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Abstract
Background: Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in
aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a
highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown.

Methods: We performed a large-scale association study investigating more than 25,000 single nucleotide
polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA
pools from white females selected for low (<0.87 g/cm2, n = 319) and high (> 1.11 g/cm2, n = 321) BMD
at the lumbar spine. Significant findings were verified in two additional sample collections.

Results: Based on allele frequency differences between DNA pools and subsequent individual genotyping,
one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome
5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with
low (<0.91 g/cm2) and 138 females with high (>1.04 g/cm2) lumbar spine BMD. Odds ratios were 1.5 (P =
0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with
80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association
containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females
with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09).
We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to
interact biologically with PDE4D, with BMD.

Conclusion: This study indicates that variants in the gene encoding PDE4D account for some of the
genetic contribution to bone mineral density variation in humans. The contrasting results from different
samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase
bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any
member of the PDE4 gene family in human osteoporosis.
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Background
The postmenopausal loss of bone mass and subsequent
increased risk of low-energy (fragility) fractures is an
important public health problem, especially in countries
with a high proportion of elderly individuals. More than
1 million fragility fractures, primarily in postmenopausal
women, occur each year in the US. The annual direct med-
ical costs exceed US$10 billion [1]. Bone mineral density
(BMD) measured with dual energy X-ray absorptiometry
(DEXA) has been widely used to estimate the risk of frac-
ture in epidemiological studies and to study treatment
effects of antiresorptive agents in clinical trials. There are
several well documented environmental and biological
factors known to influence bone mineral density and the
risk of fragility fractures including female gender, age, pre-
vious fragility fracture, low body weight, reduced lifetime
exposure to estrogen, low calcium intake, physical inactiv-
ity, vitamin D deficiency, smoking, and excessive alcohol
consumption [2-5]. There is also a strong genetic compo-
nent to interindividual BMD variability, with heritability
estimates ranging from 0.46 to 0.84 at different body sites
[6-8]. Numerous candidate genes have been tested for
association to BMD and fragility fractures. A polymor-
phism in a transcription factor-binding site of the collagen
1A1 (COL1A1) gene has shown one of the most consistent
associations to osteoporosis, even if the association is gen-
erally weak for BMD and varies between populations [9-
11]. Linkage studies have also been performed with the
aim of locating genetic loci influencing BMD variation
[12-19]. So far, the genes responsible for the resulting
linkage peaks have not been identified. Recently, linkage
of a compound osteoporosis phenotype was reported to
chromosome 20p12. Subsequent positional cloning
efforts implicated BMP2, the gene encoding for bone mor-
phogenetic protein 2, as responsible for the linkage [20].
Nevertheless, the associations reported thus far that have
been independently validated account for only a small
portion of the genetic contribution to BMD and
osteoporosis.

Studies that rely on direct association approaches based
on linkage disequilibrium within populations are
expected to have greater statistical power and be more fea-
sible to implement than traditional linkage studies to
identify common variations that influence common,
complex traits such as osteoporosis [21]. Recently, there
has been increasing interest in the use of whole-genome
association methods to identify genes that are involved in
complex trait variation. To date, however, few such large-
scale studies have been reported. In an effort to identify
genes and variants that influence risk of osteoporosis, we
conducted a large-scale study using more than 25,000 sin-
gle nucleotide polymorphisms (SNPs) located within
approximately 16,000 genes in DNA pools of unrelated
females at the extremes of the lumbar spine bone mineral

density distribution. A number of intriguing associations
identified in this study are currently being scrutinized in
further detail. In this paper we report the most advanced
of these, which is the association of a variation in PDE4D,
the gene encoding cyclic AMP-dependent phosphodieste-
rase 4D, with lumbar spine BMD. PDE4D selective inhib-
itors have been shown to promote osteoblast
differentiation in progenitor cells [22] and to increase
bone mass by promoting bone formation in normal mice
[23] but the gene has not until now been implicated in
human bone metabolism.

