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Abstract

Background: Modern approaches to identifying new genes associated with disease allow very fine
analysis of associaton and can be performed in population based case-control studies. However,
the sibpair design is still valuable because it requires few assumptions other than acceptably high
penetrance to identify genetic loci.

Methods: We conducted simulation studies to assess the impact of design factors on relative
efficiency for a linkage study of colorectal cancer. We considered two test statistics, one comparing
the mean IBD probability in affected pairs to its null value of 0.5, and one comparing the mean IBD
probabilities between affected and discordant pairs. We varied numbers of parents available,
numbers of affected and unaffected siblings, reconstructing the genotype of an unavailable affected
sibling by a spouse and offspring, and elimination of sibships where the proband carries a mutation
at another locus.

Results: Power and efficiency were most affected by the number of affected sibs, the number of
sib pairs genotyped, and the risk attributable to linked and unlinked loci. Genotyping unaffected
siblings added little power for low penetrance models, but improved validity of tests when there
was genetic heterogeneity and for multipoint testing. The efficiency of the concordant-only test was
nearly always better than the concordant-discordant test. Replacement of an unavailable affected
sibling by a spouse and offspring recovered some linkage information, particularly if several offspring
were available. In multipoint analysis, the concordant-only test was showed a small anticonservative
bias at 5 cM, while the multipoint concordant-discordant test was generally the most powerful test,
and was not biased away from the null at 5 cM.

Conclusion: Genotyping parents and unaffected siblings is useful for detecting genotyping errors
and if allele frequencies are uncertain. If adequate allele frequency data are available, we suggest a
single-point affecteds-only analysis for an initial scan, followed by a multipoint analysis of affected
and unaffected members of all available sibships with additional markers around initial hits.
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Background

The sib pair design has been widely used in human studies
for mapping genes that affect both quantitative and
dichotomous traits. The objective of sibling studies is to
determine whether the siblings (or other close relatives)
tend to express the same disease phenotype (or similar
values of a quantitative trait) when they share a com-
monly inherited genomic segment measured by genetic
markers. Because two loci located close together on the
same chromosome tend to be inherited together, sibs who
have inherited an allele predisposing them to disease will
also inherit a variety of other genetic characteristics
located in the same genomic segment as the gene respon-
sible for disease susceptibility. By examining, in a set of
pairs of affected sibs, the degree of sharing of genetic
marker alleles located throughout the genome, research-
ers can identify regions that are shared more often than
would be expected by chance. This excess allele sharing
constitutes the statistical evidence for linkage between the
shared markers and putative disease susceptibility loci.

The popularity of the sib-pair and related small-family
study designs reflects several attractive characteristics. For
highly penetrant alleles, extended families can often be
recruited and so provide a powerful source of information
for disease localization and fine mapping. However, for
complex diseases that result from interactions among loci
or that result from both genetic and environmental
effects, large pedigrees that include multiple affected indi-
viduals may be rare and may not reflect a single etiologi-
cally-related genetic factor. Since the pioneering work of
Haseman and Elston [1] on quantitative trait mapping,
many alternative approaches and extensions to the design
have been developed to handle multilocus data [2],
extended relative pairs [3-6], consideration of environ-
mental risk factors [7-9], and other situations encoun-
tered in studies of complex diseases. In concept, for the
study of complex diseases, the design and execution of a
sib-pair study is simple. Straightforward power calcula-
tions (e.g. [10]) suggest that adequate power to detect
linkage might be obtained with relatively modest sample
sizes even for complex, low-penetrance susceptibility syn-
dromes. Readily available software packages [11] obtain
exact IBD sharing distributions and compute linkage tests
using exact methods without requiring explicit specifica-
tion of an inheritance model, penetrance function, or dis-
ease allele frequencies. Numerous authors have observed
that nonparametric or model-free linkage statistics, in
spite of their name, make hidden assumptions about
mode of inheritance and penetrance (e.g., [12-14]) which
determine the situations in which they become most pow-
erful. Nevertheless, these methods have been highly pop-
ular because of the ease in implementing them and in
interpreting the results, as well as the perception that they
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remain powerful across a broad spectrum of underlying
genetic mechanisms.

The modern approaches to identifying new genes associ-
ated with disease allow very fine analysis of associaton
and can be performed in population based case-control
studies. However, the sibpair design is still valuable
because it requires few assumptions other than acceptably
high penetrance to identify genetic loci. There remains
skepticism about relying solely on genome-wide-associa-
tion studies [15], and sib-pair studies continue to be uti-
lized and published in the literature [16-18]. While
association based studies have provided many novel
insights into the genetic architecture of complex diseases,
they require that linkage disequilibrium is present
between genetic markers and disease causing variants.
Such a requirement might not be met for diseases that are
due to susceptibility loci undergoing recurrent mutations
[19] or for genomic regions that show copy number vari-
ation and so do not yield reliable SNP data without the
implementation of specialized procedures because of
deviations from Hardy-Weinberg disequilibrium [20].

Sibships and small families are relatively easy to identify
and recruit (compared with designs that make use of large
multiplex families). Moreover, a number of familial dis-
ease registries and high-risk clinics have been established
and have enrolled substantial numbers of sib pairs and
other groupings of affected relatives, so that in many cases
recruitment has already occurred. In practice, however,
the design of an effective small-family linkage study
requires more care than is immediately apparent, particu-
larly for complex diseases such as cancer, in which late
onset, incomplete penetrance, large numbers of pheno-
copies, gene-environment interaction, and locus hetero-
geneity must be anticipated. The purpose of this paper is
to evaluate the impact of choices of family sampling strat-
egies in selecting the design of a study aimed at identifying
novel genetic factors that predispose individuals to colon
cancer. The study is a collaborative effort by two National
Cancer Institute-sponsored consortia investigating the
genetics of cancer: the Cancer Genetics Network (CGN)
and Cooperative Family Registry for Colon Cancer Studies
(CFRCCS).

All population based studies of colon cancer have docu-
mented its strong familiality [21-24]. Historical cohort
studies show an approximately 2.5 fold increased risk for
colorectal cancer in the first degree relatives of colorectal
cancer cases compared to first degree relatives of unaf-
fected controls [25-28]. Nongenetic factors specifically
implicated as protecting individuals from risk for colon
cancer include use of nonsteroidal anti-inflammatory
drugs, a diet rich in leafy vegetables, and exercise [29-34].
Although these environmental risk factors have been
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identified as substantially affecting the risk for colon can-
cer they display only a weak correlation in family mem-
bers, which is insufficient to explain the high familial risk
[35]. Moreover, Khoury, et al. [36] point out that both the
correlations of exposure among siblings and relative risks
due to shared exposures need to be very large in order to
produce observable increases in relative risk to siblings of
cases. It seems unlikely that such a combination of highly
correlated exposures and large relative risk exists for color-
ectal cancer.

Methods

The choice of sampling schemes for a colon sibpair study
requires evaluation, as several different options exist
simultaneously for the sampling plan (how many families
and which relatives to sample), disease model (pene-
trance, allele frequency, etc), and statistical test of linkage.
These aspects, in addition to the method of generating the
data sets for the simulations comprise the methods of
determining an optimal design strategy for a colon sibpair
study. In our analysis of design issues we have pursued a
deterministic simulation approach. The first step was to
check that the tests we considered had appropriate size,
using extensive simulations. For those tests that were
valid, we then performed a moderate number of simula-
tions of a large number of families, to obtain the noncen-
trality parameters describing the behavior of each design
configuration and test. We were then able to compare the
attributes of these studies across the different design con-
figurations genetic models and tests by fitting regression
models, as further described below.

