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Abstract

Background: Sitosterolemia is an autosomal recessive disorder that maps to the sitosterolemia
locus, STSL, on human chromosome 2p21. Two genes, ABCG5 and ABCG8, comprise the STSL and
mutations in either cause sitosterolemia. ABCG5 and ABCG8 are thought to have evolved by gene
duplication event and are arranged in a head-to-head configuration. We report here a detailed
characterization of the STSL in Caucasian and African-American cohorts.

Methods: Caucasian and African-American DNA samples were genotypes for polymorphisms at
the STSL locus and haplotype structures determined for this locus

Results: In the Caucasian population, |3 variant single nucleotide polymorphisms (SNPs) were
identified and resulting in 24 different haplotypes, compared to |1 SNPs in African-Americans
resulting in 40 haplotypes. Three polymorphisms in ABCG8 were unique to the Caucasian
population (E238L, INT10-50 and G575R), whereas one variant (A259V) was unique to the African-
American population. Allele frequencies of SNPs varied also between these populations.

Conclusion: We confirmed that despite their close proximity to each other, significantly more
variations are present in ABCG8 compared to ABCGS5. Pairwise D' values showed wide ranges of
variation, indicating some of the SNPs were in strong linkage disequilibrium (LD) and some were
not. LD was more prevalent in Caucasians than in African-Americans, as would be expected. These
data will be useful in analyzing the proposed role of STSL in processes ranging from responsiveness
to cholesterol-lowering drugs to selective sterol absorption.
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Background

Although our diets contain an equal amount of choles-
terol and plant sterols, only 30-60% of cholesterol and
less than 5% of total plant sterols are absorbed daily [1,2].
Additionally, of the small amounts of non-cholesterol
sterols (primarily plant sterols) that are absorbed, these
are preferentially excreted into bile by the liver, resulting
in a very low level of whole-body retention [2]. In sitoste-
rolemia, intestinal discrimination between cholesterol
and non-cholesterol sterols and the ability of the liver to
excrete normally all sterols (cholesterol and non-choles-
terol sterols) are disrupted [3]. Thus, the defect in sitoste-
rolemia defines the molecular mechanisms by which
these processes take place.

We mapped the sitosterolemia disease to a single locus,
STSL, to chromosome 2p21 in a region defined by the
markers D2582294 and Afm210xe9 [4-6]. This locus has
now been shown to comprise of two highly homologous
genes, ABCG5 and ABCGS, arranged in a head-to-head
organization [7,8]. Two mutations in either both copies of
ABCGS5 or both copies of ABCGS8 result in sitosterolemia
[7-9]. To date, sitosterolemia has not been reported to be
caused by a person harboring a mutation in one allele of

Table I: Polymorphisms reported at the STSL locus
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ABCG5 and one allele of ABCG8. These gene are expressed
in a tissue-specific manner (liver and intestine only) and
they are thought to function as obligate heterodimers
[10]. Genetic analyses of STSL showed that despite their
close proximity, ABCG8 shows a much greater genetic var-
iability than ABCGS5 [8]. This disparate genetic evolution
seems to be unique to humans, as the mouse and rat STSL
loci show relatively equal extent of variations in Abcg5 and
Abcg8 [11,12]. At present, the implications of the rela-
tively more conservation in ABCG5 compared to ABCG8
is not known. This seems remarkable, since both genes are
highly homologous to each other, with preserved exon-
intron structures and are also highly conserved from Man
to Fugu [12].

The human genome is arranged in an array of haplotype
blocks (haploblocks), characterized by segments of high
LD followed by regions of low LD [13-17]. Haploblocks
may have arisen from recombination hotspots that are
never divided during meiosis [18,19] or may be randomly
distributed due to uniform but rare recombination [20].