Methods
Subjects
Discovery sample: unrelated females from UK twin collection
The population sample from which the discovery samples
were chosen consisted of 5,436 female twins collected at
the Twin Unit at St Thomas Hospital, London, England.
They were selected without regard to health or trait. The
volunteers had been recruited through advertisements
and had undergone extensive investigation at the Twin
Unit at St Thomas Hospital. Investigations included sev-
eral questionnaires inquiring about present and past dis-
eases, symptoms, family history, socio-economical
factors, and medication. Subjects underwent an extensive
clinical assessment including DEXA measurements of
bone mineral density and anthropometric measurements
[17,24]. All individuals with data on lumbar spine BMD
were considered for inclusion. To exclude relatives, the
individual with the most extreme BMD was kept in each
twin pair. Individuals with diseases or medication known
to influence BMD were excluded, as were individuals
younger than 40 years because of the observed complex
relationship between age and BMD. In addition, individ-
uals with fractures were excluded from the high BMD
group. BMD values were adjusted for age, weight, BMI,
self reported leisure time physical activity, smoking, and
menopausal status using an ordinary least squares model
including second and third order polynomial terms for
age and second order terms for weight and BMI. We
included BMI and weight as covariates because both were
independently associated with BMD in this sample. Based
on the trade-off between group sizes and separation, tar-
get sizes of 350 were chosen, resulting in a separation of
approximately 1.9 SD between groups. After assessment
of DNA availability sufficient for such a large scale study,
group sizes were reduced to 319 and 321 individuals in
the high and low groups, respectively. Lumbar spine BMD
T-scores were calculated with the females between 20 and
35 years of age as the reference population. Based on this,
32% of the women in the low BMD group had osteoporo-
sis and an additional 58% had osteopenia according to
WHO criteria. The characteristics of the selected individu-
als are reported in Table 1.
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Replication sample: Australian twin collection
A twin sample from Royal North Shore Hospital, Sidney,
Australia was collected similarly as the UK twin collection.
731 individuals including twin pairs and singletons with
lumbar spine BMD assessments were available for geno-
typing (Table 3). Groups of unrelated subjects corre-
sponding to the lower and upper quartiles of the age- and
BMI-adjusted lumbar spine BMD distribution were
defined similarly to the discovery sample. The characteris-
tics of the selected individuals are reported in Table 1.

Replication sample: international multi-center sib-pair study
The second replication sample was a multi-center (Aus-
tralia, UK, New Zealand, Belgium) study that collected sib
pairs concordant and discordant for bone mineral density
[17]. Probands (BMD Z-score <-1.5 at lumbar spine, fem-
oral neck, or hip) were identified and their siblings were
contacted and underwent DEXA measurements at the
lumbar spine and hip. Participants had to be between 25–
85 years of age. Exclusion criteria included steroid medi-
cation, hyperparathyroidism, immobility, amenorrhea,
anorexia nervosa, and unstable thyroid disease. Nine hun-
dred and eight individual samples were genotyped from
392 families. In the present analysis we included only
females older than 40 years of age. In this sample the dis-
tribution of family sizes were 164 singletons, 248 families
of 2, 34 families of 3, 7 families of 4, and 3 families of 5
members (Table 3). Lumbar spine BMD levels were

adjusted by age and BMI as described for the Australian
sample.

Human subjects protection
All studies were approved by the appropriate research eth-
ics committees. All participants gave their informed con-
sent to participate in genetic studies before enrollment.

Bone mineral density
Bone mineral density was estimated from the L1-L4 verte-
brae, hip, and forearm using DEXA according to the user's
manual for the Hologic QDR 4500W, (Hologic, Waltham,
Massachusetts, United States) at all collection sites.

SNP markers and genotyping
A set of 25,494 SNP markers was selected from a collec-
tion of 125,799 experimentally validated polymorphic
variations [25]. This set was limited to SNPs located
within gene coding regions, minor allele frequencies
greater than 0.02 (95% have frequencies greater than 0.1),
and a target inter-marker spacing of 40 kb. SNP annota-
tion is based on NCBI dbSNP database, refSNP, build 118.
Genomic annotation is based on NCBI Genome Build 34.
Gene annotation is based on LocusLink genes for which
NCBI was providing positions on the Mapview FTP site.

