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Abstract
Background: It is widely accepted that Type 2 Diabetes Mellitus (T2DM) and other complex diseases are the product
of complex interplay between genetic susceptibility and environmental causes. To cope with such a complexity, all the
statistical and conceptual strategies available should be used. The working hypothesis of this study was that two well-
known T2DM risk factors could have diverse effect in individuals carrying different genotypes. In particular, our effort
was to investigate if a well-defined group of genes, involved in peripheral energy expenditure, could modify the impact
of two environmental factors like age and obesity on the risk to develop diabetes. To achieve this aim we exploited a
multianalytical approach also using dimensionality reduction strategy and conservative significance correction strategies.

Methods: We collected clinical data and characterised five genetic variants and 2 environmental factors of 342
ambulatory T2DM patients and 305 unrelated non-diabetic controls. To take in account the role of one of the major co-
morbidity conditions we stratified the whole sample according to the presence of obesity, over and above the 30 Kg/m2

BMI threshold.

Results: By monofactorial analyses the ADRB2-27 Glu27 homozygotes had a lower frequency of diabetes when
compared with Gln27 carriers (Odds Ratio (OR) 0.56, 95% Confidence Interval (CI) 0.36 – 0.91). This difference was
even more marked in the obese subsample.

Multifactor Dimensionality Reduction method in the non-obese subsample showed an interaction among age, ADRB2-16
and UCP3 polymorphisms. In individuals that were UCP3 T-carriers and ADRB2-16 Arg-carriers the OR increased from 1
in the youngest to 10.84 (95% CI 4.54–25.85) in the oldest. On the contrary, in the ADRB2-16 GlyGly and UCP3 CC
double homozygote subjects, the OR for the disease was 1.10 (95% CI 0.53–2.27) in the youngest and 1.61 (95% CI 0.55–
4.71) in the oldest.

Conclusion: Although our results should be confirmed by further studies, our data suggests that, when properly
evaluated, it is possible to identify genetic factors that could influence the effect of common risk factors.
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Background
Positive selection for allelic variants in genes involved in
food utilization, fat deposition and weight gain was useful
in past ages when access to food was limiting (thrifty gen-
otype). Such polymorphisms show high frequency and
may now lead to obesity and diabetes in the industrialized
countries [1]. Among the huge number of genes responsi-
ble for the thrifty genotype those influencing the basal
metabolic rate, like the β-adrenergic receptors and the
uncoupling proteins, seem to play a deciding role [2]. The
β-adrenergic receptors (ADRB) are involved in thermo-
genesis regulation and in lipolysis activation [3], whereas
the uncoupling proteins (UCPs) seem to be the main
effectors of heat generation [4].

Several genetic association studies have examined the pos-
sible role of ADRBs and UCPs gene variants with type 2
diabetes mellitus, T2DM, and obesity. However, despite
the use of equally valid sample size and statistically signif-
icant data, the results obtained in these different studies
sometimes conflict. For example, two single nucleotide
polymorphisms (SNPs) of ADRB2 (Gly16Arg and
Gln27Glu) and one of ADRB1 (Gly389Arg) were associ-
ated with obesity and T2DM in a Swedish and a Finnish
study [5-8]. Other studies in Caucasians and an Asian
population do not confirm this finding [9-11]. The UCP2/
UCP3 locus is on chromosome 11 and has been linked
with diabetes-related phenotypes in human and animal
models [12-14]. In particular the UCP2 G(-866)A and the
UCP3 C(-55)T SNPs have been shown to be related to fat
distribution and cause an increase in the risk of develop-
ing T2DM [15,16]. Again, direct association with T2DM
produced contrasting results. In a French sample the
UCP3 (-55)T variant was associated with a lower risk of
developing T2DM. In the same cohort, this variant was
associated with the development of atherogenic lipid pro-
file [15].

Type 2 Diabetes mellitus (T2DM) is a complex, multifac-
torial metabolic disease, characterized by high blood glu-
cose level that results from deficiencies in insulin
secretion, insulin action, or both [17]. T2DM is the prod-
uct of complex interplay between genetic susceptibility
and environmental causes like obesity, age, and lifestyle
[18].

