ser49 recep-
tor [40], an important phenotype since downregulation is
a protective mechanism in heart failure. Taken together,
then, there is biologic plausibility in the epistatic interac-
tions that were observed. The fact that there is a relatively
large fraction of the patients that do not have these spe-
cific combinations, and yet they do display variability in
heart failure progression, indicates additional genetic
(and likely non-genetic) causes for heterogeneity. Within
the axis which we are currently exploring, there are a
number of other genes to be considered. As additional
information from fine mapping and cell-based studies is
obtained, there is the possibility for enhanced predictive
power and an assignment of risk alleles for a greater per-
centage of heart failure patients. Nevertheless, the current
work shows that epistatic interactions between o, AR and
B,AR polymorphisms affect heart failure survival, and fur-
ther confirm the notion that this complex syndrome is
modified by multiple polymorphisms in multiple genes.

Conclusion

Although we did not observe intragenic epistatic interac-
tions between the ADRA2C and ADRBI genes, we did
observe multiple polymorphisms acting synergistically
between the ADRA2C and ADRBI genes to increase risk of
death or cardiac transplant in heart failure patients. This
underscores the complexity of the genetic factors that
affect the progression of this syndrome.
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