Disease Model Parameter Choices

Genetic Heterogeneity

The genetic basis of many complex human diseases,
including some common cancers, is known to include
mutations in loci that confer a high penetrance to carriers.
In order to minimize the impact that such genetic hetero-
geneity may have on the statistical efficiency to identify
novel loci, gene-hunting studies are often restricted to
those cases that have been determined not to be related to
any known susceptibility locus. For example, the second
susceptibility locus for breast cancer, BRCA2, was mapped
by Wooster et al. [37] based on high-risk families for
whom BRCA1 linkage was excluded. Genetic syndromes
such as juvenile polyposis, Peutz-Jeghers syndrome and
familial adenomatous polyposis can be readily eliminated
prior to sample collection on the basis of phenotypic char-
acteristics. However, mutations in mismatch repair
(MMR) loci such as hMSH2 or hMLH1 cannot be
excluded without performing molecular studies. (Meas-
ures of tumor microsatellite instability or immunohisto-
chemistry can be helpful in identifying likely carriers, but
are neither fully sensitive nor specific.) Estimating the pro-
portion of affected families that might be excluded from
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analysis because they carry MMR mutations is difficult.
Population-based estimates of the prevalence of germ-line
MMR mutations among subjects diagnosed with colorec-
tal cancer vary widely even within populations of Euro-
pean descent [38-41], and only a few estimates are
available for other ethnic groups [42,43]. Moreover,
recruiting from high-risk clinics may lead to dispropor-
tionate over-representation of families who have MMR
mutations. One large study in Finland [44] found that
12% of affected sib pairs (ASP) showed MMR defects.

The basic assumption for our studies was thus a two-locus
non-interacting model, with a rare high-penetrance gene
(e.g. (IMSH2/hMLH1 for HNPCC in the case of colon can-
cer), unlinked to the search region for new loci and a more
common but less penetrant gene being sought by the link-
age analysis. We also evaluated the effect of experimental
elimination of a previously-known predisposition syn-
drome such as HNPCC. We investigated both the power
and the relative efficiency of different designs under a
range of assumptions about the contribution of an addi-
tional unlinked locus. The single unlinked locus with var-
ying allele frequency and penetrance that we simulated
could also approximate the effects of a few unlinked non-
interacting alleles. Although our efforts focused on a study
of colorectal cancer, the general issues identified above are
similar to considerations encountered in the design of
genetic studies of other common conditions such as other
cancers, diabetes, hypertension and many other chronic
diseases that arise from both environmental and genetic
causes.

Allele Frequency and Penetrance

Most of the models we studied include a two-locus non-
interacting model for which neither locus had been
molecularly determined and only one was linked to the
markers under consideration. The unlinked locus varied
in allele frequency and penetrance. In some simulations
the unlinked locus had no effect on disease, but in others
the penetrance and/or allele frequency were assumed to
be greater than that of the linked locus. The two loci con-
tributed multiplicatively in a logistic model for pene-
trance of the form

logit Pr(Y = 1|G;, G,) = a + f;Dom(G,) + ,Dom(G,)

where Dom(G) indicates a dominant coding of the geno-
type, i.e. presence of one or two copies of the deleterious
allele identically increases the risk of the disease. We also
simulated some situations in which only one autosomal
dominant predisposition syndrome was present in the
population.

In the U.S. population, lifetime risks for colorectal cancer

are approximately 2.5-5 percent [45]. In the context of a
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high-risk cancer clinic, however, patients are frequently
seen at younger ages, and hence the background risk of
colorectal cancer among sibships ascertained through
high-risk clinics is considerably less than 5%. We set the
natural log of the background rate of colorectal cancer in
our simulations to a = -4, so that the overall population
prevalence of disease was approximately 2%. Objective
estimates of allele frequencies and relative risks for
unknown mutations are not available, so we chose values
that were consistent both with frequencies of known
mutations [46,47] and with population attributable risk
estimates for familial colorectal cancer [24,48]. As an
example, with an allele frequency of g, = 0.003 and a log
relative risk of 3, = 3 (relative risk = 20.1), ¢, = 0.001 and
B, =4.6 (relative risk = 99.5), the resulting penetrances are
0.018 for carriers of neither mutation, 0.268 for carriers of
amutation in the linked gene, 0.646 for carriers of a muta-
tion in the unlinked gene, and 0.973 for carriers of both
mutations. The linked locus accounts for approximately
7.2% of colorectal cancers and the unlinked locus
accounts for approximately 6.0% of colorectal cancers.
Table 1 lists the parameters that we used in combinatios
for the simulations, along with the values we assigned in
various simulations.

Sampling Plans

The primary concern in the design of CFRCCS-CGN colon
cancer study is to maximize the relative efficiency per gen-
otype, i.e., to find the combination of family structures
and numbers of families that will produce the greatest
power for a given number of genotypings. While the
number of ASPs available for study will affect the power
of the study, at the time when we were designing the
study, approximately 425 ASPs (plus about 400 other rel-

Table I: Parameters employed in simulations
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ative pairs) were already available from the combined
CFRCCS resources, and samples were already available
from many of the potential subjects. An additional 500+
sib pairs were anticipated from the CGN sites. Thus, the
primary constraint was the total cost of genotyping in a
full genome scan, not the number of families. We there-
fore chose to concentrate on four main questions of effi-
ciency: 1) whether (and how many) unaffected sibs
should be genotyped, 2) how critical the absence of paren-
tal genotypes is to the efficiency of the analysis; 3) the rel-
ative loss in efficiency of genotyping spouses and
offspring of a deceased affected sib, and 4) how different
strategies for addressing genetic heterogeneity might affect
these efficiency comparisons.

Although our primary interest was in the relative effi-
ciency per genotype, we also wished to observe the effects
on overall power and sample size requirements. We were
particularly interested in the question of whether the total
number of families that might be available for study in
this large collaborative project would be adequate for the
detection of linkage given a set of realistic assumptions
concerning the genetics of colorectal cancer susceptibility.

Linkage Tests for Concordant and Discordant Sib Pairs

Model-free linkage analysis is usually based on a compar-
ison of the observed number of alleles at a marker locus
shared identical by descent (IBD, i.e., derived from a com-
mon ancestor) between pairs of relatives with given phe-
notypes with that expected simply on the basis of their
relationships. However, IBD status can only be deter-
mined unambiguously when both parents are different
heterozygotes. Since late-onset diseases such as colon can-
cer severely restrict the availability of parental genotypes,

Parameter Simulated Values
Families 500

Affected Sibs Total 2,3

Affected Sibs Genotyped 1,2,3

Unaffected Sibs Total 0,1,2,3

Unaffected Sibs Genotyped 01,23

Parents Genotyped 0,1,2

Offspring Proxies 0, 1,2

Screen for Unlinked Syndrome No, Yes

Population Disease Prevalence 0.02, 0.05

Mode of Inheritance Autosomal Dominant
Relative Risk to Carriers 10, 20

Number of Disease Loci 01,2

Disease Allele Frequency 0.003, 0.005, 0.01
Marker Spacing (cM) 5.0, 10.0

Admixture Models:
Marker Allele Frequencies
Disease Allele Frequencies

Population | (80%)
[0.25, 0.25, 0.25, 0.25]
[0.00325, 0.0035]

Population 2 (20%)
[0.1,0.2,0.3, 0.4]
[0.002, 0.001]

Parameters and parameter values employed in the simulations

Page 4 of 17

(page number not for citation purposes)



BMC Medical Genetics 2008, 9:64

the first step is to estimate the IBD probabilities from the
marker data on all available pedigree members, using sta-
tistical approaches such as those as implemented in such
software as GENEHUNTER [49], GENIBD [50], Simwalk 2
[51], or Merlin [52]. The family structure to be analyzed
can include parents, affected and unaffected sibs, as well
as the spouse and offspring of an unavailable affected sib
if they were sampled.