The results from these studies had variable levels of agree-
ment and were rarely convincing [19-21]. One reason for
the lack of replication could involve the presence of sev-
eral, rare, high penetrance genes or to the presence of sev-
eral genes that work together, each having a small effect
on the disease [22]. Other possible reasons could be the
presence of a false-positive association due to population
stratification, to the small sample size or the presence of

non-linear interactions among genes and environmental
factors [22].

To understand complex diseases it is necessary to identify
groups of genes that not only interplay with one another
but also with environmental factors. The study of only
one polymorphism will capture only a few of the total
combined effect, therefore it is better to use strategies that
can analyse multiple factors together. Multifactor Dimen-
sionality Reduction (MDR) is a method for reducing the
dimensionality of multilocus genotype and to improve
the identification of polymorphism combinations associ-
ated with disease risk. The MDR approach is nonparamet-
ric (i.e., no hypothesis about the value of a statistical
parameter is made), model-free (i.e., assumes no particu-
lar inheritance model), and directly applicable to case-
control study designs. MDR is a novel method receiving
rising interest in the causes interplay analysis. Both empir-
ical and theoretical studies suggest that MDR has excellent
power for identifying high-order gene-gene interactions
[23]. The MDR method combines attribute selection,
attribute construction, and classification with cross-vali-
dation and permutation testing to provide a comprehen-
sive and powerful approach to detecting non-linear
interactions [24].

The aetiology of complex disease involves interplay of sev-
eral causes. The aim of this study is to use multifactor
methods to analyse the combined/cumulative effect of
genetic and environmental factors on disease such as
T2DM. The working hypothesis is that a significant asso-
ciation is more likely to be found when analysing more
factors simultaneously. In order to reach this goal, we
chose five SNPs already linked to the T2DM and all
belonging to a homogeneous group of genes, in which
reciprocal interactions are more likely. The SNPs we
decided to study are those in genes involved in peripheral
energy expenditure and that could be included in the
thrifty genotype. In particular we studied two single nucle-
otide polymorphisms (SNPs) in ADRB2 (gly16arg and
gln27glu), one in ADRB1 (gly389arg), one in UCP2 (-866
G/A) and one in UCP3 (-55 C/T). We characterised these
SNPs in a population from a restricted geographical area,
with a homogeneous ethnic background and no recent
immigration. We then went on to look for the possible
gene-gene and gene-environment interactions comparing
the results obtained by the parametric monofactorial
analysis with the non-linear interaction-compliant multi-
factorial analysis (MDR).

Methods
Subjects
We studied 342 type 2 diabetic patients, aged 35–70 years,
seen at the outpatient diabetic clinic of a health district in
the province of Naples over a six-month period. A cohort
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of 305 unrelated non-diabetic glucose-tolerant control
subjects [25] were randomly selected among telephone
company employees taking part in a company sponsored
health screening. All study participants were Caucasians
of Italian origin, unrelated and residents of the same geo-
graphical area. The local ethics committee approved the
study and informed consent was obtained from all study
participants.

Weight, height and waist circumference were measured
according to a standard protocol, with participants wear-
ing light clothing and no shoes, BMI was calculated as
body weight (in kilograms) divided by squared height (in
metres). A blood sample was taken in the fasting state for
biochemical measurements. Glucose, triglycerides, total,
LDL and HDL cholesterol were measured by standard lab-
oratory methods on fresh plasma. Sitting blood pressure
was measured on the right arm after five minutes rest,
three readings were taken two minutes apart and the aver-
age value was used in the analysis. Use of medication was
recorded. Hypertension was defined as blood pressure ≥
140/90 mmHg or use of antihypertensive medication. For
analytical purposes study participants were stratified
according to BMI ≥ 30 kg/m2 (obese) or BMI < 30 kg/m2

(non-obese).

