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Abstract
Background: The chromosome 7q32 region is linked to metabolic syndrome and obesity related
traits in the Family Heart Study. As part of a fine mapping study of the region, we evaluated the
relationship of polymorphisms to fasting glucose levels and Type 2 diabetes.

Methods: Thirty-nine HapMap defined tag SNPs in a 1.08 Mb region and a novel deletion
polymorphism were genotyped in 2,603 participants of the NHLBI Family Heart Study (FHS).
Regression modeling, adjusting for BMI, age, sex, smoking and the TCF7L2 polymorphism, was used
to evaluate the association of these polymorphisms with T2D and fasting glucoses levels.

Results: The deletion polymorphism confers a protective effect for T2D, with homozygous
deletion carriers having a 53% reduced risk compared to non-deleted carriers. Among non-
diabetics, the deletion was significantly associated with lower fasting glucose levels in men (p =
0.038) but not women (p = 0.118). In addition, seven SNPs near the deletion were significantly
associated (p < 0.01) to diabetes.

Conclusion: Chromosome 7q32 contains both SNPs and a deletion that were associated to T2D.
Although the deletion region contains several islands of strongly conserved sequence, it is not
known to contain a transcribed gene. The closest nearby gene, EXOC4, is involved in insulin-
stimulated glucose transport and may be a candidate for this association. Further work is needed
to determine if the deletion represents a functional variant or may be in linkage disequilibrium with
a functional mutation influencing EXOC4 or another nearby gene.
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Background
Type 2 diabetes (T2D) is characterized by hyperglycemia
due to insulin resistance and is accompanied by a failure
of β cells to produce sufficient insulin. In the United
States, the prevalence of diabetes has risen 40% from
1990 to 1999 [1]. This increase in T2D has been attributed
to the recent rise in obesity. The correlation between dia-
betes and obesity has been shown in numerous epidemi-
ological studies [2,3] although the mechanisms
underlying this phenomenon are largely unknown. One
current hypothesis proposes that malnutrition in the fetus
can lead to the developmental impairment of pancreatic β
cells, termed a "thrifty phenotype" and that later in life,
these children are more susceptible to diabetes [4].

Candidate gene studies in T2D have implicated numerous
gene variants that decrease disease risk, such as PPARG
(P12A) [5], and others that increase disease risk, such as
KCNJ11(E23K) [6]. One of the strongest T2D-associated
loci has been mapped to the transcription factor TCF7L2
[7], (odds ratio ≈1.7) and this association has been repli-
cated in numerous subsequent studies [8-20].

In addition to single nucleotide polymorphisms (SNPs),
genomic insertion/deletion polymorphisms may also
influence disease risk. One such example is the deletion
polymorphism in the angiotension-converting enzyme
(ACE), which has been shown to confer increased risk of
coronary artery disease [21]. Recently the HapMap geno-
type data was used to search for segregating deletions by
examining physically clustered failed SNP genotype
assays, Mendelian inconsistencies, and departures from
Hardy-Weinberg disequilibrium [22]. Five hundred and
forty-one deletions were identified ranging in size from 1
to 754 kb. One predicted 10.3 kb deletion polymorphism
was located under a widely replicated obesity linkage peak
on chromosome 7q22-q36 [23-32] between the EXOC4
and LRGUK genes. Importantly, linkage to metabolic syn-
drome has also been reported for the Family Heart Study
cohort in the 7q32 region [33].

The aim of this study was to examine SNPs and a chromo-
somal deletion on chromosome 7q32 in a sample of fam-
ilies exhibiting linkage to obesity and metabolic
syndrome in the region [27,33]. Due to the presence of a
gene (EXOC4) that is part of the exocyst complex (Exo70),
which is involved in insulin-stimulated glucose transport,
association to T2D risk and blood glucose levels was
hypothesized. In addition, we examined the association
between the minor allele of the SNP rs7903146 [7] within
the transcription factor TCF7L2 and T2D disease risk. Each
polymorphism's association to T2D risk was examined in
a large Caucasian subset of the Family Heart Study (FHS)
population comprising 2,396 participants (205 T2D
cases). In addition to T2D disease affection status, fasting

plasma glucose (FPG) was also examined among non-dia-
betics.

Methods
Subjects
The National Heart, Lung and Blood Institute (NHLBI)
Family Heart Study (FHS) recruited families from four
existing study centers located in Forsyth County, NC;
Framingham, MA; Minneapolis, MN; and Salt Lake City,
UT. Approximately one half of the families recruited from
these study centers were at high risk for coronary heart dis-
ease (CHD) while the other half were selected randomly
from their respective study populations.