For the simulation studies reported here, we compared
the power and efficiency of two tests: the classic "means
test" for linkage [53], which compares the observed pro-
portion of alleles shared IBD against the expected propor-
tion of 0.5; and a modified means test which compares
the observed proportion of alleles shared IBD among
ASPs with the observed proportion shared IBD among
discordant sib pairs. The latter test has been suggested to
control for potential bias (as discussed below) as well as
to improve power. For this analysis, we followed the gen-
eral approach described by Guo and Elston [54] but with
modifications. Since combinations of pairs of IBD values
within a family are not independent [55], we constructed
the test using the mean IBD sharing among pairs of each
type (concordant affected and discordant) within each
family. We allowed for the correlation in mean IBD values
for the concordant affected and discordant sib pairs by
constructing a paired t-test that allowed for the correlation
in mean IBD values between the sets of concordant and
discordant pairs. Specifically, letting pg,; denote the esti-
mated probability that sib pair (j, k) in family f=1,. . .,F

shares i =0,1,2 alleles IBD, we first computed the mean p,y

of (p1/2 + Pgip) in all affected pairs in family f and the
corresponding mean p,in discordant pairs in the same
family. We then computed the means p,and p,;and stand-
ard deviations s, and s, of these quantities across families,
and conducted a standard one-sample t-test comparing p,
to 1/2 and a two-sample t-test comparing p.to p,;, where F
is the total number of families in the sample:

Zc= \/F (Pc_ 1/2)/Sc
Zg=\F (P.- PYN(S2+ S2)
both of which are tested against a standard Normal distri-
bution. Note Z;does not take account of the correlation in
IBD status between the two types of pairs within a sibship,
so we used a paired t-test to allow for this, i.e.,

Z,=\F (Py- Py)/S,,

where s, denotes the empirical standard deviation of p-
pasacross families.
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Simulation Methods

For a given family structure and choice of parameters
(described below), we simulated phenotype and marker
data as follows. First, we generated genotypes G at the two
disease loci by sampling from their respective population
distributions (commonly called gene dropping). We then
retained the simulated genotype vector with probability
Pr(Y|G), where Y = (1,...,,1,0,...,0) denotes the phenotype
vector of the sibship under the design being considered
(with D affected (Y;= 1) and U unaffected (Y;= 0) mem-
bers). This process was continued until the total sample
size of F families was ascertained. For each family struc-
ture, marker data were then simulated conditional on the
genotypes at the linked locus. We assumed each marker
locus had four alleles and that it was linked to the disease
locus with two different recombination values of 5 and 10
centiMorgans between the disease and marker loci.

Regardless of the number of markers, marker alleles were
simulated by dropping, for each parent, the parental allele
corresponding to the chromosome of origin of the allele
inherited at marker I - 1 with probability 1 - 6, or the
opposite chromosome with probability g, for marker loci
I=1...L, I=0 at the disease locus, where ¢ is the proba-
bility of recombination between loci I - 1 and I. All marker
alleles were independent of the second (unlinked) disease
locus, if one was employed in a given simulation.

We computed IBD probabilities for each marker locus by
enumerating all possible alleles for each untyped founder
and all possible segregation indicators for all nonfounders
that are consistent with the observed marker data. We
then accumulated the probabilities py, of each of these
configurations into an array [56]. These probabilities
depend upon the population marker allele frequencies,
which we estimated in each replicate by a simple counting
procedure from all the subjects available for study [57].
We did not adjust for correlations among family members
as the estimates of allele frequencies so obtained are con-
sistent [57] and are accurate for the large number of fam-
ilies we are here evaluating in each simulation.

In order to compare the test size of each linkage test we
employed, we carried out 10,000 replicate simulations of
F = 100 families under the null hypothesis of no linkage
between the marker and either disease locus. For these
analyses, we simulated families of two affected sibs, both
genotyped, and two unaffected sibs, both genotyped.

We also considered the behavior of multipoint variants of
the Z. and Zp statistics under the null. To calculate these,
we initially simulated six markers with four alleles each
spaced at 10 cM intervals, and obtained multipoint esti-
mates of pairwise IBD sharing at 20 cM from the origin

using the program Merlin [58], then calculated Z,,, and
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Z,, using the formulas given above. The disease genes
were unlinked to the six markers. We then repeated the
simulations after reducing the marker distance by half. We
did not go below 5 cM.

For each non-null simulation, we generated 20 replicate
simulations of F = 500 families each. As a measure of cost
efficiency per genotype, we divided the average Z 2 (or Z,?)
scores across the 20 replicates by the number of genotypes
required, and reported the ratio (times 100) of this value
to that based on Z2 for families consisting only of two
sampled affected sibs. We call this the asymptotic relative
efficiency (ARE). We chose to generate 20 replicate obser-
vations for any given combination of parameter values
because we wished to simulate a wide variety of non-null
conditions, while producing an adequate number of rep-
licate observations to obtain reliable estimates of noncen-
trality parameters.

The number of families F required for a desired level of
power sample was calculated in the standard way [59] by
solving

Za+Z1-B _ Zsim

JF \ Esim
for F, where Z, and Z, _sare the quantiles of the standard
normal distribution for selected values of a and B, and
Zi 1s the sample mean of the Z-scores (Z, or Z,) based on

sim
the sample size F,;,, of the simulation run.

sim

Comparison of Sampling Strategies

The relative efficiency and absolute power comparisons
were evaluated over a range of assumptions about disease
allele frequency, penetrance, and heterogeneity. Summa-
ries are provided for the relative efficiency from the non-
null simulations of each combination of parameters and
sample sizes required to attain 80% power. Our simula-
tions involved the manipulation of 16 parameters, with
over 725,000 possible combinations arising just among
the limited set of settings we chose for each parameter. In
practice, we were able to simulate 20 replicates for 332
actual parameter combinations. In order to assess the
impact of each variable parameter setting on the power
and efficiency of each study design, and to facilitate gen-
eralization of our results to other similar situations that
we did not specifically simulate, we constructed linear
regression models of the square root of the per-family

contribution to the noncentrality parameter (Zg,,/ v/ Fip )
and ARE estimates resulting from each simulation as a

function of the simulation parameters. Residuals from the
models were approximately normally distributed, and
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scale-location plots did not suggest the data were hetero-
scedastic. We evaluated the fit of alternative regression
models with quadratic, inverse, or logarithmic transfor-
mations of both the predictor and outcome variables;
none fit the observed data better than a simple linear mul-
tiple regression model. The proportion of variance in

Zim Fsm €xplained by the linear regression (R?) ranged
from 70-75%. The open source statistical package R [60]

was used to perform all regression analyses.