DNA analysis
Genomic DNAs were extracted from 300µl of peripheral
blood by using Biorobot EZ1 Qiagen according to manu-
facturer's protocols. Genotyping was performed using
Allele Specific Amplification (ASA) on the Real-Time PCR
ABI PRISM 7000 (PE Applied Biosystem, Foster City, CA
USA). The following SNPs were tested: Gly389Arg of
ADRB1 (dbSNP rs1801253), Arg16Gly of ADRB2 (dbSNP
rs1042713), Gln27Glu of ADRB2 (dbSNP rs1042714),
G(-866)A of UCP2 (dbSNP rs659399) and C(-55)T of
UCP3 (dbSNP rs1800849). All the oligoprimers were
tested by PCR to optimize the melting temperature.
Sequence information for all oligonucleotide primers is
available as supplementary information [see Additional
file 1].

Statistical analysis
To test for association between genes polymorphisms and
the disease, we adopted a multistep strategy. We first per-
formed a parametric monofactorial analysis (mainly per-
forming χ2 tests and computing the Odds Ratios), and
then we used the Multifactor Dimensionality Reduction
(MDR), a non-parametric multifactorial analysis, to test
the combined effect of several genetic and environmental
factors. Broadly, MDR outputs the number and the list of
factors that could be involved in the disease without giv-
ing any additional information on the details of the inter-
action. To try to explain such interaction we performed a
series of monofactorial analyses on the combination of

the factors output by MDR analysis. In the latter step, we
used a priori and genetic knowledge to reduce the number
of analyses. For the monofactorial statistical analyses we
considered as significant a p value < 0.05 and to keep a sig-
nificant result we adopted the Bonferroni multiple testing
correction method [26]. Having 3 samples and 5 SNPs we
consider 15 monofactorial tests and we obtained a modi-
fied p threshold of 0.003. It should be underlined that, in
these conditions, this correction method could be consid-
ered "highly conservative and may miss real differences"
[26]. We estimated the power for our genetic association
study using CATS software [27]. To further explore the
association between single genetic factors and disease
prevalence we calculated the Odds Ratio with 95% Confi-
dence Intervals for the SNP having the greatest χ2 value.

The multifactorial analysis was performed using MDR.
MDR is implemented in software (ver. 1.4.1) designed by
the Computational Genetics Laboratory (CGL) at Dart-
mouth Medical School in Lebanon, NH, USA. [24].

For each MDR analysis, the user has to input the popula-
tion characteristics (disease status, genotypes, and other
risk factor data) and the number, n, of factors involved in
the interaction simultaneously. MDR tries to define the
rules involving n factors that best predict the disease sta-
tus. The output of the analysis is the combination of n fac-
tors and two values that describe the strength of the
association: Prediction Error (PE) and Cross Validation
(CV). PE is the percent of subjects whose disease-status is
wrongly classified according to the rules, suggesting which
portion of the disease risk can be predicted by the output
factors. CV represents the self-consistency score of the
analysis, computed by performing the same analysis in
different subsets of the original data. The latter value
measures the likelihood that the result is not incorrect due
only to a portion of the dataset [28]. To calculate the p
value of the MDR analyses we performed a permutation
test. We permutated all the values for each sample and
subsample in the disease status column, breaking associa-
tion between the status, genetic and clinical data. We reit-
eratively performed this procedure 1000 times and, at the
end of each permutation, we performed, again, the MDR
analyses for each of the n value considered. We collected
all PE and CV values for the factors combinations identi-
fied. Then we compared the PE and CV values of the real
dataset versus the 1000 by n values of the permutated
dataset. Sorting the permutated dataset for ascending PE
and descending CV, we ranked the real result and
obtained a value that divided by 1000 by n gave us the p
value. We performed MDR analyses on three datasets (the
whole sample and the two, obese and non-obese, subsam-
ple) and therefore we corrected the p value threshold to
0.016 according to the Bonferroni method [26].
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The MDR analyses were performed on the whole sample
and on the obese and non-obese subsamples. The data
entered in the analyses were five SNPs [Gly389Arg of
ADRB1 (dbSNP rs1801253), Arg16Gly of ADRB2 (dbSNP
rs1042713), Gln27Glu of ADRB2 (dbSNP rs1042714),
G(-866)A of UCP2 (dbSNP rs659399) and C(-55)T of
UCP3 (dbSNP rs1800849)] and two non-genetic factors
(gender and age) that we considered as environmental
factors. It is of relevance that MDR accepts as input dis-
crete variables only. While the first (gender) is by its
nature dichotomous, age had to be classified into three
main age ranges: 34–53; 54–63 and 64–79. The number,
n, of interactions tested was 2 and 3.