For pooled DNA assays, 25 ng of case and control DNA
pools was used for amplification at each site. All PCR and

Table 1: Characteristics of subjects in the groups selected for low and high lumbar spine bone mineral density.

Discovery (UK) Replication (AUS) Replication (AUS)
Females Females Males

Trait Low BMD
(N = 319)

High BMD
(N = 321)

Low BMD
(N = 138)

High BMD
(N = 138)

Low BMD
(N = 34)

High BMD
(N = 34)

Age (years) 48/52/60 48/53/59 44/52/61 45/53/61 48/56/65 48/54/62

Menopausal status
Pre 29% (76) 31% (84) 41% (45) 36% (41) N/A N/A
Post 71% (184) 69% (190) 59% (66) 64% (73)

Smoking
Never 56% (177) 53% (168) 78% (93) 67% (93) 41% (14) 62% (21)
Former 26% (82) 29% (93) 22% (13) 20% (28) 47% (16) 21% (7)
Current 18% (56) 18% (57) 10% (13) 13% (17) 12% (4) 18% (6)

Weight (kg) 58/66/74 58/64/72 56/64/74 58/67/76 72/80/87 74/80/90
BMI 23/25/28 22/25/27 22/25/27 23/26/29 24/27/28 24/26/29
BMD spine (g/cm2) 0.74/0.80/0.87 1.12/1.19/1.26 0.77/0.87/0.96 0.98/1.10/1.17 0.88/0.92/1.03 1.00/1.14/1.21
Adjusted BMD spine (g/cm2) 0.77/0.81/0.84 1.14/1.18/1.23 0.80/0.84/0.87 1.08/1.13/1.19 0.86/0.90/0.93 1.15/1.17/1.25
BMD hip (g/cm2) 0.75/0.82/0.89 0.95/1.02/1.10 0.79/0.87/0.95 0.91/0.97/1.06 0.96/1.03/1.11 1.02/1.08/1.20
BMD femoral neck (g/cm2) 0.63/0.70/0.77 0.82/0.89/0.98 0.64/0.73/0.81 0.75/0.84/0.91 0.77/0.83/0.92 0.80/0.88/0.99
BMD forearm (g/cm2) 0.48/0.52/0.56 0.55/0.59/0.61 0.49/0.53/0.57 0.53/0.56/0.59 0.59/0.62/0.68 0.64/0.67/0.73

Categorical variables are reported as frequency percent (count). Quantitative variables are reported as 1st quartile/median/3rd quartile.
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MassEXTEND™ reactions were conducted using standard
conditions [26]. Relative allele frequency estimates were
derived from area under the peak calculations of mass
spectrometry measurements from four analyte aliquots as
described elsewhere [26]. For individual genotyping, the
same procedure was applied except only 2.5 ng DNA was
used and only one mass spectrometry measurement was
taken.

Primers used to genotype rs1498608 were ATAACCTCG-
GGGTCCAGAAA (forward PCR primer), GAATCCCTGT-
TCATTCCTTG (reverse PCR primer) and
CCCTAAAAACTGTTCCAGGTA (extension primer). The
primers used to genotype the Ser37Ala polymorphism in
BMP2 were AGCTGGGCCGCAGGAAGTTCG (forward
PCR primer), TCGTCAGAGGGCTGGGATGAG (reverse
PCR primer) and TGAGGGGCGGCCCGACG (extension
primer).

