
BioMed CentralBMC Medical Genetics

ss
Open AcceResearch article
Association analyses of the interaction between the ADSS and ATM 
genes with schizophrenia in a Chinese population
Fuquan Zhang1,3, Yong Xu1, Pozi Liu1, Hua Fan2, Xuezhu Huang1, 
Gaoxiang Sun1, Yuqing Song3 and Pak C Sham*3

Address: 1Institute of Neurological disorders, Tsinghua University, Department of Psychiatry, Yuquan Hospital, Tsinghua University, Bejing, 
100049, PR China, 2Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Bejing, PR China and 3Department of 
Psychiatry, University of Hong Kong, Hong Kong, PR China

Email: Fuquan Zhang - zhfq@tsinghua.edu.cn; Yong Xu - xuyongsmu@yahoo.com.cn; Pozi Liu - liupozi@tsinghua.edu.cn; 
Hua Fan - iy4232925@163.com; Xuezhu Huang - huangxuezhu@mail.tsinghua.edu.cn; Gaoxiang Sun - sunsoartsinghua@hotmail.com; 
Yuqing Song - songyq293@yahoo.com.cn; Pak C Sham* - pcsham@hkucc.hku.hk

* Corresponding author    

Abstract
Background: The blood-derived RNA levels of the adenylosuccinate synthase (ADSS) and ataxia
telangiectasia mutated (ATM) genes were found to be down- and up-regulated, respectively, in
schizophrenics compared with controls, and ADSS and ATM were among eight biomarker genes to
discriminate schizophrenics from normal controls. ADSS catalyzes the first committed step of AMP
synthesis, while ATM kinase serves as a key signal transducer in the DNA double-strand breaks
response pathway. It remains unclear whether these changes result from mutations or
polymorphisms in the two genes.

Methods: Six SNPs in the ADSS gene and three SNPs in the ATM gene in a Chinese population of
488 schizophrenics and 516 controls were genotyped to examine their association with
schizophrenia (SZ). Genotyping was performed using the Sequenom platform.

Results: There was no significant difference in the genotype, allele, or haplotype distributions of
the nine SNPs between cases and controls. Using the Multifactor Dimensionality Reduction (MDR)
method, we found that the interactions among rs3102460 in the ADSS gene and rs227061 and
rs664143 in the ATM gene revealed a significant association with SZ. This model held a maximum
testing accuracy of 60.4% and a maximum cross-validation consistency of 10 out of 10.

Conclusion: These findings suggest that the combined effects of the polymorphisms in the ADSS
and ATM genes may confer susceptibility to the development of SZ in a Chinese population.

Background
Schizophrenia (SZ) is a complex genetic disorder charac-
terized by profound disturbances of cognition, emotion,
and social functioning. Numerous family, twin, and
adoption studies conclusively show that SZ risk is

increased among the relatives of affected individuals and
that SZ is largely the result of genes rather than shared
environment [1], the estimated heritability of SZ is 80–
85% [2]. Besides traditional association or linkage studies,
recent advances have facilitated the use of circulating
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blood to conduct genomic analyses of human diseases
[3,4]; the search for the genetic basis of SZ has produced
some lines of evidence at the level of gene expression. By
analyzing the blood-derived RNA from 74 samples, linear
and nonlinear combinations of eight putative biomarker
genes (APOBEC3B, ADSS, ATM, CLC, CTBP1, DATF1,
CXCL1, and S100A9) were able to discriminate between
SZ, bipolar disorder, and control samples [5], with an
overall accuracy of 95 – 97%. As yet, none of these genes
have been investigated for their association or linkage dis-
equilibrium (LD) with SZ.

It has been shown that adenylosuccinate synthase (ADSS)
is downregulated, while ataxia telangiectasia mutated
(ATM) is upregulated, in schizophrenics [5]. The de novo
biosynthesis of AMP from IMP involves two steps: the first
step is catalyzed by ADSS, and the second step is catalyzed
by adenylosuccinate lyase [6]. ADSS can influence energy
metabolism through the purine nucleotide cycle and the
AMP-activated protein kinase (AMPK) pathway [7]. Cyclic
AMP (cAMP), a very close structural relative of AMP, con-
taining an additional ester linkage between the phosphate
and ribose units, acts as a secondary messenger for several
hormones. It is tempting to postulate that ADSS may play
a role in the pathogenesis of the illness via energy metab-
olism or nucleotide synthesis.