The body mass index (BMI) SNP fine mapping study gen-
otyped 2,421 FHS participants including 158 diabetics.
For the deletion study, 416 of these, including two diabet-
ics, either did not genotype for the deletion or did not
have sufficient DNA for the deletion study. Therefore, an
additional 182 FHS samples, including 49 diabetics, not
originally included in the SNP analysis were typed for the
deletion. In total, 2,603 participants, including 207 dia-
betics, were studied.

T2D diabetes was defined by self-report of diabetes diag-
nosis and limited to those with an age at diagnosis greater
than 25. The controls used were participants recruited as
part of FHS who did not report a diagnosis of diabetes. An
enzymatic (glucose-oxidase) method (Kodak Ektachem
700 Analyzer, Rochester, NY) was used to measure fasting
serum glucose as mg/dL. This study was approved by the
institutional review boards (IRB) of the participating insti-
tutions and appropriate informed consent was obtained.

Deletion Detection
Deletions were detected in the study population using
real-time polymerase chain reaction (RT-PCR). To accu-
rately type deletion variants, we designed primers to
amplify regions within the proposed chromosomal dele-
tion on chromosome 7q32. We performed TaqMan RT-
PCR assays, using a VIC-labeled probe for a known dip-
loid gene PMP22 (NM_153321) as a control reference and
a VIC-labeled probe (Applied Biosystems, Foster City CA)
for the experimental region, each run simultaneously.
Each DNA sample was run in quadruplicate for each Taq-
Man assay on the PRISM® 7900 HT Sequence Detection
System. The cycles-to-threshold (Ct) was determined for
each assay separately, and the difference between the aver-
age Ct for the experimental probe and control assays (ΔCt)
was used to infer the presence of zero, one or two copies
of the deleted segment. For the examined FHS study sam-
ple, the average ΔCt values clustered into three discrete
groups, including one group showing amplification of the
control locus and no amplification of the experimental
locus. Treating each genotype cluster as '+/+' (wildtype),
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'+/-' and '-/-'DNA samples could be assigned a standard
genotype (i.e. 11, 12, 22). A small number of individuals
whose ΔCt value fell outside of the three genotype clusters
(n=69, 2.8%) were coded as missing genotypes.

SNP Genotyping
SNPs in the genes neighboring the deletion were geno-
typed as part of a fine-mapping study of BMI. Thirty-nine
Tag SNPs were selected using the HapMap tagger algo-
rithm in the region between 132,552,341 (rs6467475)
and 133,619,534 (rs1421483). In addition, the SNP
rs7903146, located on chromosome 10 at 114,748,089
bp within an intron of the gene TCF7L2 (NM_030756),
was genotyped. The TCF7L2 SNP was typed using the Taq-
Man® technology developed by Applied Biosystems (Fos-
ter City, CA) using the PRISM® 7900 HT Sequence
Detection System. The 39 HapMap derived SNPs were
genotyped using the Illumina Golden Gate® assay
method, through the Illumina Fast-Track Genotyping
service. Mendelian inconsistencies were identified using
INFER within the PEDSYS software package [34], and gen-
otypes in the pedigrees where inconsistencies were found
were removed.

Linkage Disequilibrium (LD) Assessment
We assessed the LD between the chromosomal deletion
obtained by RT-PCR, using deletion genotypes ('+/+', '+/-
', '-/-') coded as 11, 12 and 22 and adjacent SNPs. The soft-
ware program Haploview [35] was used to estimate the
pairwise LD (r2) between the chromosomal deletion and
nearby SNPs within 500 kb.

Statistical Analysis
To evaluate the relationship of polymorphisms to T2D,
dominant and recessive modeling of the minor allele was
performed in a logistic regression implemented with a

generalized estimating equation and adjusted for TCF7L2
minor allele, BMI at age 25 (based on participants' self
report), study center, age, age2, age3, sex, and smoking his-
tory (never/ever). The relationship to T2D for the TCF7L2
SNP (rs7903146) was modeled as a dominant genetic
effect (major homozygotes = 0, heterozygotes and minor
homozygotes = 1) as previously reported [7] and the dele-
tion polymorphism modeled as a recessive genetic effect
('+/+ wildtype' and '+/-' = 0 and '-/-' = 1) using the same
covariates described above. As the FHS sample included
prevalent diabetics, analyses of diabetes status were
adjusted for an age variable that was defined as the age at
diagnosis for diabetic cases and the age at clinical exami-
nation for non-diabetic controls. No correction for multi-
ple testing was used in these analyses and, therefore, all p-
values are reported as nominal p-values.