In this paper, we report the detailed characterization of
the SNPs present at the STSL in Caucasians drawn from

Name Position in the gene Polymorphism dbSNP cluster ID Restriction enzyme Nucleotide Position
site altered

ABCG5

P9P Exon | cIT rs49854016 BstN | 22881725
R50C* Exon 2 cIT rs6756629 - 22881023
V523I Exon 11 G/A ss49854017 - 22863069
C600Y Exon 13 G/A ss49854018 - 22856345
Q604E* Exon 13 G/C rs6720173 Sml | 22856334
V622M Exon 13 G/A ss49854019 - 22856280
ABCGS8

5'UTR-41 5'UTR CIT $s49854020 BstE II 22882085
5'UTR-19* 5'UTR TIG rs3806471 Tsp45 1 22882107
PI7P Exon | G/C $s4985402 | - 22882176
DI9H* Exon | G/C rs|1 1887534 - 22882180
INTI-21* Intron | C/A ss4148209 Mnl | 22887558
INTI-7* Intron | cIT ss4148210 BsmA | 22887572
C54Y* Exon 2 G/A ss4148211 SexA | 22887676
E238L* Exon 6 G/A ss49854010 - 22895692
A259V* Exon 6 C/IT ss49854012 Hae IlI 22895756
Q340E Exon 7 C/G ss49854024 - 22915101
T400K* Exon 8 C/A ss4148217 Mse | 22915366
M429v Exon 9 G/A - 22916932
INT9-19 Intron 9 CIT $s49854025 - 22917460
INT10-50* Intron 10 C/IT ss4148220 - 22918168
AS565A% Exon |1 CIT ss4148221 - 22918424
G575R* Exon 11 G/C rs4958401 | Hha | 22918452
A632V* Exon 13 cIT rs6544718 Sty | 22920858

*Only these SNPs were found to be variant in the present study and the haplotypes (See Table 2 and 3) are ordered with these reported in
sequence. The SNPs shown in bold (4t column) are ones that also part of the HapMap dataset. Nucleotide numbering according to GenBank

Sequence ID NT_022184.
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Table 2: Estimated haplotype frequencies for Caucasians

Haplotype* Est. Freq. Cum. Freq.
[RERRRRRRARNRE 0.229 0.229
(RNRRRNARVIRNY] 0.224 0.453
(RNAREVARNAREY 0.083 0.536
[EPARRPARRRERE 0.063 0.599
FEEEEI21121 01 0.042 0.641
2000000012100 0.031 0.672
21212221111112 0.031 0.703
[RERRRPARRRR RV 0.031 0.734
1121222111111 0.031 0.766
2112222111111 0.016 0.781
21012100121112 0.016 0.797
2120122111211 0.016 0.813
(RVARRVARNA VAN 0.016 0.828
1212200112111 0.016 0.844
2101222112111 0.016 0.859
12122112112 0.016 0.875
1212011001112 0.016 0.891
FEEEE21i2112 0.016 0.906
2200000121000 0.016 0.922
FEEI212101210011 0.016 0.938
12221111112 0.016 0.953
21212221121212 0.016 0.969
(VARRERRR AR VY] 0.016 0.984
(RNAPARRRRAREY] 0.016 1.000

*The left to right order of the haplotype reports on the asterisked
SNPs shown top to bottom in Table I.

our cohort of sitosterolemia families, as well as a group of
African-American individuals who were normal and
healthy. These data allows us to characterize this locus in
detail and define some of these haploblocks. Preliminary
reports have implicated STSL in physiological processes
ranging from responsiveness to 'statin' drugs used to
lower plasma cholesterol, as well as more complex proc-
esses such as the metabolic syndrome [21-29]. The data
reported herein should allow for a more detailed and
definitive testing of these hypotheses.

Methods

SNP analyses

All studies were performed after Institutional Review
Board approval and with informed consent of the partici-
pants. Genomic DNA was isolated from blood obtained
from Caucasian patients and their family members as pre-
viously described [8]. African-American DNA samples
came from the ongoing Sea Islands Families Project/
Project Sugar at the Medical University of South Carolina
[30,31]. These individuals are part of the larger Gullah-
speaking ethnic community who were born and reared in
the coastal Sea Islands of Georgia, South Carolina and
North Carolina, and whose parents were also reared on
the Sea Islands. In the Project Sugar protocols, Type 2 dia-
betic probands are identified and then phenotypic data
and DNA are obtained from the proband and the
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Figure |