DNA damage poses a continuous threat to genomic integ-
rity in mammalian cells, with the most deleterious form
being double-strand breaks (DSBs). ATM signaling is
required to sense and initiate repair of DSBs. When DSBs
occur, ATM initiates a well-characterized response to DNA
damage, resulting in cell-cycle arrest, DNA repair, or apop-
tosis. In this way, ATM functions as a fundamental safe-
guard against genomic instability during organism
development. ATM and ATR (ATM and Rad3-related) sub-
strate analysis revealed extensive protein networks
responsive to DNA damage, involving more than 900 reg-
ulated phosphorylation sites encompassing over 700 pro-
teins [8]. Thus ATM may be a possible candidate gene
underlying SZ.

cAMP response element binding protein is phosphor-
ylated by ATM on Ser-121 in response to ionizing radia-
tion and oxidative stress [9]. ATM has been shown to
phosphorylate the AMPK α subunit [10], and ATM-
dependent mitochondrial biogenesis is mediated through
AMPK [11]. These studies provide evidence of their inter-
action in some pathways possibly affecting brain func-
tion. Therefore, we hypothesized that there may be
interactions between these two genes conferring disease
risk for SZ, but it is unknown whether genetic variation
underlies the alterations in ADSS and ATM expression. To
test the hypothesis that sequence variations in the ADSS
or ATM genes influence risk for the disease, we conducted

a case-control association study on nine SNPs within the
two genes in a Chinese Han population. Frequency of
alleles, genotypes, and haplotypes of the nine SNPs were
tested between cases and controls.

Because SZ is a common disease with a complex multifac-
torial etiology, several recent approaches are promising
for detecting gene-gene and gene-environment interac-
tions. Multifactor Dimensionality Reduction (MDR) is a
data reduction method for detecting multilocus genotype
combinations that predict disease risk for common, com-
plex disease [12-14]. MDR pools genotypes into "high
risk" and "low risk" groups to reduce multidimensional
data into only one dimension. A certain threshold,
defined as the ratio of cases to controls, determines the
risk group to which a factor combination is assigned [15].
Using MDR, many studies have observed that complex
interactions among multiple genes may make a genetic
contribution to complex disorders [16-18], including SZ
[19-21]. Here, we explored the epistasis, or gene × gene
interaction, between the two genes via MDR.

Methods
Subjects
A total sample of 488 unrelated SZ patients and 516
healthy controls was collected. Cases were recruited from
Hong Kong hospitals. All patients were interviewed using
the Structured Clinical Interview for DSM-IV and met the
DSM-IV diagnostic criteria for SZ.

Healthy controls were recruited from blood donors who
were not screened for psychiatric diseases; however, in
Hong Kong an individual would be ineligible for blood
donation if he is under a doctor's care, taking medica-
tions, awaiting test results, or suffering from any serious
illness. All subjects were Han Chinese. Peripheral blood
sample were obtained from the subjects. The present
study was approved by the Institutional Review Board of
the University of Hong Kong/Hospital Authority Hong
Kong West Cluster, and written informed consent was
obtained from all subjects.

Genotyping
Based on the location and the heterozygosity of the SNPs,
we selected six SNPs (rs3102460, rs3127459, rs3127460,
rs3127465, rs3006001, and rs3003211) in the ADSS gene
and three SNPs (rs600931, rs227061, and rs664143) in
the ATM gene to check their allelic and haplotypic associ-
ation to SZ in a case-control sample.

We used a Sequenom platform (Sequenom MassARRAY
System, Sequenom, San Diego, CA, USA) for assay design
and genotyping. SNP sites were amplified by PCR in mul-
tiplex format in 384-well microtiter plates by a pair of spe-
cifically designed forward and reverse PCR primers. The
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length of the amplicons for the SNP capture ranged from
60 to 120 base pairs. Following genomic amplification of
the target regions, PCR products were treated with shrimp
alkaline phosphatase for 20 min at 37°C to dephosphor-
ylate any residual nucleotides and to prevent their future
incorporation and interference with the primer extension
assay. Extension primers, DNA polymerase, and a cocktail
mixture of deoxynucleotides and dideoxynucleotide tri-
phosphates were added to each mix. These were then fol-
lowed by cycles of homogeneous MassEXTEND reaction
probed by the extension primers for each SNP. The Mas-
sARRAY typer software (version 3.1) was then used to read
out the extended mass and assign the genotype call. Qual-
ity control criteria included a genotype call rate of > 80%,
less than 1 duplicate error (5 duplicates in each 96-well
plate), and significant Hardy-Weinberg disequilibrium.

