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Background: The genetic mechanisms underlying interindividual blood pressure variation reflect
the complex interplay of both genetic and environmental variables. The current standard statistical
methods for detecting genes involved in the regulation mechanisms of complex traits are based on
univariate analysis. Few studies have focused on the search for and understanding of quantitative
trait loci responsible for gene × environmental interactions or multiple trait analysis. Composite
interval mapping has been extended to multiple traits and may be an interesting approach to such
a problem.

Methods: We used multiple-trait analysis for quantitative trait locus mapping of loci having
different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats,
the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped
in 179 polymorphic markers across the rat genome. To accommodate the correlational structure
from measurements taken in the same animals, we applied univariate and multivariate strategies for
analyzing the data.

Results: We detected a new quantitative train locus on a region close to marker R589 in
chromosome 5 of the rat genome, not previously identified through serial analysis of individual
traits. In addition, we were able to justify analytically the parametric restrictions in terms of
regression coefficients responsible for the gain in precision with the adopted analytical approach.

Conclusion: Future work should focus on fine mapping and the identification of the causative
variant responsible for this quantitative trait locus signal. The multivariable strategy might be
valuable in the study of genetic determinants of interindividual variation of antihypertensive drug
effectiveness.
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Background
The genetic mechanisms underlying interindividual
blood pressure variation reflect the complex interplay of
both genetic and environmental variables. Because of the
considerable health and economic costs of hypertension,
the identification of the genetic determinants of blood
pressure homeostasis represents a fundamental step
towards more cost-effective and specific approaches to
this public health problem.

Studies of the genetic basis of hypertension have identi-
fied multiple quantitative trait loci (QTL), especially in rat
models [1]. Previously, we described 5 different chromo-
somal loci that, collectively, explain 43% of the total
systolic blood pressure variation exhibited among an F2
progeny from a cross between the Brown-Norway and
spontaneously hypertensive rat strains [2]. However,
despite the intense efforts being undertaken to identify
QTL participating in blood pressure regulation, few stud-
ies to date have focused on the search for and understand-
ing of QTL responsible for gene × environmental
interactions.

In this respect, statistical methods for the detection of
genes influencing QTL with the aid of genetic markers are
well developed for the analysis of a single trait and have
become the current standard methods. However, they
may not be the most sensitive statistical approach when
gene × environmental models are studied. Composite
interval mapping [3] combines maximum likelihood
interval mapping with multiple regression using marker
cofactors, which increases the power of QTL detection and
allows the simultaneous study of more than one QTL in
the genome. The principle of composite interval mapping
has recently been extended to multiple traits [4], enabling
the evaluation of the main QTL effects, as well as QTL by
trait and QTL by environmental interactions [5].

Genotype by environmental interaction is the differential
expression, or effect, of a gene in different environments.
Multitrait analysis has a number of intrinsic properties
that are particularly interesting when one is concerned
with the biological nature of these interactions [6]. One of
the reasons is because, in practice, experimental designs
are based on the paired comparison of the same set of gen-
otypes recorded on markers evaluated phenotypically in 2
or more different environments, for example before and
after salt loading. Therefore, because of the extensive cov-
ariance between these traits, multiple trait analysis is pre-
dicted to be more sensitive than single-trait QTL analysis
is in identifying QTL important for treatment of response
or sensitivity to environmental insults, or both.

In this study, we used multiple trait analyses for QTL map-
ping of loci involved in both blood pressure salt-sensitiv-

ity response in the progenies of an F2 rat intercross
between the hypertensive strain, spontaneously hyperten-
sive rat (SHR), and the normotensive strain, Brown-Nor-
way (BN).