Haploblock structure of STSL in Caucasians and in
African-Americans. Haploblocks were constructed as
described in Methods. The color bars indicate the frequen-
cies with which each of the haploblock sequences are found.
Note the larger haploblock arrangements in Caucasians
(panel A), compared to that observed in African-Americans
(panel B).

proband's family members. This database was screened
for all individuals who were not diabetic and unrelated to
each other to obtain a total of 46 unrelated individuals.
Each exon and boundary intronic area of ABCG5 and
ABCG8 was amplified by specific primers as previously
described and SNPs detected by restriction enzyme diges-
tion patterns [5,8] or by the primer extension method,
using a capillary DNA analyzer (CEQ 8000, Beckman
Coulter, Fullerton, CA). For the latter, amplified PCR
products were digested with two units of Shrimp alkaline
phosphatase (SAP, Roche Chemicals) and one unit of
Exonuclease 1 (New England Biolabs, Ipswich, MA) at
37°C for one hour to remove unused primers and unin-
corporated nucleotides. The enzymes were inactivated by
treating the samples at 75°C for 15 min. A primer exten-
sion reaction was set up using cleaned PCR products as
template, the downstream primer adjacent to the SNP and
fluorescent dideoxynucleotides. Multiplex extension reac-
tions were carried out in some cases (details available on
request). Samples were analyzed using a genetical ana-
lyzer, CEQ800 using the manufacturer's SNP separation
method. Based upon the measured frequencies of each
allele, observed genotypes were compared to expected
genotypes for deviation from the Hardy-Weinberg princi-
ple. X2values were calculated by comparing the observed
and expected genotype frequencies using the formula
Y (observed-expected value)?/Expected value. P value was
obtained from the X2 value table. The Age of mutation fix-
ation was calculated as described by Guo and Xiong [32].
We selected 12 parents (24 chromosomes) carrying the
commonest mutation, W361X, and where complete gen-
otype information was available to compute recombina-
tion frequencies.

Haplotype analyses
Genotyping data were used to estimate haplotypes using
SNPHAP program [33], PHASE v2.1 [34] and haploblocks
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Table 3: Estimated haplotype frequencies for African-Americans

Haplotype* Est. Freq Cum Freq
[RERRRPARARERE 0.099 0.099
FEEEI221121 11 0.076 0.175
FEEEEI210 01211 0.071 0.246
[RERRRRRRARVAN] 0.070 0316
(RNRRRNARVIRNY] 0.059 0.376
FEEEEI21121 01 0.054 0.430
(RNRRRNRRRAREY] 0.041 0.471
[RERRPYARRRNRE 0.034 0.505
2000120002101 0.030 0.535
2001222000111 0.030 0.564
2000012112111 0.028 0.592
1212122111111 0.022 0614
2121211111211 0.022 0.636
(AVARRERRRA VAN 0.022 0.657
210121221111 0.022 0.679
2000000121211 0.022 0.701
20000020001211 0.021 0.721
200012100010 0.020 0.742
FEEI212101210011 0.016 0.757
2000120000121 0.015 0.772
FEEI2200000TT] 0.012 0.785
2000000012001 0.012 0.797
120122121111 0.011 0.808
(AVARRVARNAREN 0.011 0818
1220121101211 0.011 0.829
FI2012100000] 0.011 0.840
20120000211 0.011 0.851
TEEI2121221 111 0.011 0.862
(REPARNRRRARNY] 0.011 0.873
21201211 0.011 0.884
FEEI2121100112 0.011 0.895
[APYARRRRARVAN 0.011 0.905
21121211 0.011 0916
2001200120000011 0.011 0.927
TEEEI2012210 1] 0.011 0.938
21112121221211 0.011 0.949
20112121211211 0.011 0.960
201200200001 0.011 0.971
20001221001112 0.011 0.982
2012221011111 0.011 0.992

*The left to right order of the haplotype reports on the asterisked
SNPs shown top to bottom in Table I.

were constructed using HaploBlockFinder v6 [35]. Link-
age disequilibrium measures [36], D' and A2, were esti-
mated between pairs of diallelic loci using the value of
Lewontin's D' [37] and measured using the GOLD pro-
gram [38].