Statistical analysis
Tests of association between adjusted lumbar spine BMD
group and each SNP using pooled DNA were carried out
in a similar fashion as explained elsewhere [27]. Briefly,
the test statistic is based on the difference in allele fre-
quencies between the two groups divided by the known
sources of variation in each allele frequency estimate,
including sampling and pool-specific measurement varia-
tion. Sources of measurement variation incorporated in
the test statistic are pool formation, PCR/mass extension,
and chip measurement. When three or more replicate
measurements of a SNP were available within a model
level, the corresponding variance component was esti-
mated from the data. Otherwise, the following historical
laboratory averages were used: pool formation = 5.0 × 10-

5, PCR/mass extension = 1.7 × 10-4, and chip measure-
ment = 1.0 × 10-4.

Tests of association using individual genotypes were car-
ried out using a chi-square test of heterogeneity to com-
pare allele frequencies, and Fisher's exact test to compare
genotype frequencies (due to low frequency contingency
table cells). Confidence intervals and P-values for odds
ratios were derived using Fisher's exact test. When one or
more cell counts were zero, non-infinite odds ratios were
estimated by adding 0.5 to each cell [28]. In the samples
that included a combination of singletons, sib pairs, and
occasionally additional relatives, we estimated the rela-
tionship between genotypes and phenotypes using the
generalized estimating equations (GEE) approach with a
Gaussian link by clustering on family using an exchange-
able correlation matrix [29]. Hypothesis testing was car-
ried out with a Wald test statistic. The geepack
implementation of GEE in the R statistical software plat-
form was used [30]. No attempt was made to correct P-val-
ues for multiple testing. Rather, P-values are provided to

compare the relative strength of association. P-values less
than 0.05 are referred to as statistically significant.

Results
Initial genome scan in UK sample
We carried out a genome-wide association study using
25,494 SNPs located within 10 kb of 15,995 LocusLink
annotated genes. An overview of the investigative process
is shown in Figure 1. The basic design was a two-group
study in subjects from the tails of the adjusted lumbar
spine BMD distribution. We selected lumbar spine BMD
as the phenotype to create the contrasting groups because
it had a high estimate of heritability in our twin sample
(h2 = 0.82) [7]. The selected low and high BMD groups
consisted of 319 and 321 individuals, respectively. The
adjusted BMD range was 0.56–0.87 g/cm2 in the low BMD
group and 1.11–1.60 g/cm2 in the high BMD group, cor-
responding to the upper and lower 22nd percentiles. Other
characteristics of the samples are described in Table 1. To
facilitate the screening of such a large number of SNPs, we
employed a high-throughput approach using DNA pools,
chip-based mass spectrometry [26,31-33], and a three-
phase SNP selection strategy (Figure 1). In the first phase,
we performed a single PCR and primer extension reaction
for each SNP on two DNA pools consisting of equimolar
amounts of DNA from each individual in the low BMD
group and high BMD group, respectively. Relative allele
frequencies obtained from four mass spectrometry meas-
urements of the extension products were compared
between pools. In the second phase, the 1,520 SNPs
(~6%) with the most statistically significant associations
(nominal P-values < 0.05) were re-measured in triplicate
on each DNA pool. In the third phase, we genotyped the
140 most significant SNPs (9%) from step two (nominal
P-values < 0.02) on all individuals comprising the pools.
Based on the genotype results, 78 SNPs were confirmed to
have statistically significant allele frequency differences
between cases and controls (P < 0.05). The liberal criteria
for selecting SNPs from each phase represent a practical
trade-off between following up false positive versus over-
looking false negative associations. We chose to follow up
as many SNPs from each phase as seemed reasonable.

One of the associations was found with rs1498608, an A/
T polymorphism within intron 5 of PDE4D on chromo-
some 5q12. Allele frequencies for the T allele based on
genotyping were 0.91 in the low lumbar spine BMD pool
and 0.88 in the high BMD pool (OR = 1.5, P = 0.035).
Complete genotype counts and summary statistics are
reported in Table 2. Observed genotype frequencies were
consistent with expected frequencies under Hardy-Wein-
berg equilibrium within each study collection. Menopau-
sal status did not have a significant influence on the effect
(P = 0.87).
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Genome-wide studies using tens of thousands of SNPs
and liberal statistical selection criteria are expected to
yield a high proportion of false positive associations. To
distinguish the true genetic effects from among the false
positives, the 78 selected SNPs were genotyped in a sec-
ond twin sample from Australia.