Methods
Animals
We used the same phenotypic databank described by
Schork [2]. Briefly, the study examined blood pressure
variation before and after a salt-loading experiment in
intercross (F2) progeny from a cross between the BN nor-
motensive rat strain and the SHR; 235 rats were available
for study. They were phenotyped 16 weeks after birth over
a 14-day period. Baseline levels of systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean arterial
blood pressure (MAP), and heart rate (HR) were meas-
ured directly through an indwelling catheter in the femo-
ral artery. Immediately after baseline parameters were
established, the rats were given a diet that included water
with 1.0% NaCl for 13 days. At the end of 13 days, each
rat was anesthetized and a catheter was placed in its con-
tralateral femoral artery. SBP, DBP, MAP, and HR were
remeasured on the day after this catheter was inserted
(these new phenotypes were named SBPS, DBPS, MAPS,
and HRS). Of the 222 rats completing the protocol, 188
were then genotyped for 179 markers following a stand-
ard protocol [2].

Genetic marker map
After completion of the first genotyping effort, 179 mark-
ers were available for analysis. Although no new geno-
types were available for this study, placement of these
markers in the rat genome was considerably more precise.
We reaccessed the genetic distances of each genotyped
marker through sequential consultation of the following
Internet databases: Rat Genome Database [7]; RatMap [8];
and Whitehead Institute – Rat Genome [9].

Statistical methods
For crosses between inbred lines with multiple traits,
mapping of QTL can be performed for each trait one at a
time, based on the composite interval mapping method
[10,3], or jointly on both traits, using the extended ver-
sion in terms of multivariate regression models [4].

Likelihood approaches have been proposed for multiple
trait analysis. Based on an extension of the composite
interval mapping method, Jiang and Zeng [4] obtained
the likelihood function in terms of a mixture of multivar-
iate normal distributions. They considered an ECM algo-
rithm to obtain the maximum likelihood estimates. The
results were obtained by using QTL Cartographer soft-
ware, [11]. In another context, Knot and Haley [12]
described a multitrait least-squares analysis allowing a
multivariate normal distribution to model the matrix con-
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taining the trait values for all individuals. In this study, we
used the statistical approach of Jiang and Zeng [4].

In spite of several strategies that can be proposed to deter-
mine the genetic architecture of multiple correlated traits,
it is not clear whether one should start with one multiple
trait analysis or with a series of single trait analyses. For
the analytic strategy adopted to determine QTL involved
in NaCl responsiveness, the difference between the values
of SBPS and SBP of each animal (DIF) denotes the pheno-
type. We performed 4 methods of QTL mapping: separate
mapping for each SBP, SBPS, and DIF, and joint mapping
for SBP and SBPS.

Let ySBP = (y1SBP, y2SBP,..., ynSBP)t and ySBPS = (y1SBPS, y2SBPS,...,
ynSBPS)t be the trait vectors for systolic blood pressure
before and after salt loading, measured in n F2 animals,
respectively. In addition, let

yDIF = (y1SBPS - y1SBP, y2SBPS - y2SBP, ..., ynSBPS - ynSBP)t be the
corresponding trait vector obtained through the differ-
ence between the SBPS and SBP measurements. For uni-
variate composite interval mapping, the following model
was considered the k-th trait evaluated in the j-th animal:

where for k-th trait bok is the mean effect;  and  are

the additive and dominant effects of the putative QTL; 

and  are calculated through the markers of genotype

information flanking putative QTL and the associated
recombination frequencies; xkl and zkl are corresponding

variables for marker l assuming t markers are used as
genetic background controls; bkl and dkl are regression

coefficients of the trait ykj on xkl and zkl, respectively; and ekj

is normally distributed with mean 0 and variance . For

simplicity, here we assume the same background genetics
for all traits considered in the univariate analysis (SBP,
SBPS, and DIF). Note that the model formulated in terms
of variable DIF is proposed to accommodate the pre- and
postsalt measurement dependence structure. By taking a
putative QTL into account, the corresponding additive
and dominant effects for the k-th trait can be searched for
by testing the hypotheses

Ho :  =  = 0; H1 : at least one of them is not zero.