In addition to diabetes status, fasting glucose (mg/dL) lev-
els were analyzed in non-diabetics using a linear GEE
regression model adjusted for BMI, study center, age, age2,
age3, smoking history status and sex. The deletion and
TCF7L2 polymorphism were analyzed together in the
same model. In this regression model, measurements of
BMI and age at the time of examination were used.

Results
Clinical characteristics of the study subjects are shown in
Table 1. The mean age at examination of the diabetics was
61.57 with a range from 25.6 to 84.7 and of the non-dia-
betics participant's mean age was 52.0 with a range from
25.2 to 91.0. Both the BMI at examination (p = 10-4) and
the reported BMI at age 25 (p < 10-4) were significantly dif-
ferent between diabetics and non-diabetics. However, the
age at examination of non-diabetics was not different
from the age at diagnosis of diabetes among the diabetics
(p = 0.82).

Table 1: Characteristics of the study population

Diabetics Non-diabetics

N genotyped for deletion 205 1982
N genotyped for SNPs 158 2263

Total studied for either SNPs or deletion* 207 2396
Male 55.1% 46.7%

Age at onset of diabetes (years) 51.7 ± 11.6 -
Age at examination (years) 62.2 ± 9.9 51.8 ± 13.4**
BMI (kg/m2) at examination 30.0 ± 5.1 27.5 ± 5.8**

BMI (kg/m2) at age 25 24.5 ± 4.9 22.9 ± 3.6**
Fasting glucose (mg/dL) 173.9 ± 70.1 95.4 ± 16.1**

Center (%):
Forsyth County, North Carolina, 22.2 22.5

Minneapolis, Minnesota 24.7 28.0
Framingham, Massachusetts 19.8 22.0

Salt Lake City, Utah 33.3 27.5

*means and frequencies correspond to sample with either deletion or SNP genotyping
** p < 10-4
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Deletion Polymorphism
Table 2 lists the sequences for the control (PMP22) and
deletion detection primers and probes. A total of 2,198
study participants were assayed and the average ΔCt was
used to generate three genotype clusters (Figure 1). The
deletion was present in 52.7% (n=1,152) of the study
population with a deletion allele frequency of 31.2% and
was in Hardy-Weinberg equilibrium (p = 0.85).

Diabetes risk results for the deletion versus the TCF7L2
polymorphism are shown in Table 3. In the total study

sample, there was a protective effect of the homozygous
deletion genotype on diabetes (p = 0.016 odds ratio (OR)
= 0.47, 95% CI 0.25–0.87). In addition, BMI at age 25 was
shown to be a strong risk factor for diabetes (p < 10-4, beta
estimate = .09, OR for a 1 unit BMI increase at age 25 =
1.09). In the total study sample, 5.4% (n = 11) of the dia-
betics were homozygous for the deletion as compared to
10.2% (n = 203) of the non-diabetics.

When stratified by sex, the protective effect of the deletion
on diabetes was stronger in men (p = 0.064, OR = 0.45,

Table 2: Primer and probe sequences used in the RT-PCR deletion assay

Gene Region

PMP22 (Control) chr17:15,074,941–15,075,005
Primer 1 CCCTTCTCAGCGGTGTCATC
Primer 2 ACAGACCGTCTGGGCGC
Probe VIC – TTCGCGTTTCCGCAAGAT

chr7:133,441,108–133,441,133
Primer 1 GCCTTGCCCGAGTACATATT
Primer 2 AGAGTTGGCCTCTGTCCCTA
Probe VIC-CAGCTGGTGTTACCAGTAAAGGCCCT

Insertion/deletion genotype clustersFigure 1
Insertion/deletion genotype clusters. Deletion genotype clusters as measured by real-time PCR. Individuals outside of the 
clusters, defined by the black boxes, were marked with an unknown genotype.
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95% CI 0.2–1.05) than in women (p = 0.26, OR = 0.57,
95% CI 0.22–1.52) with BMI at age 25 remaining a strong
risk factor for diabetes in each gender (p < 10-4). In men,
5.4% (n = 6) of the diabetics were homozygous for the
deletion as compared to 11.4% (n = 107) of the non-dia-
betics. In women, the individuals homozygous for the
deletion represented 5.4% (n = 5) of the diabetics and
9.2% (n = 96) of the non-diabetics, although the effect
was not statistically significant.