Replication in Australian sample
The Australian replication sample, a combination of
female and male twin pairs and singletons, was analyzed
in two ways. First, to create a design and carry out an anal-
ysis comparable to the discovery sample, unrelated indi-

viduals were selected from the lower and upper quartiles
of the sex-specific adjusted lumbar spine BMD distribu-
tion (Table 1). A similar effect was observed for the
marker SNP rs1498608 in females (OR = 2.14, P = 0.018)
and males (OR = 1.55, P = 0.35) as in the original UK col-
lection (Table 2). The second method of analysis utilized
generalized estimating equation (GEE) models to take
into account all of the available genotype information by
carrying out a regression-type analysis while accounting
for familial covariance. The characteristics of this sample
are reported in Table 3. The regression of marker geno-
types on adjusted lumbar spine BMD, with sex included as

Overview of DNA pool-based large-scale association strategyFigure 1
Overview of DNA pool-based large-scale association strategy. Phases 1 and 2 are conducted using DNA pools yielding allele 
frequencies, all subsequent steps involve genotyping of individual samples. hME, homogeneous MassEXTEND; MS, mass spec-
trometry. See text for more details.

25,494 SNP markers

1,520 SNP markers

140 SNP markers

Phase 1

Phase 2

Phase 3

First-Pass Pooled Analysis
- 2 Pools (UK low & high BMD)
- 1x PCR/hME
- 4x Chip/MS

Second-Pass Pooled Analysis
- 2 Pools (UK low & high BMD)
- 3x PCR/hME
- 4x Chip/MS

Confirmation Genotyping
- Testing individuals from pools
- 319 low, 321 high (UK)
- 1x PCR/hME
- 1x Chip/MS

78 SNP markers
Replication Genotyping
- Testing independent samples
- 731 Australian sample
- 805 international sample

Validated Disease Candidates
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Table 2: Allele and genotype frequencies of rs1498608 in high and low lumbar spine BMD groups.

Sample Allele/Genotype Low N (Rel. Freq.) High N (Rel. Freq.) OR (95% C.I.) P-value

Discovery (UK)
Female A 52 (0.086) 77 (0.123) 0.035a

T 550 (0.914) 547 (0.877) 1.5 (1.0, 2.2)

AA 1 (0.003) 9 (0.029) 0.026b

AT 50 (0.166) 59 (0.189) 7.6 (0.99, 340) 0.042c

TT 250 (0.831) 244 (0.782) 9.2 (1.3, 410) 0.020c

Replication (AUS)
Female A 15 (0.054) 30 (0.109) 0.018a

T 261 (0.946) 244 (0.891) 2.1 (1.1, 4.4)

AA 0 (0.000) 3 (0.022) 0.048b

AT 15 (0.109) 24 (0.175) 4.4 (0.23, ∞) 0.541c

TT 123 (0.891) 110 (0.803) 7.8 (0.45, ∞) 0.108c

Male A 9 (0.132) 13 (0.191) 0.352a

T 59 (0.868) 55 (0.809) 1.6 (0.56, 4.5)

AA 1 (0.029) 3 (0.088) 0.754b

AT 7 (0.206) 7 (0.206) 3.0 (0.17, 180) 0.588c

TT 26 (0.765) 24 (0.706) 3.3 (0.24, 180) 0.610c

Abbreviations: Rel. Freq., relative frequency; OR, odds ratio; C.I., confidence interval. Odds ratios for the AT and TT genotypes are contrasted 
against the AA genotype. aChi-square test of heterogeneity comparing allele frequencies between high versus low. bFisher's exact test comparing 
three genotype frequencies between high versus low. cFisher's exact test comparing genotype frequencies in current table row and AA genotype 
between high versus low.

Table 3: Characteristics of complete genotyped replication samples.