Alternatively, the additive (dominant) effect can be tested
under a non-null dominant (additive) effect. The test is
performed with a likelihood ratio statistic (LR) or in terms
of lod score statistics (0.217 LR).

If phenotypes ySBP and ySBPS are correlated, univariate anal-
ysis of the individual traits disregards the additional infor-
mation implicit in the correlational structure. A bivariate
analysis in which this phenotypic correlation is explicitly
modeled will exploit more of the information content of
the data, will increase power for detection of QTL and will
improve precision of parameter estimates. In this context,
the covariance between the error terms, Cov (ejSBP, ejSBPS) =
σ12 = ρ12σSBP σSBPS, can be introduced in the analysis
through the following model for the vector yj = (yjSBP,
yjSBPS)t :

where, for likelihood analysis, the residual vector ej is
assumed to be bivariate normally distributed with mean
zero and variance-covariance matrix given by

For the n vectors yj = (yjSBP, yjNaSBP)t, Jiang and Zeng [4]
define the likelihood function in terms of a mixture of
bivariate normal distribution as

where p2j, p1j and p0j denote the prior probability of 

taking values 2, 1, and 0, respectively, for the 3 possible
genotypes of the putative QTL, and f2(yj), f1(yj) and f0(yj)

represent the corresponding bivariate normal density
function of the random vector yj. Maximum likelihood

estimates of the parameters are computed through ECM
algorithms, a special version of general EM algorithms [4].

Given a putative QTL, under joint mapping, the hypothe-
ses to be tested are

H1 : at least one of them is not

zero.

When joint mapping for QTL of 2 traits is indicated, sta-
tistical tests can proceed to test whether the QTL has
effects on either one or both of the 2 traits:
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and

The estimates of model parameters with and without con-
straints can be obtained by numerical procedures using
the ECM algorithm, and the likelihood ratio test statistics
can then be calculated.

Jiang and Zeng [3] and Mangin et al [13] discuss the rela-
tive advantage of the joint analysis as compared with sep-
arate analyses. When the correlation is null (ρ = 0), the
test statistics under the multivariate model are approxi-
mately the sum of those under the corresponding univar-
iate models. Otherwise, joint test statistics can be smaller
or larger than the sum of separate test statistics, depending
on the sign and magnitude of the residual correlation and
the differences between QTL effects. The power of the
joint analysis can increase significantly if the product of
QTL effects and the residual correlation are in different
directions.

Results and discussion
The empirical correlation coefficients of the systolic and
diastolic blood pressure measurements evaluated before
and after salt intake are shown in Table 1.

Pleiotropic studies can be conducted exploring the corre-
lation between systolic and diastolic measurements in
each condition, before and after salt intake. The highest
correlation values (r = 0.902 and r = 0.908) were obtained
in these situations. In addition, gene-environment inter-
action studies explore the correlation between the blood
pressure values taken before and after salt intake. Consid-
ering this last alternative, we adjusted the statistical mod-
els shown previously for traits SBP and SBPS. The linkage
signals for putative QTL fixed on the marker map along
the rat 21 chromosome are in Figures 1 and 2 for univari-
ate and multivariate adjustments, respectively. In Tables 2
and 3, the corresponding estimated QTL effects and likeli-
hood ratio test statistics are showed.

Separate mapping for SBP, SBPS in Figure 1 do not iden-
tify any new linkage signal in the rat genome other than
the ones previously published for the SBPS trait [2]. Previ-

ous regions already identified in chromosomes 2, 4, and
8 for the SBPS trait have been thoroughly discussed by
Schork et al [2]. Interestingly, a univariate approach using
the DIF phenotype identified a new linkage signal in one
position on chromosome 5 (close to marker R589). For
univariate analysis, this QTL was only revealed when trait
DIF was analyzed. On the other hand, this significant sig-
nal was confirmed through multivariate mapping by
using both the SBP and the SBPS traits (Figure 2).