In order to facilitate interpretation, the genetic effects
(baseline disease prevalence, allele frequencies, and rela-
tive risks of the linked and unlinked loci) were collapsed
into "attributable risks" (AR) for the linked and unlinked
loci respectively. The attributable risk is the proportion of
the total disease risk attributable to variation at each
genetic locus. The fit of linear regression models employ-
ing the two AR values is as good as those employing the
five original terms to fit the data, using the Akaike Infor-
mation Criterion (not shown; [61]).

Results

Test Size

In Tables 2 and 3 we compare the performance of each
linkage statistic under the null hypothesis of no linkage to
its asymptotic expectation. The values in Tables 2 and 3
were obtained for 10,000 replicate observations of a
design with two affected sibs (both sampled), and two
unaffected sibs (both sampled), with no parents or off-
spring sampled. The observed mean and standard devia-
tion of each statistic is reported, along with the
probability of Type I error for assumed one-tailed test
sizes ranging from 0.1 to 0.0005. Overall, the concordant
test, Z,, and the paired test, Z,, most closely matched the
nominal test size. Both the mean and standard deviation
of Z, were close to theoretical expectations. The standard
deviation of Z, was only slightly larger, and the mean was
slightly less than zero (0.05 > p > 0.01). The standard devi-
ation of Z, was about 9% larger than expected, so the sig-
nificance of tests based on this statistic will be overstated
unless adjustments are made. We therefore omit Z, from
further consideration.

The mean multipoint estimate of allele sharing was signif-
icantly below 0.5 for concordant pairs in these null simu-
lations, leading to a conservative bias in Z,,.. Z,, is also
conservatively biased, but much less so, because the statis-
tic compares estimated sharing between concordant pairs
with estimated sharing between discordant pairs, which is
also estimated to be significantly less than 0.5 by the
multipoint algorithm. Schork and Greenwood, Cordell,
and others [62,63] recently demonstrated the bias toward
the null that occurs when using an NPL statistic with an
incompletely informative marker unless an adjustment is
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Table 2: Simulation results

Statistic
One-Tailed p y A zp Zr z J Z.:
0.1 0.0987 0.1169 0.0966 0.0663 0.0971
0.05 0.0505 0.0637  0.0451 0.0317 0.0473
0.0l 0.0107 0.0170 0.0094 0.0028 0.0039
0.005 0.0053 0.0097 0.0048 0.0003 0.0010
0.001 0.0013 0.0022 0.0008 0.0001 0.0006
0.0005 0.0010 0.0013  0.0004 0.0001  0.0000
Mean -0.005 -0.004 -0.0175 -0.246  -0.036
SD 1.002 1.087 1.004 1.015 1.016
p-valuef 0.309 0.356 0.041 <0.0001 0.0002

Observed versus expected distributions of linkage test statistics,
based on 10,000 simulations of 100 families with the following
configuration: 2 affected sibs, both sampled, and 2 unaffected sibs,
both sampled, disease locus unlinked to markers (null model).
amean concordant test; Pmean discordant (unpaired) test; “mean
paired test; 9mean multipoint concordant test (10 cM spacing
between markers); emean multipoint paired test; fp-value of test that
mean does not equal 0;

made for incomplete marker informativity. Since marker
informativity decreases with increasing marker intervals,
the increasing conservativism of the Z,,, with increasing
marker intervals is not surprising.

When we ran null simulations in the presence of hetero-
geneity of marker alleles, disease alleles, or both, we
observed that Z. and Z, behaved differently depending on
the heterogeneity model we simulated. Although Z, was
conservatively biased when disease allele frequencies dif-

fered between populations, regardless of whether marker

Table 3: Simulation results under varied conditions of heterogeneity
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allele frequencies differed, its small conservative bias was
not significantly different from that observed in the
homogeneous population of Table 2. In contrast, Z,
exhibited an anticonservative bias when marker allele fre-
quencies differed between populations, regardless of
whether disease allele frequencies differed.

Alternative Model Simulation Results

A subset of results from alternative model simulations in
which there were linkages are given in Table 4, based on
20 replicate simulations for each combination of parame-
ters. The numbers given represent mean Z statistics, their
ARE values, and sample sizes required to attain 80%
power. The results displayed were chosen to highlight the
effect of sampling (and genotyping) varying the numbers
of unaffected sibs and/or parents from families with two
or three affected sibs and two unaffected sibs. Full results
are available online [64]. On average, the concordant test
was always more efficient on a per-genotype basis than
the paired test, although the power of the paired test was
usually greater when the number of unaffected sibs tested
was > 2.

Regression Models

Table 5 shows the effect of various design and population
parameters on the noncentrality parameter for both the
concordant-only test (Z/+/F ) and the paired test ,/

JF ). The only change in parameterization of the model
for the paired test vis-a-vis the concordant test involved
substituting the number of typed unaffected sibs for the

Heterogeneity Model

Disease Allele Onlys

Markers Only" Disease and Markers

One-Tailed p z z, z z, z zZ,
0.1 0.0966 0.0939 0.1153 0.1022 0.1038 0.0951

0.05 0.0471 0.0426 0.0626 0.0515 0.0527 0.0442

0.01 0.0087 0.0084 0.0139 0.0096 00113 0.0088

0.005 0.0043 0.0034 0.0078 0.0044 0.0055 0.0034

0.001 0.0011 0.0006 0.0015 0.0005 0.0014 0.0008

0.0005 0.0009 0.0003 0.0006 0.0004 0.0006 0.0003

Mean -0.015 -0.027 0.059 -0.007 0.041 -0.026

sD 1.001 1.007 1.019 1.017 1.004 1.008

p-value’ 0.067 0.0037 <0.0001 0.246 <0.0001 0.0049

Observed versus expected distributions of linkage test statistics under varying conditions of disease allele and/or population heterogeneity in
marker allele frequencies, based on 10,000 simulations of 100 families with the following configuration: 2 affected sibs, both sampled, and 2
unaffected sibs, both sampled, disease locus unlinked to markers (null model).

emean multipoint paired test; fp-value of test that mean does not equal 0; e&two populations modeled in an 80%/20% mixture: |) marker allele
frequencies for all markers [0.25,0.25,0.25,0.25], unlinked disease allele 0.0035; 2) marker alleles [0.25,0.25,0.25,0.25], unlinked disease allele 0.001;
htwo populations modeled in an 80%/20% mixture: |) marker allele frequencies for all markers [0.25,0.25,0.25,0.25], unlinked disease allele 0.003; 2)
marker alleles [0.4,0.3,0.2,0.1], unlinked disease allele 0.003; itwo populations modeled in an 80%/20% mixture: 1) marker allele frequencies for all
markers [0.25,0.25,0.25,0.25], unlinked disease allele 0.0035; 2) marker alleles [0.4,0.3,0.2,0.1], unlinked disease allele 0.001.
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Table 4: Alternative Model Simulation
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Model A — no heterogeneity:

Affected Sibs Unaffected Sibs

Parents Total Sampled Total Sampled Z_ zZ, ARE(Z)) ARE(Z) Nc(80%) Np(80%)
0 2 2 2 0 3.19 100 304
0 2 2 2 | 270 242 72 38 424 528
0 2 2 2 2 3.03 3.7 90 49 337 308
0 3 2 2 0 6.09 364 83
0 3 2 2 | 6.46  6.00 410 236 74 86
0 3 2 2 2 6.12 647 368 206 83 74
2 2 2 2 2.88 41 373
2 2 2 2 | 317 2.69 49 28 308 427
2 2 2 2 2 3.17 333 49 36 308 279

Model B - less common, equally penetrant locus:
0 2 2 2 0 2.37 100 550
0 2 2 2 | 3.04 288 165 98 334 373
0 2 2 2 2 273 238l 133 70 415 391
0 3 2 2 0 4.66 387 142
0 3 2 2 | 529 5.l 498 310 110 118
0 3 2 2 2 486 5.18 421 239 131 115
2 2 2 2 0 2.73 66 415
2 2 2 2 | 246 222 54 35 511 627
2 2 2 2 2 292 295 76 52 363 355
Model C - equally common, equally penetrant locus:

0 2 2 2 0 2.38 100 546
0 2 2 2 | 1.93 1.95 66 45 830 8I13
0 2 2 2 2 233 236 96 49 569 555
0 3 2 2 0 345 210 260
0 3 2 2 | 347 333 213 131 257 279
0 3 2 2 2 348 384 214 130 255 210
2 2 2 2 0 2.26 45 605
2 2 2 2 | 256 244 58 42 472 519
2 2 2 2 2 222 214 44 27 627 675

Mean Z score, asymptotic relative efficiency per genotype (ARE—see text), and sample size required to attain 80% power for two-point linkage (6 =
0.05) for predisposition to colorectal cancer with a baseline risk of 0.018, a relative risk to carriers of 20, allele frequency of 0.003, with a lifetime
penetrance of 0.27, under 3 different heterogeneity models: A) no heterogeneity; B) an equally penetrant, less common (allele frequency 0.001)

unlinked predisposing locus; C) an equally penetrant, equally common unlinked predisposing locus. All results based on 500 simulated families and

20 replicate simulations per parameter set.

Z_mean concordant test; Z, mean paired test; ARE(Z,) asymptotic relative efficiency concordant test; ARE(Z,) asymptotic relative efficiency paired
test; Nc(80%) number of families required for 80% power using concordant test; Np(80%) number of families required for 80% power using paired

test.

total number of unaffected sibs. The AR for the linked
locus had the largest positive effect on power of the con-
cordant test, followed closely by the negative effect on
power of increasing AR at the unlinked locus and increas-
ing recombination fraction between the marker and trait
loci. Increasing the number of affected sibs per family and
increasing the number of affected sibs genotyped per fam-
ily both substantially improved power. The number of
unaffected sibs present in sampled families had little or
no effect on power. Increased power was also observed for
increasing numbers of available parents, the size of the

effect on Z_/~/F being about 15% of the effect of increas-

ing numbers of affected sibs. Substituting spouse and off-
spring for an unavailable affected sib reduced power
substantially, but genotyping a second child recovered
much of that lost power.

In general, the effects on power of changes to the genetic
and design parameters were very similar for the discordant
test. Increasing the number of unaffected sibs typed did
yield a small increase in power, but increasing the number
of affected sibs, parents or offspring proxies increased
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Table 5: Effect of design and population parameters or non-centrality parameters

Simulated Range ZNF Z,\F
Estimate SE? Estimate SE
(Intercept) -0.3392 0.0064 -0.2941 0.0085
Recombination Fraction 0.025-0.25 -0.5783 0.0247 -0.5757 0.0228
Total Affected Sibs 2-3 0.0948 0.0020 0.1088 0.0026
Affected Sibs Typed 2-3 0.1111 0.0022 0.0670 0.0029
Total Unaffected Sibsb 0-3 0.0003 0.0011 0.0043 0.0021
Parents Typed 0-2 0.0156 0.0009 0.0099 0.0012
Spouse-Offspring Proxy (S -0.0222 0.0028 -0.0179 0.0041
Spouse-2 Offspring Proxy 01« -0.0050 0.0027 -0.0050 0.0038
AR Linked Locus 0.025-0.12 1.5785 0.0360 1.5154 0.0402
AR Unlinked Locus 0.0-0.12 -0.9867 0.0252 -0.7830 0.0295
Screen for Unlinked (ARI > AR2) 0-1¢ -0.0016 0.0057 0.0054 0.0053
Screen for Unlinked (ARI < AR2) 01| ¢ 0.0666 0.0042 0.0661 0.0040

Multiple linear regression of Z/+/ F on simulation parameters.

aStandard error of Estimate; PNumber available for Z,, number genotyped for Z; <Indicator variable.

power by a larger amount, even with the discordant pair
test.

The effect of experimental screening for the unlinked syn-
drome varied substantially depending on the relative
magnitude of the effects of the unlinked syndrome: if the
unlinked syndrome had an attributable risk greater than
or equal to that of the linked syndrome, experimental
screening resulted in a large increase in power. Otherwise,
the effect of experimental screening was negligible.

Power for a given sample size F and test size o with a spec-
ified combination of design and genetic parameters can
be derived from the regression models in Table 5 by first
obtaining an estimate of the noncentrality parameter Z/

JF from the appropriate column of Table 4, multiplying

by VF to obtain z, and then solving for £ in the equa-
tion below:

ﬁ = CD(Za —Z),

where £ is the probability of Type II error (hence power is
1-$) and ®(z) is the cumulative standard normal distribu-
tion. A script for computing the predicted power for any
particular combination of these parameters, using the sta-
tistical languages S-plus or R is also available from the
website [65].

Figures 1, 2, 3, 4, 5, 6 show estimated power of the Z_test
for varying sample sizes given several values of AR for the
linked and unlinked loci, recombination fraction (),
number of parents genotyped, and number of offspring
proxies. Except as noted, the power estimates are based on
the following settings of the genetic and design parame-
ters: two total affected sibs, both sampled, two unaffected

sibs (not sampled), no parents or offspring proxies, AR1
(linked locus) = 0.1, AR2 (unlinked locus) = 0.05, & =
0.05, and no screening to exclude unlinked families.

Relative Efficiency of Alternative Designs

Because the power of the discordant test was rarely much
greater than that of the concordant test, and the concord-
ant test requires genotyping of only the affected sibs, the
ARE of the concordant test was always greater on average
than that of the discordant test. Nevertheless, we were
interested in specific combinations of design and genetic
parameters that might have resulted in better relative effi-
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Effect of sample size and varying attributable risk at
the linked locus on estimated power.
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Effect of sample size and varying attributable risk at
the unlinked locus on estimated power.
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Figure 4
Effect of sample size and varying number of typed
parents on estimated power.

ciency for the discordant test. Overall, the ARE for the dis-
cordant test was larger than that for the concordant test in
13% of the replications. We used a logistic regression
model with the same parameters as those in Tables 2, 3
and 4 to predict the probability that Z, would outperform
Z.in terms of relative efficiency (not shown). Only under
circumstances that would result in very low power, such as
attributable risks for the unlinked locus more than twice
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Figure 3

Effect of sample size and varying recombination frac-
tion on estimated power.

as large as attributable risks for the linked locus, or recom-
bination fractions > 0.1, was Z, predicted to outperform Z,
in our simulated sample of 500 families.
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Figure 5

Effect of varying number of offspring proxies on
power for families of two affected siblings. Effect of
sample size and varying numbers of offspring proxies (I or 2)
on estimated power, families with two affected sibs, with
only one available for genotyping (I or 2), compared with
families with both affected sibs available for genotyping (S =
2).