Australian Twin Replication International Replication

Trait Females (N = 590) Males (N = 141) Females (N = 805)

Age (years) 40/52/61 47/54/64 52/59/67

Twin status
Singletons 42% (246) 48% (67) N/A
Dizygotic pairs 58% (72) 52% (37) N/A

Smoking status
Never 63% (368) 55% (78) 52% (317)
Former 24% (141) 30% (42) 26% (157)
Current 13% (77) 15% (21) 22% (130)

Weight (kg) 58/64/74 73/81/91 55/60/69
BMI 22/25/28 25/27/29 22/24/27
BMD spine (g/cm2) 0.89/0.99/1.09 0.92/1.03/1.13 0.71/0.80/0.94
Adjusted BMD spine (g/cm2) 0.89/0.99/1.06 0.93/1.02/1.12 0.74/0.81/0.92
BMD hip (g/cm2) 0.85/0.93/1.02 0.96/1.05/1.14 0.68/0.77/0.87
BMD femoral neck (g/cm2) 0.71/0.79/0.88 0.78/0.86/0.95 0.57/0.65/0.73
BMD forearm (g/cm2) 0.51/0.55/0.59 0.61/0.66/0.69 N/A

Categorical variables are reported as frequency percent (count). Quantitative variables are reported as 1st quartile / median / 3rd quartile.
Page 6 of 11
(page number not for citation purposes)



BMC Medical Genetics 2005, 6:9 http://www.biomedcentral.com/1471-2350/6/9
a covariate, found the AA genotype to be associated with
significantly higher levels than the AT (β = 7.8 g/cm2, P =
0.049) or TT (β = 8.0 g/cm2, P = 0.037) genotypes, thus
confirming the results observed in the unrelated tails of
this sample. Similar GEE analyses carried out for femoral
neck and hip BMD were not statistically significant.

Replication in international multi-center family study
Being a sample of mostly affected sib pairs, this sample
was unsuitable for formation of groups with contrasting
BMD because of the preponderance of individuals with
low BMD (Table 3). Therefore, we restricted the analysis
to using a generalized estimating equation, regressing
marker genotypes on BMD values. Surprisingly, the esti-
mates in this sample were opposite to that in the Austral-
ian sample, as the AA genotype was associated with lower
adjusted lumbar spine BMD values than both the AT (β =
-5.3 g/cm2, P = 0.11) and the TT (β = -5.4 g/cm2, P = 0.09)
genotypes. Using Z-scores at the femoral neck (P = 0.0007
and 0.0004), total hip (P = 0.003 and 0.007), and lumbar
spine (P = 0.03 and 0.02) as dependent variables con-

firmed this pattern of association. In all cases the AT and
TT genotypes had very similar point estimates.

Association fine mapping
In order to better define the extent of the region of associ-
ation and possibly identify other SNPs more strongly
associated with BMD, we performed DNA pool based
association fine mapping in the UK sample using 80 pub-
licly available intronic SNPs in the 100 kb region sur-
rounding the incident SNP (Figure 2). This analysis
identified a 20 kb region of association encompassing
exon 6 of PDE4D.

Replication of BMP2 association
As described in the discussion below, PDE4D inhibition is
known to influence BMP2-induced alkaline phosphatase
activity in osteoblast precursor cells. Recently, variation in
the gene encoding BMP2 was found to be associated with
osteoporosis in a study employing whole genome linkage
and subsequent positional cloning [20]. Since we were
unaware of any published independent attempts to repli-