QTL effect estimates for this position shown in Tables 2
and 3 indicate different directions for additive and domi-
nant terms, changing the corresponding signals for each
SBP and SBPS trait. In this context, because the residual
correlation between the traits is positive (r = 0.423), ana-
lytically, we are under the most favorable situation to
increase the power of the joint analysis as compared with
separate analyses. The model obtained of variable DIF in
terms of the models formulated for SBP and SBPS can be
clarified. The corresponding regression coefficients associ-
ated with additive and dominant effects for variable DIF
are illustrated by

Because  and  are in different

directions, a significant linkage signal may be identified
only for the adjustment of the variable DIF.

To understand the genetic architecture controlling the
responsiveness to salt intake due to any gene on chromo-
some 5, close to marker R589, note that the results pre-
sented in Tables 2 and 3 suggest a modest (but
nonsignificant) positive dominant effect on SBP and a
more expressive (and significant) negative dominant
effect on systolic blood pressure levels with salt intake
(SBPS levels).

One potential study limitation is the number of genetic
markers used in the genome-mapping experiment.
Although a large number of F2 analyses have been
reported [1], genes responsible for SHR hypertension have
not yet been identified. One of the possible reasons for
this is the small number of markers genotyped in these
studies. In our mapping experiment, we used 179 mark-
ers, polymorphic between the SHR and BN strains.
Although genetic distances and locations of these markers

H b d b d H b d b d10 1 1 2 2 11 1 1 2 20 0 0 0 0 0 0: , , ; : , , , ,∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= = ≠ ≠ ≠ ≠ ≠ ≠

dk
∗

b b b and d d dDIF SBPS SBP DIF SBPS SBP
∗ ∗ ∗ ∗ ∗ ∗= −( ) = −( ).

b dSBPS SBPS
∗ ∗( ) b dSBP SBP

∗ ∗( )

Table 1: Empirical correlation coefficient to the F2 inbred study.

Condition SBP-DBP SBPS-DBPS SBP-SBPS DBP-DBPS

Correlation 0.902 0.908 0.423 0.445
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Lod Score statistics under univariate model adjustment for SBP, SBPS and DIFFigure 1
Lod Score statistics under univariate model adjustment for SBP, SBPS and DIF.
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Lod Score statistics for the joint effects under the multivariate modelFigure 2
Lod Score statistics for the joint effects under the multivariate model.
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were updated before conducting our analysis, it is possible
that QTL important for this gene-environment interaction
are still unidentified.

Conclusion
We used univariate and multivariate mapping models for
detection of genes putatively relevant to the systolic blood
pressure variation due to salt loading. With this approach,
a new and relevant QTL involved in the responsiveness to
salt was identified on a region close to marker R589 in
chromosome 5 of the rat genome. With a univariate
approach, the reduction of the 2-trait analysis to the dif-
ference between SBP measurements was sufficient to clar-
ify the interchanges on the genetic effect direction before
and after salt intake. The use of a multivariate approach
was more sensitive and disclosed the new chromosome 5
QTL by using both the SBP and SBPS traits without the
need of any summary measurement. Future work should
focus on fine mapping and the identification of the caus-
ative variant responsible for this QTL signal.

The multivariable strategy might be valuable in the study
genetic determinants of interindividual variation of anti-
hypertensive drug effectiveness.
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Table 3: Likelihood ratio statistics, additive and dominant effect estimates for the putative QTL under multivariate model with higher 
linkage signal in the chromosome 5.

Variable LR Additive Effect Dominant Effect

SBP 1.2147 -0.64828 2.10244
SBPS 16.8486 4.21706 -5.99663
Joint 19.6925

Table 2: Likelihood ratio statistics, additive and dominant effect estimates for the putative QTL under univariate models with higher 
linkage signal in the chromosome 5.

Variable LR Additive Effect Dominant Effect

SBP 1.2483 -1.3033 2.5755
SBPS 3.8945 3.0523 -1.4667
DIF 17.1330 8.0698 -8.6078
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