Page 10 of 17

(page number not for citation purposes)



BMC Medical Genetics 2008, 9:64

1.0

08 08

06 07

Power
0.5

02 03 04

0.1

0.0
L

T T T T
100 150 200 250 300

Number of Families

Figure 6

Effect of varying number of offspring proxies on
power for families of three affected siblings. Effect of
sample size and varying numbers of offspring proxies (O) on
estimated power, families with three affected sibs, with only
two available for genotyping (O =0, |, or 2), compared with
families with all three affected sibs available for genotyping (S
=3).

In principle, including genotype data from unaffected sib-
lings can improve the ability to estimate haplotypes and
thereby improve power when multipoint data are studied.
Table 6 compares estimates of Z,and Z, for a selected set

P
of simulations with multipoint Z,, scores for the same

http://www.biomedcentral.com/1471-2350/9/64

families as calculated by the computer program Merlin
[58]. In these simulations, when markers were spaced no
closer than 10 cM from one another, as is usually the case
in an initial genome scan, we observed no improvement
in power with the concordant multipoint statistic, but an
improvement in power with the discordant test. When
markers were spaced at 5 cM intervals, however, the power
of both multipoint statistics to detect linkage exceeded
that of both Z and Z,. The conservative bias of Z,, noted
in Tables 2 and 3 appears to decrease as marker intervals
become smaller. To test this, we conducted additional
simulations under the null hypothesis as described above
for Tables 2 and 3, with 1000 repetitions and markers
spaced at 5, 10, and 20 cM. The magnitude of the conserv-
ative bias in Z,, . decreases consistently (mean Z,,. = -0.58
at 20 cM, -0.23 at 10 cM, and 0.06 at 5 cM) as marker
intervals contract, becoming significantly anti-conserva-
tive at 5 cM.

Replacement of a missing affected individual by a spouse
and offspring is not generally as efficient per genotype as
if that individual had been available, although the effi-
ciency improves with each additional offspring included.
Figure 5 shows the effect of replacing one member of an
ASP with one or two offspring and the spouse. Figure 6
shows the effect of replacing one member of an affected
sib trio with one or two offspring and the spouse. Because
families with three affected sibs are more likely to be seg-
regating a disease-predisposing allele than families with
two affected sibs, each family is more informative for link-
age, even if DNA is available for only two sibs. Substitut-
ing the spouse and one or more offspring for the missing

Table 6: Comparison of two-point vs. multipoint linkage scores under various non-null simulation conditions.

Simulation Model

Marker Interval Z V4 V4 V4

c P mc mp
No Heterogeneity 2 5cM 3.26 3.24 3.62 3.60
10 cM 2.94 291 2.85 3.36
20 cM 2.36 2.30 2.14 2.52
Locus Heterogeneity? 5cM 3.10 3.08 3.75 3.53
10 cM 2.76 2.70 2.72 3.13
20 cM 2.05 2.0l 1.91 223
Marker Heterogeneity — Mild¢ 5cM 2.80 272 3.57 3.24
10 cM 2.62 2.54 2.59 2,99
20 cM 222 2.13 2.14 235
Marker Heterogeneity- Severed 5cM 2.10 1.95 261 2.35
10 cM 1.70 1.56 1.49 1.86
20 cM 1.42 1.27 1.18 1.33

All simulations employed 20 replicates of 500 families with 2 affected and 2 unaffected sibs, all sibs typed, no parents or children typed.
a Baseline risk of 0.018, a relative risk to carriers of 20, allele frequency of 0.003, with a lifetime penetrance of 0.27, no genetic heterogeneity.
b Baseline risk of 0.018, a relative risk to carriers of 20, allele frequency of 0.003, with a lifetime penetrance of 0.27, and a less common (allele

frequency 0.001), equally penetrant unlinked predisposition syndrome.

¢ Two populations modeled in an 80%/20% mixture: 1) marker allele frequencies for all markers [0.25,0.25,0.25,0.25], disease allele 0.00325; 2)

marker alleles [0.4,0.3,0.2,0.1], disease allele 0.002.

dTwo populations modeled in an 80%/20% mixture: |) marker allele frequencies for all markers [0.25,0.25,0.25,0.25], disease allele 0.0035; 2)

marker alleles [0.4,0.3,0.2,0.1], disease allele 0.001.
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sib adds additional power, although at the cost of addi-
tional genotyping.

Discussion

In studying a disease like colon cancer with both incom-
plete penetrance and a high incidence of sporadics, prior
studies have shown that to be efficient, families must
include two or more individuals with the same disease
from whom samples can be obtained. The practical expe-
rience of many investigators suggests that once an initial
entree is gained into a family, the chances of enrolling
other members are quite high. Close relatives are often
very motivated to participate in research into a disease
that has afflicted their family, especially when the com-
mitment is minimal, involving only a blood specimen
and a signed consent, which are all that are required for a
linkage study of diseases that have an easily established
phenotype, like cancer. In our simulations, we considered
inclusion of unaffected sibs and the use of spouse and oft-
spring to replace missing affected sibs. Including unaf-
fected siblings in the design of a study can improve the
power to detect linkage for highly-penetrant diseases
[53,66]. However, our simulation studies demonstrate
that for the model-free linkage tests we studied, for low
penetrance loci, and with no genotyping error, little
increase in power can be gained by including unaffected
siblings in the design of a sib-pair study of a late onset,
complex disease such as colorectal cancer. The inclusion
of unaffected siblings can be useful, however, in reducing
anti-conservative biases arising from heterogeneity or
misspecification of marker allele frequencies or genotyp-
ing errors, and conservative biases arising if multipoint
statistics are used with an insufficiently dense marker set.
Table 2 shows that, with markers spaced at 10 cM inter-
vals, Z,,.is conservatively biased, while exhibiting an anti-
conservative bias in Table 3 wunder conditions of
heterogeneity in marker allele frequencies. In Table 6, Z,,,
outperforms with markers spaced at 10 and 20 cM. At 5
M, Z,. becomes anticonservatively biased, as noted
above. It may be useful to perform simulations to assess
the characteristics of the tests when the marker spacing
decreases, as would be possible with the newer SNP array-
based platforms. Further, since genome-wide-association
studies do not utilize the full power of the sibpair design,
future research should be aimed at assessing the optimal
setting for relying on the sibpair design, as it is premature
to move completely away from this study design [15].

If a secondary goal of a study is to estimate the penetrance,
then unaffected relatives should be included in the design
of the study; also unaffected siblings could help in evalu-
ating the impact of environmental factors upon disease
risk. Genotyping errors for microsatellites scans are cur-
rently very low but are hard to assess without the availa-
bility of parents or siblings. Our findings parallel those of

http://www.biomedcentral.com/1471-2350/9/64

Holmans et al. [67], who suggested that genotyping
affected individuals only is efficient.