Statistical analyses
Hardy-Weinberg equilibrium and genotype and allele fre-
quencies between cases and controls were tested using
PLINK-1.05 [22]. LD between markers was tested with
Haploview version 4.1 (Barrett, 2005). Haplotype analy-
ses were performed using UNPHASED (version 3.0.5)
[23], as well as SHEsis [24]. Haplotypes with frequencies
< 3% in the whole sample were considered to be rare and

were excluded. The gene-gene interactions were analyzed
by MDR. Ten-fold cross-validation was used in our MDR
analysis. Data were randomly split into 10 approximately
equal parts; one subdivision was used as the testing set
and the rest as the training set. In view of our data, we con-
sidered two- to four-locus interaction models, performing
1,000 permutations.

Results
Genotype and allele distributions of SNPs
The distributions of allele and genotype frequencies of
nine SNPs among 488 SZ patients and 516 healthy con-
trols are shown in Table 1. The genotypic distributions of
these nine polymorphisms do not deviate significantly
from Hardy-Weinberg equilibrium in both patients and
controls (data not shown). There was no significant differ-
ence in genotype or allele frequencies between cases and
controls.

Patterns of LD
The patterns of pairwise LD between neighboring SNPs
are shown in Table 2. D primes range from approximately
0.96 to 1. Fairly tight LD was observed in any pair of the
1–6 SNPs in ADSS and the 7–9 SNPs in ATM, and SNPs of
each gene were in strong LD.

Table 1: Genotypic and allelic distributions of the 9 SNPs in cases and controls

SNP Genotype Frequency (%) p(df = 2) Allele Frequency (%) p(df = 1) OR(95%CI)

CC CT TT C T
SNP1:rs3102460 ca 441 48(10.9) 176(39.9) 217(49.2) 0.435 272(30.8) 610(69.2) 0.329 1.10(0.90–1.35)

co 444 37(8.3) 181(40.8) 226(50.9) 255(28.7) 633(71.3)
AA AT TT A T

SNP2:rs3127459 ca 481 26(5.4) 172(35.8) 283(58.8) 0.404 224(23.3) 738(76.7) 0.214 0.88(0.71–1.08)
co 508 37(7.3) 187(36.8) 284(55.9) 261(25.7) 755(74.3)

TT AT AA T A
SNP3:rs3127460 ca 482 12(2.5) 151(31.3) 319(66.2) 0.720 175(18.2) 789(81.8) 0.463 0.92(0.74–1.16)

co 504 16(3.2) 164(32.5) 324(64.3) 196(19.4) 812(80.6)
CC CT TT C T

SNP4: rs3127465 ca 474 11(2.3) 144(30.4) 319(67.3) 0.697 166(17.5) 782(82.5) 0.595 0.93(0.74–1.18)
co 499 16(3.2) 152(30.5) 331(66.3) 184(18.4) 814(81.6)

CC AC AA C A
SNP5: rs3006001 ca 481 12(2.5) 148(30.8) 321(66.7) 0.636 172(17.9) 790(82.1) 0.362 0.91(0.72–1.14)

co 503 16(3.2) 164(32.6) 323(64.2) 196(19.5) 810(80.5)
GG AG AA G A

SNP6: rs3003211 ca 436 50(11.5) 171(39.2) 215(49.3) 0.724 271(31.1) 601(68.9) 0.455 1.09(0.89–1.34)
co 455 45(9.9) 178(39.1) 232(51) 268(29.5) 642(70.5)

AA AG GG A G
SNP7: rs600931 ca 479 82(17.1) 231(48.2) 166(34.7) 0.556 395(41.2) 563(58.8) 0.462 1.06(0.89–1.28)

co 500 73(14.6) 250(50) 177(35.4) 396(39.6) 604(60.4)
GG AG AA G A

SNP8: rs227061 ca 481 82(17.0) 231(48) 168(34.9) 0.496 395(41.1) 567(58.9) 0.465 0.94(0.78–1.13)
co 502 72(14.3) 252(50.2) 178(35.5) 396(39.4) 608(60.6)

CC CT TT C T
SNP9: rs664143 ca 483 92(19.0) 227(47) 164(34) 0.163 411(42.5) 555(57.5) 0.950 1.01(0.84–1.20)

co 507 81(16.0) 268(52.9) 158(31.2) 430(42.4) 584(57.6)

ca = case; co = control.
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Haplotypes of the SNPs in ADSS and ATM
There was no individual or global significant difference
for the 6-marker haplotypes in ADSS or the 3-marker hap-
lotypes in ATM between cases and controls (Table 3).
Individual haplotype tests were performed by evaluating
the risk difference between a specific haplotype and all
others grouped together.