Results

Our study consists of 32 parents (obligate carriers for
mutations in either ABCG5 or ABCGS8) of Caucasian ori-
gin from around the world [8]. Our African-American
cohort consists of 46 unrelated individuals from the Sea
Island community around South Carolina. Table 1 lists 23
SNPs (6 in ABCG5 and 17 in ABCGS8) identified by exten-
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sive re-sequencing at the STSL locus by us, or those
reported in the literature. The SNPS will be referred to as
either by the amino acid they affect, or by their relative
position in the gene. A formal identification for each of
these SNPs is provided in Table 1. Only two loci in
ABCG5, R50C and Q604E showed variations in our study
population, the remaining 4 SNPs were invariant in all
subjects and are not depicted in the haplotype analyses.
For ABCGS, only 12 variable loci were identified, marked
by an asterisk, Table 1, the remaining were non-variant in
our study samples. All of the SNPs shown in Table 1
except M429V in ABCG8 were analyzed. M429V was
reported only recently in a Japanese cohort [29], and was
not included for analyses in this study. However, in lim-
ited analyses, we did not detect this in any of our previ-
ously sequenced exon 9 DNA traces either (data not
shown), suggesting it may have a very low prevalence.
Thus, only 14 SNPs (asterisked, Table 1) constitute the
haplotypes shown and are ordered with ABCG5, followed
by ABCGS.

The A259V polymorphism was present only in African-
Americans. The C/T polymorphism at INT10-50 position,
E238L and G575R in ABCG8 were variable only in the
Caucasians. The haplotypes shown comprise all of the
marked loci in both groups (Table 1) in order. Among the
unrelated parents (Caucasians) all the SNPs, except R50C
were in Hardy-Weinberg Equilibrium (p > 0.005, x Square
test). To completely characterize the haplotype structure,
we estimated haplotype frequencies in each sample popu-
lation using the multi-locus genotype data for each sam-
ple population. Estimates of haplotype frequencies are
presented in Tables 2 and 3 for the Caucasians and Afri-
can-Americans, respectively. These frequencies were esti-
mated using the method described by Excoffier and
Slatkin [33] as implemented in the SNPHAP program
(Electronic Database Information).

The frequencies of the minor alleles varied from 0.02632
to 0.5 shown by different color code in Fig. 1. Twenty-four
haplotypes were constructed from 64 chromosomes with
the SNP signature CCTGCCGGCCTCGC haplotype as the
most common among Caucasians, accounting for ~23%
of the haplotypes (Table 2). For SNPs that affect amino
acids, this translates to E604-R50-D19-C54-E238-A259-
T400-A565-G575-A632. The next common Caucasian
haplotype differs from this one in that there is a lysine at
position 400 in ABCGS8 (K400) and these two haplotypes
account for ~45% of all haplotypes. There were many
minor haplotypes whose contribution was very low
(Table 2). The haplotypes were divided into seven blocks.
The haplotype data is summarized in Table 2.

In the case of African-Americans, we identified four SNPs
whose prevalence deviated significantly from Hardy-
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Figure 2
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GOLD plot of pair-wise A2 values for SNPs in Caucasians and African-Americans. As a pictorial depiction of LD at
the STSL, GOLD plots for Caucasians (panel A) and African-Americans (panel B) were plotted. Note the differences in the
color scales between the two panels shown on the right-hand side of each plot. Overall, a small area of LD was present in the
Caucasian sample, as shown by the increased red intensity, almost all of this was accounted for an area involving intron |. For
African-Americans, very little LD was present (compare the GOLD plots with Table 4).