In addition, we tested the effect of the deletion and the
TCF7L2 SNP on fasting glucose levels among non-diabet-
ics stratified by sex (see Table 4). In an analysis of both
sexes combined, the TCF7L2 minor allele was associated
with a 1.3 mg/dL higher mean glucose level (p = 0.045),
whereas the deletion polymorphism did not have a signif-
icant effect on glucose levels. Men homozygous for the
deletion polymorphism had a statistically significant
decrease in fasting glucose levels (p = 0.038, β-estimate =
-2.57 mg/dL) while the TCF7L2 SNP had a modest
increase in fasting glucose levels (p = 0.089, β-estimate =
1.91 mg/dL). Neither polymorphism had a significant
effect on fasting glucose in women.

SNP Association
Association analyses to diabetes using SNPs in the EXOC4
and LRGUK gene regions identified multiple polymor-

phisms with evidence for association (Table 5). Seven
SNPs (rs3823572, rs12531707, rs11770757, rs7457999,
rs6953590, rs12670589, and rs1421483) demonstrated
significant association (p = 0.01) to fasting glucose. Using
a dominant modeling of the minor allele, the SNP
rs12531707 in an EXOC4 intron produced an odds ratio
for diabetes of 1.79 (p = 0.009). The SNP in strongest LD
with the deletion, rs7457999, exhibited a protective effect
for diabetes. Using a recessive modeling of the minor
allele, the SNP rs12670589 in a LRGUK intron produced
an OR for diabetes of 2.02 (p = 0.002). Other SNPs in
both EXOC4 and LRGUK produced larger ORs for the
recessive model, but the results were based on a small
number of homozygous minor allele carriers. For exam-
ple, rs11770757 produced an OR = 11.9 based on two
homozygous minor allele carriers each in cases and con-
trols, and the results may be spurious. We have presented
all recessive results for which the model converged in the
hopes that replication studies in larger samples of diabet-
ics will examine these SNPs.

Within the total study population the SNP rs7903146,
located within an intron of the gene TCF7L2
(NM_030756), had a minor allele frequency of 31%. In a
dominant model, the TCF7L2 SNP was modestly associ-
ated with diabetes risk (p = 0.099, OR = 1.31, 95% CI
0.95–1.81). In the total study sample, 57.5% (n = 119) of
the diabetics were minor risk allele carriers as compared to
51.9% (n = 1243) of the non-diabetics.

When stratified by sex, the minor allele of the TCF7L2
SNP was associated with a large increased risk for T2D in
women (p = 0.039, OR = 1.63, 95% CI 1.02–2.59)
whereas no effect was seen in men (p = 0.53, OR = 1.14,
95% CI 0.76–1.72). In women, 63.4% (n = 59) of the dia-
betics were minor allele risk carriers compared to 50.6%
(n = 646) of the non-diabetics. In men, 52.6% (n = 60) of
the diabetics were minor allele risk carriers compared to
52.6% (n = 597) of the non-diabetics.

Finally, the linkage disequilibrium (r2) between the dele-
tion polymorphism and the thirty-nine surrounding SNPs
genotyped in the total study population is displayed in
Figure 2. The deletion polymorphism exhibited modest
LD with SNP rs7457999 (r2 = 0.37) and rs13246630 (r2 =
0.20).

Discussion
The rs7903146 SNP in the TCF7L2 gene represents per-
haps the most important gene polymorphism implicated
in type 2 diabetes, since it is a relatively common variant
that confers increased risk for diabetes and this associa-
tion has been replicated across numerous independent
samples [7,9,10,13,17,20,36]. In this study, we report a
novel deletion polymorphism on chromosome 7q32 that

Table 3: Logistic GEE results incorporating both polymorphisms

Diabetes Status

Homozygous deletion rs7903146 minor allele

OR [95% CI] p-value OR [95% CI] p-value

Both sexes 0.47 [0.25,0.87] 0.016 1.31 [0.95,1.81] 0.099
Women 0.57 [0.22,1.52] 0.26 1.63 [1.02,2.59] 0.039

Men 0.45 [0.20,1.05] 0.064 1.14 [0.76, 1.72] 0.53

Results from logistic GEE models incorporating the deletion 
genotyping and rs7903146, including sex-stratified results. Odds 
ratios (OR), 95% confidence interval (95% CI) and p-values are 
reported.
*205 cases, 1982 controls – adjusted for BMI at age25, onset age for 
cases (w/square and cubed)