In addition, to clarify the MDR results we computed the χ2

and the OR (with 95% CI) considering the set of factors
selected by MDR. To lessen the number of possible com-
binations we only analysed dominant models. Again, we
corrected the p value by the Bonferroni method.

Finally to confirm the interaction we looked for possible
transcript co-regulations among the genes studied. We
screened WebQTL [29] a repository of gene expression
data of several mouse strains [30].

Results
In the present study, we analyzed a cohort composed of
305 non-diabetic controls and 342 T2DM patients. Table
1 shows the general characteristics of study participants by
diabetes status. According to random selection criterion,
as expected diabetic patients were significantly older and
more obese, than non-diabetic controls. Also hypertriglyc-
eridemia and hypertension were significantly more fre-
quent in diabetics than non-diabetic participants.

We genotyped patients and controls for the following
SNPs: Gly389Arg of ADRB1, Arg16Gly of ADRB2
(ADRB2-16), Gln27Glu of ADRB2 (ADRB2-27), G(-866)A
of UCP2 and C(-55)T of UCP3. To consider the co-mor-
bidity between obesity and T2DM the study participants
were stratified according to BMI into obese (BMI>30 Kg/
m2) or non-obese (BMI < 30 Kg/m2). We did not use the
BMI as a covariate because we consider obesity as a well-
defined disease and not merely as a risk factor for diabe-
tes. Table 2 summarizes genotype frequencies by obesity
status.

The observed genotype frequencies were in Hardy-Wein-
berg equilibrium. The frequencies found agree with those
previously reported in Caucasians. As monofactorial anal-
yses, we first performed the χ2 test on genotype frequen-
cies using the additive model. The OR was computed
between the most protective genotype and the others. No
frequency differences were found between patients and
controls either in the whole sample or in the obese and

non-obese sub-sample for all the polymorphisms. The fre-
quency of the ADRB2-27 polymorphism showed the
greatest difference between patients and controls, in the
whole sample (χ2 = 6.14, p = 0.046) and in the obese
group (χ2 9.37, p = 0.009), however the difference was not
statistically significant after the correction of the p thresh-
old to 0.003. Complete list of corrected and uncorrected p
values are provided as supplementary material [see 1].
With 80 % power, the minimum detectable relative risk
using the sample size studied was 1.51. Further evaluation
of this data showed that, in the whole sample, Glu27
homozygotes (Glu27Glu27) of ADRB2-27 had a lower
frequency of diabetes (Odds Ratio (OR) 0.56, 95% Confi-
dence Interval (CI) 0.36 – 0.91) when compared with
Gln27 carriers (Gln27Glu27 or Gln27Gln27). This differ-
ence was even more marked in the obese subsample (OR
0.30, 95% CI 0.13–0.67).

According to the frequency data the Population Attributa-
ble Risk % (PAR %) for Gln27-carriers could account up
to 39% of the diabetes risk in obese subjects and 26% in
the whole population.

In the second step, to further study gene-gene and gene-
environment interactions we performed the multifactorial
analyses. We used Multifactor Dimensionality Reduction
(MDR), a nonparametric and genetic model-free
approach that uses a data reduction strategy. As quoted in
the methods section, five SNPs of interest and the non-
genetic factors, age and gender, were tested by the MDR
1.4.1 software for two or three-way interactions.

We performed MDR analyses: on the whole sample, and
on each sub-sample (obese and non-obese). For each
MDR analysis the range of n, the number of interacting
factors, was set from 2 to 3. We selected this order of com-
plexity because even in the presence of a statistically sig-
nificant result more complex interactions could be of no
biological meaning.