Gene-gene interactions among ADSS and ATM
Gene-gene interactions of the nine SNPs were examined
using the MDR method, and the results for each number
of factors considered are summarized in Table 4. We
tested 2- to 4-locus combinations within the two genes.
Because the MDR procedure works best with the model
that has the maximum cross-validation consistency and
minimum prediction error, the three locus model, involv-
ing rs3102460 in the ADSS gene as well as rs227061 and
rs664143 in the ATM gene, had a cross-validation consist-
ency of 10, being regarded as the best (p = 0.011). The
1000-fold permutations test showed that p was larger than
0.05 (Figure 1).

Discussion
Besides several very promising candidate genes for SZ,
such as NRG1 [25], DTNBP1 [26], COMT [27], DISC1
[28], and DAOA [29,30], there may also be genes that play
subtle or weak roles in the pathogenesis of SZ, making
them difficult to identify by traditional approaches. An
alternative approach is the use of microarray technology
to examine differential RNA gene expression between
patients and controls, by which ADSS and ATM were sug-

gested as biomarker genes for SZ [5]. Although the mech-
anism underlying the alterations is unknown, the results
suggest that the ADSS and ATM genes may be involved in
the genetic architecture of SZ, since genetic polymor-
phisms within the genes may influence gene expression.

The gene encoding ADSS maps to 1cen-q12, a chromo-
somal locus previously linked to SZ by meta-analysis
[31,32]. Similarly, ATM's genomic location, 11q22–23,
was reported to be one of the genetic susceptibility regions
by meta-analysis [1,32-36] and several other independent
studies [33-36]. This region also contains another contro-
versial risk gene, DRD2 (dopamine receptor D2) [37,38].

The ADSS gene is 44 kb in length with 13 exons. Six SNPs
from intron 11 (rs3102460), intron 6 (rs3127459), intron
4 (rs3127460), and intron 1 (rs3127465, rs3006001, and
rs3003211) in the ADSS gene were selected for the current
study. Among them, rs3102460, rs3127465, and
rs3006001 were predicted to influence transcriptional reg-
ulation; no functional information exists for the remain-
ing three SNPs yet [39]. The ATM gene is 146 kb in length,
consisting of 63 exons. The three SNPs in ATM are from
intron 7 (rs600931), intron 54 (rs227061), and intron 61
(rs664143); rs227061 and rs664143 possibly affect tran-
scriptional regulation [39]. Our data did not yield any sta-
tistically significant difference for genotype, allele, or
haplotype distributions between cases and controls.

Epistasis, or gene × gene interaction, is increasingly
assumed to play a crucial role in the genotype-to-pheno-
type relationship of common diseases [40]. Although the
ubiquity of joint actions appears to be a natural property
of complex traits, the nature of joint actions has not been
well investigated or understood. To our knowledge, this is
the first genetic study to test the joint action of the ADSS
and ATM genes in relation to SZ. The interactions between
ADSS and ATM were assessed using the MDR program,
which has been widely used for detecting epistasis in com-
plex human diseases. The combined effects of the poly-
morphisms in GRIN1 and GRIN2B [19], as well as the
combined effects of GAD1, GAD2, and GABRB2 [21], were
found to be associated with SZ in a Chinese population.
Yasuno etc. [20] suggested that synergistic interaction

Table 2: Pairwise linkage disequilibrium (LD) of the SNPs within 
each gene

D' SNP2 SNP3 SNP4 SNP5 SNP6 SNP8 SNP9

SNP1 0.99 0.96 1 0.98 0.99
SNP2 0.98 0.99 0.99 0.99
SNP3 0.99 0.99 0.96
SNP4 1 1
SNP5 0.98
SNP7 0.99 1
SNP8 0.99

Table 3: Estimated haplotype frequencies and association significance of ADSS and ATM

Gene SNP Haplotype Case (freq%) Control (freq%) X2 p OR (95%CI) Global p

ADSS SNP1-SNP6 TTATAA 372.0(46.2) 364.6(45) 0.119 0.731 1.04 (0.85–1.26) 0.339
CTATAG 243.0(30.1) 221.4(27.3) 1.388 0.239 1.14 (0.92–1.41)
TATCCA 140.0(17.4) 156.0(19.3) 1.087 0.297 0.87 (0.68–1.13)
TAATAA 45.0(5.6) 57.0(7.0) 1.523 0.217 0.78 (0.52–1.16)