Association fine mapping of PDE4D regionFigure 2
Association fine mapping of PDE4D region. Eighty public domain SNPs in a 100-kb window around the initial marker SNP (indi-
cated as a bold symbol at the center of the plot) were compared between the UK low and high BMD pools. Ten of 80 SNPs 
were significant at P = 0.05 (horizontal dashed line). The x-axis corresponds to the chromosomal position of each SNP, the y-
axis to the test P-values (--log10 scale). The continuous dark line presents the results of a goodness-of-fit test for an excess of 
significant associations (at a 5% significance level) in a 10-kb sliding window assessed at 1-kb increments. The continuous light 
gray line is the result of a nonlinear smoothing function showing a weighted average of the P-values across the region. The 
color of each point corresponds to the minor allele frequency of each SNP in the control sample (see legend below graph). 
Vertical dashed lines are placed every 20 kb. The LocusLink gene annotation for NCBI genome build 34 shows the location of 
exon six. All investigated SNPs are located within introns.
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cate this finding, we genotyped the Ser37Ala polymor-
phism in our UK and international samples. In the UK
sample, the allele frequency of the rare allele was 2.2% in
the low BMD group and 1.4% in the high BMD group,
with an odds ratio of 1.6 (P = 0.28). We tested for, but
were unable to detect, an interaction between the
Ser37Ala polymorphism and rs1498608 on the associa-
tion with lumbar spine BMD. In the international sample
we performed an allele based general estimating equation
to estimate the effect of the rare allele on BMD in that
sample. The allele frequency of Ala37 in this sample,
mainly selected for low BMD, was 1.9%. The effect of the
Ala allele was estimated to decrease the adjusted lumbar
spine BMD by 0.06 g/cm2 (P = 0.0029). There were no
homozygous Ala individuals in this sample.

Discussion
In an association study using SNPs in nearly 16,000 genes
we obtained evidence that variation in the SNP rs1498608
located within PDE4D is associated with low bone min-
eral density at the lumbar spine in females. PDE4D
encodes cyclic AMP-dependent phosphodiesterase 4D.
Phosphodiesterases are a superfamily of enzymes
involved in degradation of cyclic adenosine monophos-
phate (cAMP) and cyclic guanosine monophosphate
(cGMP) [34,35]. cAMP and cGMP are important second
messengers participating in the response of various cells
to hormones. In osteoblasts, cAMP produced in response
to parathyroid hormone or prostaglandins regulates oste-
oblastic differentiation [36-39], which leads to increases
in cancellous bone volume as indicated by experiments in
animal models [40-45]. The intracellular level of cAMP is
regulated by G protein-coupled adenylyl cyclase [46], and
degradation is mediated by the phosphodiesterases. The
phosphodiesterase superfamily consists of seven families,
PDE1-7, distinguished by substrate specificity, chromato-
graphic behaviour during purification, and affinity for
biochemical activators and inhibitors. Of these, the PDE4
family is specific for cAMP and is selectively inhibited by
rolipram. Four PDE4 genes, 4A, 4B, 4C, and 4D, have
been cloned from rat and humans, all of which are pre-
dicted to have multiple protein products due to alternate
spicing of RNAs. PDE4 inhibitors have been shown to
increase bone formation in normal mice [23] and to
ameliorate loss of bone mass in animal models of osteo-
penia [47,48]. PDE4A and PDE4D are expressed in two
common mouse osteoblastic cell lines, ST2 and MC3T3-
E1, that represent different stages in the osteoblast differ-
entiation pathway [22]. PDE4 inhibition with rolipram
increased BMP2-induced alkaline phosphatase activity, a
marker of early osteoblast differentiation in ST2 cells. Fur-
thermore, rolipram increased the expression of alkalic
phosphatase, osteopontin, collagen type I and osteocalcin
in the same osteoblast precursor cells [22]. In spite of
these experimental data, we are not aware of any pub-

lished attempts to investigate the role of PDE4 genes in
human osteoporosis. However, variation in PDE4D was
recently reported to be associated with the risk of ischemic
stroke [49]. Given the central role of PDE4 in second mes-
senger signalling, it is quite conceivable that PDE4D vari-
ants may have effects on the risk for different common
diseases. There are other examples of genes having such
pleiotropic effects, the most notable being APOE in hyper-
lipidemia and Alzheimer's disease [50,51]. It should also
be noted that Gretarsdottir et al found that the PDE4D
association with stroke was strongest for a region in the
recently extended 5' end of the gene, which is close to
1,000 kb upstream of rs1498608 [49]. Assuming a
contribution of PDE4D to the risk of osteoporosis as well
as stroke, it is possible that different domains are involved
in the different diseases.