Table 1: Clinical and metabolic features of study participants

Diabetic Patients Controls

No. of subj. 342 305
BMI Kg/m2 a 31.57 (6.06) 27.25 (4.58)
Age Years a 58 (8.34) 54 (6.60)
Hypertension % a 75% 56%
T-CHOL mg/dl 209 (45.11) 206 (38.13)
Triglycerides mg/dl a 159 (108.63) 135 (73.54)
HDL-CHOL mg/dl 48 (12.89) 50 (13.68)
LDL-CHOL mg/dl 130 (39.48) 130 (35.82)
Gender % of Males b 42% 59%

M (SD) M (SD)

a: t-test p < 0.001; b: χ2 p < 0.001
Page 4 of 9
(page number not for citation purposes)



BMC Medical Genetics 2006, 7:85 http://www.biomedcentral.com/1471-2350/7/85
Table 3 shows, for the sample and for each subsample, the
most significant model proposed by MDR having the best
value of CV and PE. Interestingly, the best result was
obtained by the interaction among age, ADRB2-16 and
UCP3 polymorphisms in the non-obese population (PE =
32.5%).

Even if the MDR analysis is able to identify the presence of
associations among several factors, its outputs did not
give detailed information about the interactions found.
MDR output did not specify which age or which polymor-
phic variant of the two identified genes was high or low
risk and furthermore did not describe the three-way inter-
action.

To carry out this aim, we analysed the combinations of
factors (age, ADRB2-16 and UCP3) gained by MDR results
in the non-obese subsample to clarify their single role.

It is well known that the age is a T2DM risk factor and, as
expected, performing a χ2 test on a crosstab composed by

disease status and age-class, the association was strong (χ2

= 35.24, p = 2.2E-8). Also the OR scaled up from 1 in the
youngest group, used as reference group, to 5.76 (95% CI
3.00–11.06) in the oldest group, proving the same con-
clusion. However, to understand how the two genetic fac-
tors could interplay with age, we tested if in each double
homozygote there was a different age-related disease risk.
We also performed the same analyses on the double com-
plementary genotypes. We found in the double homozy-
gote subjects, ADRB2-16 GlyGly and UCP3 CC, that the
OR was 1.10 (95% CI 0.53–2.27) in the youngest and
1.61 (95% CI 0.55–4.71) in the oldest (χ2 = 1.15, p = n.s.).
On the contrary in individuals carrying the other geno-
types (UCP3 T-carriers and ADRB2-16 Arg-carriers) the OR
increased from 1 in the youngest to 10.84 (95% CI 4.54–
25.85) in the oldest (χ2 = 38.49, p = 4.37E-9). In Figure 1
this difference is expressed by the frequency of the disease
in the two different genotypes and in the three age classes.
We corrected the p values considering 9 multiple tests
resulting in a threshold equal to 0.0056.

Table 3: MDR Analyses

Sample Best Model Cross Validation Prediction Error p value

Whole 2 (Age, Gender) 10 33.1 % < 0.001
Non-obese group 3 (Age, ADRB2-16, UCP3) 10 32.5 % < 0.001
Obese group - - - n. s.

Sample: sample of the analysis. Best Model: number of factors and which factors best predict the disease status in sample. Cross Validation: 
value of the consistency of the model across the 10 repeated test. Prediction Error: percent of subjects incorrectly classified following the 
proposed model. p value: significant level calculated through a 1000-fold permutation method.

Table 2: Genotype frequencies of the diabetic patients and controls

Whole Non-Obese Obese

Controls (305) Diabetic patients (342) Controls (228) Diabetic patients (162) Controls (77) Diabetic patients (180)