ATM SNP7-SNP9 A G C 384.0(40.8) 377.0(39.3) 0.254 0.613 1.05 (0.87–1.26) 0.600
G A T 538.0(57.1) 554.0(57.7) 0.254 0.615 0.95 (0.79–1.15)

Freq = frequency. Haplotypes were omitted from analysis if the estimated haplotype probabilities were less than 3%
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between UCP (uncoupling protein) 2 and UCP4 may be
involved in the etiology of SZ in a Japanese population. In
our analysis, the three-locus model (rs3102460 in the
ADSS gene and rs227061 and rs664143 in the ATM gene)
was selected as the best one for determining SZ suscepti-
bility based on its balanced accuracy and cross-validation
consistency, which suggests that the interactions among
these SNPs may be associated with SZ. An interaction den-
drogram from the MDR demonstrated a strong synergic
interaction between SNP1 and SNP8, suggesting a com-
bined effect between the two genes; however, the result
was not robust enough to survive correction of permuta-
tion test, indicating the need for larger samples to validate
our result. Nevertheless, based on the cross-validation
consistency and testing accuracy, the results could par-
tially support the hypothesis that some loci contribute to
a certain complex disease only through interaction with
other genes (epistasis), while the main effects of the indi-
vidual locus may be small or absent [41]. Detection of an

interaction between the two genes is potentially novel and
intriguing from a biological perspective because it sug-
gests the attractive implication that an impediment of
DNA repair may play a role in the abnormal neurodevel-
opment in SZ. Such predictions deserve to be validated
experimentally using systems biology approaches and
animal models.

This study sought to explore the genetic basis of SZ using
clues from RNA alteration. Although it did not support
ADSS or ATM as an individual candidate gene for the ill-
ness, the study suggested that the epistatic effect of a three-
locus interaction within the ADSS and ATM genes may
exist for SZ susceptibility. One common issue in the study
of complex diseases is the limited sample size, resulting in
inadequate power to detect association. Assuming the fre-
quency of risk allele in controls to be 0.5, our sample of
488 cases and 516 controls is able to detect an odds ratio
of 1.37 or above with 80% power [42]. With regard to our

Table 4: The interaction models detected by MDR

model training bal. acc. testing bal. acc. Sign test (p) CV consistency

SNP 9 0.5307 0.5307 7 (0.172) 10/10
SNP 1, 9 0.5476 0.4989 3 (0.945) 7/10
SNP 1, 8, 9 0.5593 0.5260 9 (0.011)* 10/10
SNP 1, 7, 8, 9 0.5638 0.5199 8 (0.055) 10/10

bal. acc.: Balanced Accuracy. *: p > 0.05 based on 1000 permutations

The best three-locus SNP model selected by MDRFigure 1
The best three-locus SNP model selected by MDR. 0, homozygote of common allele; 1, heterozygote; 2, homozygote of 
rare allele. High risk combinations are depicted as dark-shaded cells; low-risk combinations are depicted as light-shaded cells; 
empty cells are left blank. For each cell, the left bar indicates the total number of cases, and the right bar indicates the total 
number of controls.
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data, the absence of main effects of polymorphisms in
ADSS or ATM may arise from insufficient power. Simi-
larly, Qin etc. [19] detected interactions between the
GRIN1 and GRIN2B genes in the absence of main effects
of a single marker in SZ.

Case-control studies are susceptible to positive and nega-
tive artifacts from unknown population stratifications or
different levels of ethnic admixture among cases and con-
trols. Family-based association studies are helpful to cir-
cumvent stratification biases, so it is necessary to examine
the transmission from parents to affected offspring in
future studies. Moreover, because different populations
have distinct genetic backgrounds, it is necessary to vali-
date or replicate our association results using independent
samples, especially from other ethnic populations. Our
data should be interpreted with caution, considering it
was a statistical epistasis. Therefore, experiments demon-
strating the mechanisms by which alterations in these two
genes in tandem can cause brain and behavioral changes
associated with SZ would provide the most vital support
for our hypothesis.

Conclusion
In spite of potential limitations, the results of our study
show that the combined actions of the polymorphisms in
the ADSS and ATM genes may confer a risk for the devel-
opment of SZ in a Chinese population. Larger sample
studies involving more SNPs within the two genes, as well
as neurobiological experiments implicating their role in
SZ, are needed to validate our results.
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