Weinberg equilibrium (5' UTR-19, D19H, A259V, A565A)
all of which are located in ABCG8. Minor allele frequen-
cies varied from 0.02174 to 0.38043. Haplotypes were
divided into eight blocks as shown in Fig. 2. Additionally,
a SNP that results in A259V in ABCGS8 was detected in this
cohort, but was absent in Caucasians, and a SNP that was
variant in Caucasian (E238L in ABCG8) but was non-var-
iant in African-Americans. The cumulative frequency
shown (Table 3) does not sum to 1 in the African-Ameri-
can sample population. We deleted from the list of haplo-
types those whose estimated frequencies were less than 1/
(2 x 46) ~0.00107, since there are only 92 total haplo-
types in all 46 individuals. Forty haplotypes were con-
structed, of which the signature CCTGCCGGCCTCGC
was the major haplotype (~9.9%), translating to a coding
haplotype of E604-R50-D19-C54-E238-A259-T400-
A565-G575-A632, identical to the commonest Caucasian
haplotype. However, the second commonest haplotype in
Caucasians, with the K400 change was not detected at all
in the African-Americans. Note the large numbers of hap-
lotypes with the lower frequencies detected in the African-
Americans, compared to the Caucasian samples.

Table 4 presents results of pair-wise linkage disequilib-
rium (LD) analysis for the fourteen SNPs at the STSL locus
in these two populations (African-American and Cauca-

sian). In this table, we present the pair of loci considered
(columns labeled M1 and M2), the value of the Chi-
square statistic (column labeled ChiSq) that tests whether
D' (a measure of LD [37]) is non-zero, the p-value corre-
sponding to the Chi-square statistic (column labeled
Pval), and estimates of two measures of linkage disequi-
librium, A2[36] and D' [37]. Both measures of linkage dis-
equilibrium range between 0 and 1, 0 meaning no LD and
1 meaning complete disequilibrium. Although we com-

14
puted LD values for (2 )=91 pairs of markers, we

present results only for those pairs whose p-value for the
Chi-square statistic is less than 0.10 in the interest of con-
solidation of results. Pair-wise LD was calculated using
GOLD program (Fig. 2, regions red in color indicate high
LD values). Caucasians (Fig. 2A) appear to have larger
pair-wise A2 for consecutive markers more frequently than
do African-Americans (Fig. 2B). Of note, for the non-syn-
onymous SNPs, R50C and D19H showed some LD in
both populations, though the Ch-square statistic was only
moderate (Table 4). Amongst Caucasians, the strongest
LD was observed between the two intronic SNPs, INT1-12
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Figure 3
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GOLD plot of pair-wise A2 values for SNPs in CEPH and Yoruba Africans genotyped by the HapMap Consor-

tium. We analyzed the SNP genotypes spanning the STSL locus for the CEPH (panel A) and Yoruba (panel B) samples available
at http://www.hapmap.org. The HapMap SNP dataset are much more dense. Note that the Yoruba samples show very little LD
compared to the Caucasian samples. Additionally, the Caucasian samples also show that the STSL locus does not have any large

segments of LD.

and INT1-7, and to a lesser extent between INT1-7 and
both 5'UTR-19 and QG04E (Table 4).

With the publication of the HapMap data during the prep-
aration and submission of this manuscript [39], we were
able to compare our data with that of the HapMap data
(available at [40]). We compared data for SNPs typed on
chromosome 2, between positions 44,012,000 to
44,081,000, containing the STSL locus. The GOLD plots
for Caucasian samples (CEPH family data) and African
samples (Yoruba samples from Nigeria) are shown in Fig.
3. The HapMap data for this region is much denser. Addi-
tionally, there are some significant differences between
SNPs used in our study and those reported by the Hap-
Map Consortium. Firstly, of the 14 SNPs we found were
variant in our entire cohort, only 8 of these were also gen-
otyped by the HapMap Consortium, highlighted in Table
1. Secondly, of the 6 that are unique to our genotyping, 5
of these are cSNPs and are all non-synonymous changes,
and the 6%, INT1-21, was one where we detected signifi-
cant LD for Caucasian samples (See Fig. 2A). Of the
remaining 9 SNPs we genotyped and found no variants
(Table 1), with the exception of M429V, which we did not
genotype, the HapMap Consortium also do not report any
genotyping data. It is not clear to us whether this is
because they also failed to show these were variant, or
because these were not tested. Nevertheless, given the