Table 4: GEE results for fasting glucose levels (mg/dl)

Homozygous deletion rs7903146 minor allele

beta-estimate p-value Beta-estimate p-value

Both sexes -0.50 0.57 1.33 0.045
Women 1.89 0.118 0.77 0.283

Men -2.57 0.038 1.91 0.089

Results from GEE models for the deletion genotyping and rs7903146 
modeled together including sex-stratified results.
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confers a protective effect for diabetes, with homozygous
deletion carriers having a 53% reduced risk of diabetes
compared to carriers of the non-deleted region. In addi-
tion, we demonstrate an increased risk associated with the
minor allele of the TCF7L2 SNP that is identified prima-
rily in women, but not men of the Family Heart Study. In
this sample, the statistical evidence for association to T2D
of the homozygous deletion, although it reduces rather
than increases risk, was comparable to that of the TCF7L2
SNP. Several nearby SNPs in the 7q32 region also show
significant association to T2D, and this may represent
linkage disequilibrium among these various polymor-
phisms. Finally, we report that non-diabetic male
homozygous deletion carriers had significantly lower fast-

ing glucose levels, suggesting that the risk for T2D may be
mediated by reduced glucose levels.

The region implicated by the deletion and SNP polymor-
phisms reported here is located between the genes EXOC4
(NM_021807) and LRGUK (NM_144648). Interestingly,
EXOC4 is a large gene and its product is part of the exocyst
complex 70 (Exo70) that assembles at the plasma mem-
brane of adipocytes in response to insulin and has been
reported to play a role in docking and tethering the glu-
cose transporter 4 (GLUT4) vesicle to the plasma mem-
brane [37,38]. GLUT4 accounts for much of the insulin-
stimulated glucose transport in muscle and adipose tissue
[38,39]. Inoue et al. (2003) report variability in insulin-
stimulated glucose uptake with Exo70 variants, and

Table 5: SNP association to diabetes in region surrounding deletion

SNP bp position Gene Dominant OR Dominant p-value Recessive OR Recessive p-value

rs6467475 132552341 1.04 0.85 1.29 0.30
rs11979455 132558191 1.22 0.24 1.46 0.20
rs6979285 132564427 0.70 0.22
rs6951889 132566505 0.73 0.09 0.90 0.77
rs10262862 132606574 EXOC4 1.03 0.88 1.36 0.19
rs13242614 132616839 EXOC4 0.93 0.76 2.67 0.03
rs1922420 132647772 EXOC4 0.94 0.74 1.07 0.86
rs6978272 132738579 EXOC4 1.03 0.88 0.76 0.71
rs13241123 132786047 EXOC4 0.83 0.29 0.79 0.42
rs6971417 132816709 EXOC4 1.45 0.04 1.42 0.33
rs13237737 132842959 EXOC4 1.15 0.71 4.00 0.18
rs10755879 132910055 EXOC4 0.71 0.14 2.10 0.17
rs6954842 132938673 EXOC4|KIAA1699 1.19 0.35 1.23 0.42
rs1362736 133060409 EXOC4|KIAA1699 1.00 1.00 1.59 0.47
rs17167240 133075208 EXOC4|KIAA1699 0.83 0.34 0.44 0.11
rs9649047 133084054 EXOC4|KIAA1699 0.98 0.93 1.26 0.72
rs11772444 133104414 EXOC4|KIAA1699 1.51 0.02 1.72 0.11
rs13222377 133116886 EXOC4|KIAA1699 0.99 0.97 0.89 0.79
rs17167267 133119649 EXOC4|KIAA1699 1.15 0.56
rs748754 133159609 EXOC4|KIAA1699 1.09 0.60 0.81 0.52
rs12155007 133235969 EXOC4|KIAA1699 0.74 0.31 4.79 0.05
rs4266574 133277976 EXOC4|KIAA1699 0.80 0.24 0.29 0.04
rs2971970 133294318 EXOC4|KIAA1699 1.42 0.07 1.48 0.25
rs3823572 133331141 EXOC4|KIAA1699 0.89 0.53 0.58 0.01
rs12531707 133378771 EXOC4|KIAA1699 1.79 0.009 1.15 0.49
rs6955114 133387570 EXOC4|KIAA1699 1.26 0.20 0.97 0.90
rs6971064 133390804 EXOC4|KIAA1699 1.17 0.40 0.87 0.81
rs11770757 133398486 EXOC4|KIAA1699 0.71 0.33 11.87 0.006
rs7457999 133398775 EXOC4|KIAA1699 0.62 0.01 0.58 0.22
rs10246346 133415861 1.04 0.86 0.79 0.76
Deletion
rs13246630 133472159 LRGUK 1.36 0.09 1.27 0.27
rs6953590 133487840 LRGUK 1.52 0.01 1.86 0.006
rs17761994 133494082 LRGUK 1.23 0.35
rs12670589 133495637 LRGUK 1.30 0.14 2.03 0.002
rs892984 133502721 LRGUK 0.64 0.10 0.92 0.92
rs1222430 133566300 LRGUK 0.73 0.24 1.08 0.93
rs1421477 133569572 LRGUK 1.15 0.51
rs1450890 133584737 LRGUK 0.86 0.41 1.31 0.33
rs1421483 133619284 1.01 0.97 3.93 0.009
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EXOC4 was shown to interact with both the Exo70
wildtype and the amino-terminal fragment of Exo70,
which may block the insulin-stimulated assembly of exo-
cyst complex at the plasma membrane. EXOC4 has also
been shown to be involved the initial docking of insulin
vesicles to the cell membrane of pancreatic β cells and is
thought to play a role in regulating insulin vesicle exocy-
tosis in response to a glucose stimulus [40]. The potential
for this gene to influence diabetes and glucose levels
prompted us to evaluate the association to these traits.
Though the deletion polymorphism does not seem to
overlap with EXOC4, transcriptional binding elements
could exist downstream of the gene within the region of
the deletion that influence transcription. Finally, differ-
ences in EXOC4 transcription levels could affect glucose
stimulated insulin release as well as insulin induced cellu-
lar uptake of glucose resulting in the decreased fasting
plasma glucose levels found for homozygous deletion car-
riers in non-diabetics.