No. % No. % No. % No. % No. % No. %

UCP2 A/A 34 11 30 9 22 10 15 9 12 16 15 8

G/A 124 41 145 42 95 42 70 43 29 38 75 42

G/G 147 48 167 49 111 49 77 48 36 47 90 50

UCP3 C/C 224 73 240 70 165 72 106 65 59 77 134 74

C/T 78 26 94 27 61 27 49 30 17 22 45 25

T/T 3 1 8 2 2 1 7 4 1 1 1 1

ADRB1 Arg/Arg 139 46 167 49 100 44 81 50 39 51 86 48

Gly/Arg 134 44 136 40 103 45 63 39 31 40 73 41

Gly/Gly 32 10 39 11 25 11 18 11 7 9 21 12

ADRB2-16 Arg/Arg 49 16 68 20 35 15 28 17 14 18 40 22

Arg/Gly 126 41 149 44 92 40 71 44 34 44 78 44

Gly/Gly 130 43 124 36 101 44 63 39 29 38 61 34

ADRB2-27 Gln/Gln 135 44 172 50 99 43 72 44 36 47 100 56

Gln/Glu 124 41 138 40 98 43 71 44 26 34 67 37

Glu/Glu 46 15 31 9 31 14 19 12 15 19 12 7
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Discussion
We studied gene-gene and gene-environment interactions
that could influence Type 2 Diabetes Mellitus. We charac-
terized the genotype of 5 SNPs and collected clinical and
anthropometrical information of 647 subjects, including
305 non-diabetic controls and 342 diabetic patients
(Table 1). Moreover to consider the frequent co-morbidity
of T2DM with obesity we stratified the sample into two
distinct subsamples. The framework that suggested this
stratification arises from the common variants/multiple dis-
ease hypothesis [31]. This hypothesis allowed us to sup-
pose that there are genetic variants involved in both
T2DM and obesity and genetic variants solely involved in

T2DM without obesity or in T2DM with obesity. We per-
formed monofactorial and multifactorial analyses. In par-
ticular we focused our attention on the non-linear
interactions using MDR method as statistical tool.

We studied 5 SNPs in 4 different genes involved in basal
peripheral metabolism. The gene variants that we choose
to study are showed to affect the peripheral energy
expenditure. As introduced above, other studies per-
formed on these SNPs failed to provide univocal results.
ADRB2 (Gly16Arg and Gln27Glu) and ADRB1
(Gly389Arg) have both been shown to be associated with
obesity and T2DM [5-8]. In particular previous studies

Percent of T2DM patients for each genotype (UCP3 and ADRB2-16)and age group in non-obese participantsFigure 1
Percent of T2DM patients for each genotype (UCP3 and ADRB2-16)and age group in non-obeseparticipants. On 
the x-axis the three main age ranges are indicated. The bars indicate the frequencies of non-obese subjects that develop diabe-
tes according to their age range and genotype. Black bars included all the UCP3 T and ARDB2-16 Arg carriers. White bars rep-
resent the double homozygote UCP3 CC/ARDB2-16 GlyGly. UCP3 T/ARDB2-16 Arg carriers individuals show an age-related 
increased frequency of diabetic disease, while double-homozygotes do not. Number of diabetic patients and number of total 
subjects, divided by a slash, are at the bottom of the bar of each class.
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demonstrated that ARDB2 Glu27 polymorphism influ-
ence lifestyles related factors, such as physical exercise
[31], diet [32] and weight gain. UCP2 G(-866)A and
UCP3 C(-55)T SNPs have been demonstrated to be related
to the fat distribution and the risk of developing T2DM
[15,16]. On the other hand, other studies in Europeans
[9,10] and in Asians [11] were unable to reproduce these
findings. Regarding the studies involving the Asian popu-
lation, it should be remarked that the frequency of Glu27
allele is very low (Glu27Glu27 less than 1%) [11].

Even if in previous studies these SNPs were variably asso-
ciated with T2DM, in our study the monofactorial analy-
ses failed to provide any statistical significant association.
Indeed, only for the Glu27 ADRB2-27 homozygote the
OR showed a reduced frequency of the disease in the
obese subsample. Also, this finding was less obvious in
the whole sample, but not in the non-obese sub-sample.
The explanation of this phenomenon is not obvious and
it is not clear why this polymorphism could be associated
with T2DM in obese but not in non-obese patients. Fur-
ther, it is relevant to underline that all the SNPs selected
are involved in the energy balance, thus it could be possi-
ble that this variant is specifically linked to the develop-
ment of T2DM in obese individuals.

Physiologically ADRB2 stimulation induces lipolysis and
its polymorphic variants seem to influence this phenom-
enon. The Gln27Glu ADRB2-27 polymorphism seems to
alter the agonist-induced receptor down-regulation and
thus, indirectly, the overall receptors performance [34].
This polymorphism influences receptor function and
therefore the plasma non-esterified fatty acids (NEFA) lev-
els, by a mechanism yet to be fully characterised [5]. The
NEFA are key players in the pathogenesis of T2DM, since
they could impair insulin production and the insulin sen-
sitivity of the peripheral tissues, stimulate neoglucogene-
sis and glucose extraction in the liver, and they impair
insulin-stimulated glucose metabolism in the muscle
[35].