richness of the HapMap dataset, we present the Haplov-
iew analyses (which allows for a better pictorial represen-
tation than GOLD for large data sets) for these two
populations (Fig. 4), which are essentially the screen-
shots available at their website [40], with some image
cropping for presentation. Note that there are 2 hot-spots
of recombination that can be identified and these are
located at the ends of both ABCG5 and ABCGS (Fig. 4).
Despite differences highlighted between the HapMap
Data and ours, the overall conclusions are similar; in both
analyses, the samples originating in peoples from Africa
show the least amount of linkage disequilibrium, the
greatest variability and smaller haploblocks (data not
shown), compared to Caucasian samples. The differences
between our samples may also be significant. Our Cauca-
sian samples are drawn from families with sitosterolemia
and come from many different parts of the World. Our
African-American samples, while maintaining a much
closer genetic tie to Africa, are drawn from peoples from a
variety of Africans originating from West Africa, not just
the Yoruba, in Nigeria [30].

Age of mutation was calculated considering W361X as the
most common disease causing mutation. Table 5 summa-
rizes the data linking the estimated age of mutation with
the alleles. Of the non-synonymous cSNPs, T400K of
ABCGS8 was found to be oldest polymorphism that arose
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Table 4: Results of pair-wise LD analyses

http://www.biomedcentral.com/1471-2350/7/13

Population M M2 ChiSq Pval A? D'

Caucasian INTI-21 INTI-7 20.01 1E-05 0.545 0.866
5'UTR-19 INTI-7 9.6l 0.002 0.256 0.594
Q604E INTI-7 7.14 0.008 0.239 0.489
T400K A632V 6.13 0.013 0.125 1.000
5'UTR-19 T400K 5.84 0.016 0.153 1.000
Q604E DI9H 5.02 0.025 0.174 1.000
INTI-7 T400K 4.94 0.026 0.111 1.000
R50C DI9H 4.79 0.029 0.234 0.484
INTI-21 T400K 4.45 0.035 0.153 1.000
E238L INT10-50 442 0.036 0.238 1.000
INTI-7 C54Y 44| 0.036 0.138 0.739
5'UTR-19 C54Y 4.24 0.040 0.134 0.619
T400K INT10-50 3.92 0.048 0.040 1.000
5'UTR-19 A565A 3.86 0.049 0.127 1.000
Q604E INTI-21 3.66 0.056 0.128 0.420

INT10-50 A632V 3.29 0.070 0.132 0.641
5'UTR-19 INTI-21 2.86 0.091 0.071 0.267

C54Y T400K 2.74 0.098 0.082 0.433
African-American 5'UTR-19 T400K 1.0l 9E-04 0.080 1.000
INTI-7 A565A 8.09 0.004 0.085 0.587
R50C DI9H 6.96 0.008 0.205 1.000
T400K A565A 6.56 0.010 0.088 0.557

Q604E INTI-21 5.82 0.016 0.119 0.505
5'UTR-19 AS565A 5.10 0.024 0.059 0.460
C54Y A565A 3.93 0.047 0.053 0.270

5'UTR-19 C54Y 3.49 0.062 0.047 0.481
R50C INTI-7 3.05 0.081 0.044 1.000
INTI-7 A632V 3.05 0.081 0.044 1.000
Q604E DI9H 3.0l 0.083 0.038 1.000

M1 = Istmarker in pair of SNPs, M2 = 2nd marker in pair of SNPs, ChiSq = Value of chi-square test of association, Pval = Two-sided P-value

corresponding to chi-square value in ChiSq column assuming | degree of freedom.

A? = Estimated value of Delta-squared measure of LD.
D' = Estimated value of Lewontin's [37] measure of LD.

about 2387 generations ago (~47,000 y). This SNP was
also closely spaced to W361X mutation. The youngest
cSNPS was estimated to be ~180 y old (C54Y). The only
cSNP we could estimate by this methodology in ABCG5
was Q604E (~4,000y old). We could not estimate the ages
in some of the SNPs due to insufficient information to
allow us to estimate recombination frequencies (indi-
cated by NA, Table 5).