Unaffected siblings can be used for studies that take
advantage of linkage disequilibrium to identify associa-
tions. Colorectal cancer and other late onset diseases with
incompletely penetrant susceptibility alleles complicate
the identification of unaffected individuals for association
studies, because the probability that a person who does
not currently exhibit the disease will become affected
sometime in the future can be relatively large. In associa-
tion studies using families, the oldest unaffected sibling is
the most informative because s/he is more likely to have
attained the age at which all the cases in the family were
diagnosed (although Kraft and Thomas [68,69] have
shown how younger siblings can also be used).

The inclusion of unaffected sibs is also advantageous with
respect to the common practice of genotyping in batches,
particularly by nuclear family. A correlation may be
induced artificially if the genotyping errors are resolved
within families by requiring Mendelian segregation of
alleles, which can lead to false positive evidence for link-
age, unless the unaffected relatives are used for compari-
son. Such excess evidence for linkage tends to accrue from
the families with available parents because these pedi-
grees are the mostly likely to yield non-Mendelian segre-
gation due to genotyping errors, which have to be
resolved in turn [70,71]. Good laboratory practice
requires that at least some samples receive duplicate gen-
otyping so that it would be possible to identify problem-
atic markers showing excess genotyping error rates.
Meiotic drive exists in some mammals and if present in
humans could conceivably increase the expected IBD
sharing at a locus above 0.5. If meiotic drive is present in
humans then multiple studies of many different diseases
should show this effect [72].

One sampling option that we have shown can be viable
includes sibships in which an affected member is dead but
the spouse and offspring of the deceased are available,
thus effectively increasing the number of pairs and yielded
a total information content per family approaching other
designs based on affected sibs. In the context of a high-risk
clinic, pursuing the family of a dead sib can be quite labor
intensive compared with the cost of recruiting more sib-
ships. However, in an established registry, the opposite
may be true, so that extending the relatives to be sampled
becomes a more cost-effective strategy. Such a scheme
could be worthy of further consideration in situations
where the prospects of recruiting additional sibships are
limited. Using spouses and offspring as proxies for miss-
ing or deceased sibs is obviously less efficient than had the
affected sibs themselves been available, but still can pro-
vide adequate linkage information and may be required if
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the disease is often lethal so that samples from affected
sibs are hard to obtain. Even when affected siblings are
unavailable for study, it is still possible to genotype blocks
that may be available from residual tissues, such as lymph
nodes, that were obtained for the purposes of staging.
However, genetic analysis of blocks is more difficult than
from blood samples because the DNA is partially
degraded, which may preclude multiplex genotyping.
Therefore, genotyping the relatives of the affected but una-
vailable cosib may be more efficient than genotyping
residual tissues.

Available parents contributed somewhat to the efficiency
obtained in our simulated linkage studies. There are other
benefits of including parents when they are available,
including greatly reduced sensitivity to allele frequency
misspecification, substantial improvements to haplotype
estimation, and identifying nonpaternities or other errors
in family structure or in genotyping. There are some prac-
tical advantages to including both parents of each sibship,
whenever possible. However, parents are likely to be avail-
able only for a small minority of the families because
most inherited cancers have a relatively late onset, albeit
typically earlier than for sporadic cases. For example, data
from the high-risk families of the CFRCCS and the popu-
lation-based Diet, Activity and Reproduction in Colon
Cancer (DARCC) study [26] show that about 3-4% of the
living ASPs have two parents alive while about 12%
(DARCC) to 22% (CFRCCS) have only one. The sib pair
protocol of the Eastern Cooperative Oncology Group
(ECOG) for mapping the interactive susceptibility loci of
four major malignancies includes the accrual of parents
only when both are available. However, their rationale is
quite different from that of allele-sharing methodology
because the parental data are collected for a separate par-
allel analysis using the transmission disequilibrium test
(TDT) [73].

The family structures that could be studied are not neces-
sarily restricted to the sibs of a proband ascertained
through a registry or clinic. Consideration should also be
given to collecting the extended family members of the
affected sibs. Familial cancer registries such as the
CFRCCS and CGN routinely collect family history from
all their participants. Recent reports indicate that study
subjects are capable of accurately reporting cancer status
among their close relatives, with accuracy varying by can-
cer site and degree of relationship [74]. Pedigrees that
extend to affected aunts and uncles or grandparents of the
affected sibs could be used in a confirmatory analysis for
the source of the segregating disease allele by the method
of Olson and Elston [75], without obtaining their blood
specimens, by correlating the parent of origin of shared
alleles with the side of the family of the affected aunt or
uncle.

http://www.biomedcentral.com/1471-2350/9/64

For rare autosomal dominant traits, Risch [76] showed
that cousin pairs actually provide more information for
detecting tight linkage than sib pairs. Narod and Amos
([77]) also showed through simulation the efficacy of
incorporating cousins in a linkage study of breast cancer,
which like colorectal cancer shows genetic heterogeneity,
a likely high proportion of phenocopies, and environ-
mental and life-style related risk factors. However, Risch
also found that for recessive conditions or when the dis-
ease and marker loci were not tightly linked, a sib pair
design was more effective than other designs. Since the
mode of inheritance for as yet unidentified genetic factors
remains unknown, the sibship design remains preferable
to other family units since it provides power under all
genetic models.

We estimated the numbers of families required to study
colorectal cancer and similar diseases with reasonable
power, if our assumptions about disease allele frequen-
cies, mode of inheritance, and heterogeneity are not too
far from the truth. Our simulation studies show that at
least 500-1000 families are required to provide reasona-
ble assurance of adequate power across a range of genetic
models that are consistent with the observed familiality
and population prevalence of colorectal cancer. Colon
cancer risk is strongly associated with certain environmen-
tal factors, some of which might interact with the gene(s)
being sought. Although 1000 pairs will most likely pro-
vide adequate power to identify genetic risk factors, the
further delineation of gene-environment interactions may
yet require larger sample sizes [78]. Our simulation study
focused upon efficiency of various genotyping
approaches, where we assumed that samples from indi-
viduals are already available. If samples are not available,
then additional design constraints may become impor-
tant. For instance, the collection of sib pairs affected by
disease can be a slow process and trade-offs between effi-
ciency in genotyping versus power from available samples
may need to be evaluated.

Because the costs of drawing blood and extracting DNA
are far smaller than those of genotyping the 400-1000
markers needed for a genome scan, and because the unaf-
fected and affected siblings can contribute different infor-
mation, we suggest collecting all available members of
each sibship, but only genotyping affected sibs, parents,
and any spouse/offspring proxies for an initial genome
scan. DNA from the unaffected sibs may still be useful for
fine mapping and association studies and for estimating
the penetrance. The CFRCCS and DARCC databases indi-
cate that about 90% of the living ASPs have at least one
unaffected sib alive, with a mean of about 2.5. Since the
optimal number of unaffected sibs to sample per sibship
if more than one were available has not been resolved, an
ad-hoc plan may be to obtain the blood specimens from
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all those who consent. If the genotyping resources were
constrained (e.g. to at most two unaffecteds per sibship),
an efficient protocol is to start with the oldest first-degree
relative and to proceed downwards, i.e. include both par-
ents if available, otherwise one parent and the oldest unaf-
fected sib, etc.

Population heterogeneity and allele frequencies have an
important impact on the study design. In the absence of
parents, the marker allele frequencies in the study popula-
tion have to be estimated as the basis for estimating the
IBD probabilities, which requires an assumption of
homogeneity of marker allele frequencies. Population
heterogeneity arises when the allele frequencies vary
across subgroups, because of demographic, geographical,
or other factors. Table 3 shows that an incorrect assump-
tion of population homogeneity so the assumption of a
common allele frequency across the entire collection of
families can bias affecteds-only linkage results, depending
on the degree of admixture and the degree to which the
allele frequencies vary among the subpopulations.