The specific purpose of this work was to investigate the
gene-gene and gene-environment interactions, in the
hypothesis that small single gene effects could not be
detected by monofactorial studies. Furthermore it is our
driven hypothesis that genetic factors could modify the
response to the environment. We chose SNPs in genes
belonging to the same physiological class, to improve the
likelihood to detect gene interaction, and age and gender
as environmental factors, since age can be considered as
the sum on continuous damaging stimuli and the gender
represent almost two different endocrinological back-
grounds.

In the whole sample MDR detected an interaction
between age and gender. This was not an unexpected
result, as they were some of the recognized T2DM risk fac-
tors and, probably, in this case MDR caught an additive
effect. On the contrary, in the obese subsample no result
was detected. This output could appear in contrast with
some suggestions provided by the monofactorial analyses
in which age was significantly associated with the disease
in the obese subsample (data not shown) and ADRB2-27
Gln carrier resulted to be predominant in diabetic obese
individuals. There are several reasons that could explain
this result. First, it is possible that there are more than two-
factors-interaction in the subsample, reducing the likeli-
hood to detect them, each interaction having a low ability
to predict the disease status (high PE) and a low self-con-
sistency in the sample (low CV). Second, it is possible that
there are several more complex interactions, even of
greater order (n>3), a complexity that we decided not to
explore. Third, the association of the age with the disease
in the monofactorial analysis was made by a continuous
test, the t-test. In the MDR analyses we discretized it in
three classes, possibly loosing some association power.

Finally, the MDR in the non-obese subsample suggested a
three-factor interaction. This interaction involves age and
two SNPs, the UCP3 and the ADRB2-16. The age is
believed to be one of the strongest risk factors for the
T2DM [18]. Also UCP3 and ADRB2 were both previously
shown to be involved in T2DM by biological and medical
studies [7,15]. In particular, the ADRB2-16 variant seems
to alter the extent of the agonist-induced lipolysis magni-
tude [36] and to down regulate the receptor expression
[35]. On the other hand the UCP3 polymorphism has
been associated with T2DM in a French cohort. In this
cohort the (-55)T variant seemed to be associated with an
atherogenic plasma lipid profile [15]. It is still not clear
the pathophysiological role of UCP3 in the origin of
T2DM. Several mechanisms have been proposed such as
influencing the peripheral energy expenditure, protection
against oxidative damage, regulation of insulin secretion
and fatty-acid or fatty-acid peroxides mitochondrial
escape [37].

We did not find, in the literature, evidence to suggest an
interaction between the two genes. Through the WebQTL
web service we found a strong and inverse correlation
between the ADRB2 and UCP3 transcription levels (Pear-
sons' r = 0.758 and p = 4.83E-11), in the brain of BDX
mouse strain (samples April 2005) [30], proving that the
expression of these two genes is co-regulated at least in
some tissues. Conceptually, in the thermogenesis func-
tion, the Adrenergic Receptors and Uncoupling Proteins
work together, having respectively, a regulatory and effec-
tor role. The ADRB2 activation induces lipolysis and
Page 7 of 9
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release of NEFA whereas UCPs are regulated by NEFA
plasma levels and are involved in their metabolism.

Explaining how UCP3 and ADRB2-16 polymorphisms
influence the age-related disease risk is, at the moment,
too speculative and beyond the aims of this work. But the
understanding that these two polymorphisms may influ-
ence the susceptibility to a risk factor strongly suggests the
need to further explore the interaction with in vitro and in
vivo studies.

Conclusion
In conclusion, we have presented an association study
that used a multianalytical approach. This approach com-
bined monofactorial and multifactorial tests to consider
both the main effects and the interactive ones in addition
to environmental factors. The results that we obtained
seem to confirm that the multifactorial approach and the
stratification for co-morbidity are useful tools for the anal-
ysis of complex diseases. The consistency of the results
that we obtained could be further validated by studying
different populations and by using in vitro models.
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