Findings in other cohorts also support the presence of a
gene(s) influencing diabetes risk in this region. Genome-
wide associations for diabetes were recently performed by
the Wellcome Trust Case Control Consortium (WTCCC)
[41] and the Diabetes Genetics Initiative (DGI) [42], and
the results are publicly available. We examined associa-
tion results for the SNPs in the region spanning the
EXOC4 gene, the deletion, and the LRGUK gene, which
included 202 SNPs in the WTCCC and 128 SNPs in the
DGI studies. From the Wellcome Trust results, we identi-
fied 37 SNPs with association p-values less than 0.05, and
from the DGI, we identified ten SNPs with association p-
values less than 0.05. The best p-value identified in the
Wellcome Trust results in this region was 0.0004 at
rs6963221 in EXOC4. In the DGI results, the best p-value
was 0.015 at rs17167492 in LRGUK. These results from
two independent samples lend support for polymor-
phisms in the region influencing diabetes risk.

LD structure surrounding the insertion/deletion polymorphismFigure 2
LD structure surrounding the insertion/deletion polymorphism. Linkage disequilibrium (r2) of the deletion polymor-
phism ('Deletion') and surrounding genotyped SNPs within the FHS study population. The legend above the LD plot shows the 
location of the genes EXOC4 and LRGUK (FLJ32786).
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One limitation of our study is the self-reported diabetes
status. Individuals used in our fasting glucose analysis
may have been diagnosed with diabetes after FHS study
enrollment or may have failed to report themselves as
having been diagnosed for diabetes and, therefore, our
analysis of fasting glucose may have included undiag-
nosed diabetics in the non-diabetic study population.
Nevertheless, the glucose levels analyzed were unmedi-
cated measurements.

Conclusion
In this study, we report a large novel deletion polymor-
phism that is associated with reduced risk for T2D and
several SNPs associated with either increased or decreased
risk for T2D on chromosome 7q32 located within a
widely replicated BMI linkage region [23-32]. In addition,
we demonstrate that non-diabetic males that are
homozygous for the deletion polymorphism have lower
levels of fasting glucose, which may contribute to protec-
tion from T2D. Furthermore, when examined together,
the deletion polymorphism offers an effect, albeit protec-
tive, comparable to the widely replicated risk associated
with the SNP rs7903146 within the transcription factor
TCF7L2. Since these polymorphisms are in an intergenic
region, their relation to nearby gene(s) is speculative and
further research will need to be conducted to elucidate the
mechanism by which they influence risk for T2D. Ulti-
mately, understanding this mechanism(s) could shed
light on the poorly understood relationship between
obesity and diabetes and may suggest pathways involved
in reducing glucose levels and risk for diabetes.
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