Discussion

There are several reports correlating defects in a polygenic
disease with single nucleotide changes in the coding or
regulatory regions. SNPs also offer a substantial advantage
in linkage disequilibrium-based studies of disease gene
mapping [41], pharmacogenetics [42] and human evolu-
tion [43]. Studies of African, Asian and European Cauca-
sian populations have shown that both a dense marker
set, as well as larger sample size will be needed for a stable

fine-scale depiction of haploblocks [44,45]. Variations in
APOD gene were associated with an increased risk of early
onset of Alzheimer's disease in a group of Finns [46].
Responses to pharmacotherapy also vary from person to
person and in part can be accounted for by genetic varia-
tions and haplotype structures [47]. Thus characterization
of SNPs, as well as the haploblock structures will be useful
in defining the roles of genes in health and disease. We
have characterized SNPs present at the STSL locus in Cau-
casian families with sitosterolemia and in a group of nor-
mal healthy African-Americans. This locus is important as
its disruption leads to the human disorder, sitosterolemia
[3]. More importantly, this locus comprises of two genes,
ABCG5 and ABCGS8, which are critical in handling of die-
tary sterols and for biliary sterol excretion [48]. Thus they
are important in whole body sterol balance and have been
implicated in cardiovascular health. A number of studies
have been implicated this locus in disease (or physiologi-
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Table 5: Estimation of age of polymorphism fixation.

http://www.biomedcentral.com/1471-2350/7/13

SNP Allele Number of Number of Frequency Frequency Recombination Age Estimate
Disease Healthy (disease (healthy Fraction (generations)
Chromosomes®* Chromosomes™*  chromosome) chromosome)
R50C C 12 12 | | NA
Q604E G 2 | 0.167 0.083 0.058833 17.7
5'UTR-19 T I 10 0917 0.833 0.033059 9.1
DI9H G 12 12 | | NA NA
INTI-21 Cc 12 7 | 0.583 0.005 0
INTI-7 C I I 0917 0917 NA
C54Y A 9 5 0.75 0.417 0.02749 8.8
E238L G 12 12 | | NA
T400K A 10 3 0.833 0.25 0.0002 2387
INT10-50 T 12 12 | | NA
AS565A C 12 12 | | NA
G575R G 12 12 | | NA
A632V Cc I 10 0917 0.833 0.005692 529

*Qut of a total of 12 disease and 12 normal chromosomes, see Methods

cal) processes ranging from lipoprotein kinetics [22], cho-
lesterol absorption [27,29], obesity [27] to response to
drug therapy [26].

When performing power and sample size calculations for
disease or QTL genetic association, a critical parameter is
some measure of linkage disequilibrium between the trait
and marker locus [49-52]. Because the trait locus is unob-
served, this parameter is usually unknown. A surrogate
measure is some average marker-marker linkage disequi-
librium measure [53]. Our work determining marker-
marker linkage disequilibrium for SNPs in the ABCG5/
ABCGS8 gene cluster will enable researchers to perform
more realistic power and sample size calculations for
genetic association studies involving the ABCG5/ABCGS8
cluster. Prior to placing these studies in context of the data
reported herein, there are some important points that
need highlighting about our study. While this manuscript
was in submission, the HapMap data were reported [39].
This latter dataset is not only more dense, it examined 4
different populations. The Chinese and Japanese samples
show significantly more LD over this area, with much
larger haploblock structures than the Yoruba and the
CEPH populations (data not show, but available at [40]).
These data are in keeping with our analyses of the high
degree of homozygosity for markers spanning the STSL
locus in families with sitosterolemia originating from
Japan or China [5]. However, comparison of the SNPs we
genotyped to those in the HapMap dataset showed that a
significant number of cSNPs we genotyped were not ana-
lyzed in the HapMap dataset (see Table 1). Additionally,
one c¢SNP, M429V, which was reported to be relatively
more frequent in the Japanese population [29], was also
absent from the HapMap dataset analyzing the Chinese
Han and the Tokyo Japanese DNA samples. Thus our
analyses presented herein add to this body of knowledge.

We noted a number of differences between the Caucasian
and African-American populations. Some of these are
expected. For example, the African-American population
sampled contains many more variations and haplotypes.
Additionally, the haploblock structures were smaller and
the extent of linkage disequilibrium between markers was
lower, in keeping with the Out-of-Africa theory for the ori-
gins of humans. This was true for both our dataset as well
as analyses of the HapMap dataset. Some exceptions are
notable. SNPs in intron 1 of ABCG8 show some linkage to
a common non-synonymous SNP, Q604E, in ABCG5, but
present in exon 13 (almost 20 kb apart). It is not clear if
the intronic variations have a regulatory effect on tran-
scription, but these data draw attention to this possibility.
The transcriptional regulation of STSL remains poorly
characterized, with few definitive studies to indicate
which regulatory transcriptional factors, as well as nucle-
otide sequences are involved.