We observed moderate to substantial losses of power to
detect linkage in the limited number of simulations we
performed with population heterogeneity of this sort (see
Table 6). The use of unaffected sibs provides one means of
overcoming the problem of heterogeneity in marker allele
frequencies, since both concordant and discordant pairs
tend to be biased in a similar manner by any misspecifica-
tion of allele frequencies. To fully exploit this advantage,
however, a matched comparison is needed so that the
analysis focuses on the within-family differences in IBD
probabilities between the two types of pairs. This would
overcome any problems of imbalance in the ethnic distri-
bution of concordant and discordant pairs. While this can
be accomplished by means of a simple paired t-test, like
Z, a more sophisticated GEE-2 approach is possible,
modeling the entire vector of phenotypes in each family
in relation to its IBD matrix [79]. This would have the
advantage of combining information from both types of
comparison in a matched fashion, so that all families,
including those with no unaffected sibs, would contrib-
ute. The simulations summarized in Table 6 do not show
any power advantage for either Z, or multipoint
approaches under the simulated conditions of population
admixture, although the anti-conservative bias in Z_,under
heterogeneity of marker allele frequencies may partially
obscure a real power difference between the concordant
and discordant tests. Population admixture presents a par-
ticularly insidious threat to the validity of tests for linkage
if parents or unaffected siblings are not available. How-
ever, it might be possible to detect population substruc-
ture by checking for the departure from disequilibrium
that it engenders.
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We did not directly study the asymptotic relative efficiency
of 10 cm versus 5 cm linkage scans. At the time we
designed our study, the usual practice in genotyping facil-
ities is to first apply a 10 cm map and then to follow up
with denser mapping in linked regions. We generally
anticipated that an initial 5 cM mapping strategy is not
cost effective and that some version of grid tightening
would ordinarly be employed [67]. Currently with the
availability of more modern technology, a 10 cM scan is
now considered rather sparse, and the 5 cM scan is consid-
ered a better standard, with fine mapping at 1 <M
(although you still see published studies that use 10 <M
scans; see [16-18]). Many studies now use SNP platforms,
although it is not clear whether these are optimal for sib-
pair studies. When dense sets of SNPs are analyzed, there
is much more potential for biases to appear if parental
data are unavailable and linkage disequilibrium among
the markers is not adequately modeled [80]. Such biases
are reduced when an additional unaffected sibling or a
parent is included in the analysis. Other than the need to
address the potential for bias, the high marker informativ-
ity of microsatellites compared with SNPs would suggest
that results from our simulation studies should shed light
on optimal designs for studies of small families, whether
microsatellites or SNPs are used for analysis.

Crude stratification by recruitment center is unlikely to be
reliable enough for controlling population heterogeneity
without additional adjustment. Stratification by ethnicity
is generally more crucial than by geography, although
both factors should ideally be incorporated. However,
collection of ethnicity is not entirely trivial if it is to be
worthwhile. Although various coding systems have been
established by different agencies, no consensus has been
established regarding the level of detail required on eth-
nicity data in genetic research, e.g. category distinctions,
mixed-race marriages. Mandal et al. [81] have shown that
marker allele frequencies are less important if there are
four or more persons per family, especially when very pol-
ymorphic markers are used. When the parents of the sib-
pair have been genotyped, then there is no dependence on
population marker allele frequencies and no source of
bias in linkage analysis.

Conclusion

We have shown that for a wide variety of situations rele-
vant to sib-pair studies of colon cancer and similar late-
onset complex diseases, standard concordant-pair allele-
sharing statistics based on identity by descent probabili-
ties are more efficient than similarly constructed discord-
ant statistics in homogeneous populations, but may be
biased away from the null in situations where subjects are
chosen from multiple populations having differing
marker allele frequencies or other sources of bias. Where
heterogeneity in marker allele frequencies is anticipated
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because of underlying population admixture, linkage tests
based on comparison of concordant vs. discordant allele
sharing should be considered. Either of these approaches
should allow studies of 500-1000 families containing an
ASP to achieve reasonable power to detect linkage under
conditions including genetic and population heterogene-
ity, unavailable parents, misspecified allele frequencies,
and other afflictions of the sib-pair design. While collect-
ing DNA samples from unaffected sibs can be useful for a
wide variety of purposes-especially if multipoint methods
are used-in many circumstances it should be unnecessary
to genotype these samples for purposes of performing a
genome scan. If adequate allele frequency data are availa-
ble and microsatellites are being used, we suggest a single-
point affecteds-only analysis for a initial scan, followed by
a multipoint analysis of affected and unaffected members
of all available sibships with additional markers around
initial hits. For dense SNP mapping studies, analysis using
individual SNPs will not be sufficiently informative and
so multipoint analyses will be required, but unless the
parents are all available, analyses should be restricted to
markers that show low levels of linkage disequilibrium
(the reference here would be to a paper by Bacanu SA.
Multipoint linkage analysis for a very dense set of markers
Genet Epidemiol. 2005 Nov;29(3):195-203.) or estimate
haplotype frequencies (Abecasis and Wigginton, Han-
dling marker-marker linkage disequilibrium: pedigree
analysis with clustered markers. Am ] Hum Genet. 2005
Nov;77(5):754-67. Epub 2005 Sep 20.) If the parents are
available, even though we have shown that genotyping
them is inefficient, an argument can be made for genotyp-
ing them because their inclusion ameliorates any poten-
tial effect of population admixture, greatly facilitates the
identification of any genotyping errors and reduces the
dependence upon correct specification of haplotype fre-
quencies when multipoint analyses are conducted (can
refer to Huang et al, 2004 Ignoring linkage disequilibrium
among tightly linked markers induces false-positive evi-
dence of linkage for affected sib pair analysis.

Am ] Hum Genet. 2004 Dec;75(6):1106-12. Epub 2004
Oct 18.). The choice of whether or not to genotype unaf-
fected individuals also would depend upon the feasibility
and cost of cherry-picking for regional genotyping of
regions showing evidence for linkage, but we have not
studied either of these issues in this paper. Admixture is
more likely to be of concern when studying populations
that are known to have been founded by different ethnic
groups or races such as Hispanics and African-Americans.

We have also observed that, if genetic testing is available
for previously-identified syndromes, and if those syn-
dromes are thought to account for a larger portion of the
disease burden than the syndrome of interest, prior exclu-

http://www.biomedcentral.com/1471-2350/9/64

sion of families linked to the known syndrome can mean-
ingfully increase the power of the study.

Finally we note that the colon sibpair study, for which this
paper was written, was completed after accruing less than
100 families. In fact, most of the colon sibpair studies that
have been published include fewer than 100 families,
because recruitment is a major challenge. Although the
results discussed here suggest numbers that may be chal-
lenging to accrue, the published literature has reported
positive studies, suggesting that the assumptions used in
our calculations may have been too conservative. In addi-
tion, linkage studies are meant to be performed in an iter-
ative fashion so that the results from ongoing studies can
be combined. Since our conclusions and recommenda-
tions arising from the simulations describe relative advan-
tage of various designs, our results are of value in future
study design.
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