Four SNPs, 5' UTR-19, D19H, A259V, and A565A, in
ABCG8 were not in Hardy-Weinberg equilibrium for the
African-Americans. One explanation is sampling error.
Since the unrelated African-American samples were
gleaned from a sample collected for the presence of diabe-
tes and family members ascertained, it is possible that,
despite genealogical screens to remove related samples
etc., some non-randomness error has skewed the data.
This error may be compounded by the small sample size.
Another explanation is that there may be a selection proc-
ess that has led to this. We favor the first explanation,
although this issue will only be resolved with analyses of
a much larger sample. Secondly, we confirm that despite
the relative proximity of ABCG5 to ABCGS, there was sig-
nificantly less variation observed for ABCG5 and would
suggest some selection or difference in mutational rates
and fixation between ABCG5 and ABCGS8. Since ABCG5
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Figure 4

Haploview analyses of CEPH and Yoruba Africans genotyped by the HapMap Consortium. Using the data and
analyses available at the website, http://www.hapmap.org, we selected the genotypes for the CEPH and Yoruba populations.
The CEPH LD plot, using Haploview is shown above the Yoruba plot (inverted). As can be seen, for both, there is little evi-
dence of significant LD for the SNP makers used. Additionally, two hotspots for recombination were identified (depicted by
the red bars at the bottom of the picture), located at the ends of the STSL locus and involve the terminal exons of both ABCG5

and ABCGS8 (which contain the transmembrane domains).

and ABCGS8 are proposed to function as obligate het-
erodimers [54], and complete mutations in either gene
seems to result in an identical phenotype [8], these genetic
findings posit an enigma. It is not clear what selective
pressures may be responsible for this, if any. In rodents,
almost equal variations are noted in Abcg5 and Abcg8
[11,12]. It will be of some interest to see if this difference
in ABCG5/ABCGS8 variability is present in populations
related to Man, such as Chimpanzees and other greater
apes. We note that in the HapMap dataset, there are many
more SNPs reported for ABCG5. However, all of these are
exclusively located in the non-coding regions and, to date,
there are more cSNPs in ABCGS8 than there are in ABCGS5.
A number of association studies reporting linkage of cer-

tain SNPs at the STSL locus to a number of seemingly
unconnected phenotypes, ranging from response to a cho-
lesterol-lowering drug, to insulin sensitivity and lipopro-
tein kinetics in obese subjects have been reported.
Unfortunately, these do not intuitively allow for a selec-
tive advantage, positive or negative, that can explain the
differences in the variability between ABCG5 and ABCGS.

Compared to other markers, SNPs have a lower mutation
rate and are valuable for estimating age of mutations.
SNPs in ABCG5 appear to be newly created compared to
those in ABCG8. Additionally, in this study, we could not
replicate the identification of other polymorphic variants
in ABCG5, including some we have reported previously
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[8]. These are P9P, V5321 and V622M. This may reflect the
rarity of these SNPs and our small sample size. If so, to
investigate the role of these SNPs in biology may require
a much larger sample size. Additionally, these SNPs may
be race-related. For example, the M429V SNP was
reported in the Japanese samples and seems to play a role
in cholesterol absorption [29]. However, we were not able
to detect this SNP in either the Caucasian or the African-
American samples. Additionally this SNP was also not
reported in the Japanese and Chinese cohort in the Hap-
Map dataset. Thus, this SNP may represent another race-
specific polymorphism.

Conclusion

We report a detailed characterization of the STSL locus,
present data that show regions of LD at this locus and pro-
vide data that should allow for more accurate Power cal-
culations for studies examining the role of this locus in
human biology. Our dataset has uniquely analyzed SNPS
not reported in by the SNP consortium and therefore add
to this knowledge base.
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