Given the interaction between BMP2 and PDE4 for the
inhibition on osteoblastic differentiation in vitro, it is
interesting to note that variants in the gene encoding for
BMP2 have also been found to increase risk of osteoporo-
sis in humans [20]. In the current study, we replicated the
association between the Ser37Ala variant in BMP2 and
measures of osteoporosis in an international family-based
sample ascertained via low BMD probands. Although not
statistically significant, this finding was supported by the
results in the discovery sample of unrelated high and low
spine BMD subjects. The allele frequency in the low BMD
group was 2.2% and in the high group 1.4%, with an odds
ratio of 1.6 (P = 0.28). The rare allele was less common in
our low BMD group than the low spine BMD group (3%)
in the Icelandic sample. However, our allele frequencies
in the low and high BMD groups and the resulting OR cor-
responded well with the figures in the Danish sample
(1.8% vs 1.0%, RR = 1.8) reported in the same paper [20].
We found no evidence for statistical interaction between
the variations in BMP2 and PDE4D in either sample.
However, given the low minor allele frequencies of each
SNP, there was very little power to test for interaction
effects.

The starting point of the present study was a large-scale
association study of more than 25,000 SNPs located in
16,000 genes. After a stepwise selection process an
association between an intronic SNP in PDE4D and lum-
bar spine bone mineral density was detected, providing
the first evidence that a variant of this gene could
contribute to the risk of osteoporosis in humans. The
effect was similar in size in premenopausal and postmen-
opausal women, indicating that the effect would be on the
attainment of peak bone mass rather than the rate of
decrease in BMD after menopause. The lack of a detectable
interaction with female sex hormones is supported by
having observed a similar genetic effect in the small sam-
ple of males in our study. The genetic contribution to peak
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bone mass is possibly bigger and definitely better docu-
mented than the as yet unproven genetic influence on
postmenopausal bone loss [52], and it is possible that
PDE4D could contribute to this effect, especially in light
of the documented anabolic effect on bone by PDE4
inhibitors.

An association with an intronic SNP provides little evi-
dence for a change in amount or function of the protein
that could explain the association. None of the 80 SNPs
investigated as part of the association fine mapping were
non-synonymous coding changes, which is consistent
with the extraordinary lack of variation that others have
reported for all PDE classes [53] and PDE4D in particular
[49]. This makes it unlikely (but still possible) that the
observed association would be due to a non-synonymous
and disruptive single-base coding change in linkage dise-
quilibrium with our marker SNP. Therefore it is more
likely that the effect is mediated by a change in RNA splic-
ing or expression.

Given the functional similarity between different PDE4
enzymes, we went back and scrutinized our data for asso-
ciations with SNPs in the other PDE4 genes that may have
been overlooked during the first stage of the scan. The
only SNP in PDE4B in our assay set, rs1318475, was taken
through to the second stage (Figure 1) where it was esti-
mated to have an OR of 0.78 (P = 0.041), but failed the
criteria to be taken forward to the genotyping stage. Simi-
larly, a SNP roughly 18 kb downstream of PDE4C,
rs874628, was also taken forward to the second stage
where it displayed an OR of 1.3 (P = 0.08). These results
suggest that further investigation into possible associa-
tions between variants in all PDE4 genes and bone min-
eral density may be justified.

The route by which these genetic associations were arrived
at and the potential for spurious association must be con-
sidered. Recent published work has brought light to the
need for proper validation to verify genetic findings for
complex traits [54-56]. In the current study, the initial
association found between the PDE4D marker and bone
mineral density was one result from over 25,000 hypoth-
esis tests. A conservative Bonferroni adjustment to yield
an experiment-wide type I error rate of 0.05 would
demand a test-wise p-value on the order of 10-6. Given the
modest sample size, only common variations with rela-
tively large effects (OR > 2) would reach such significance
levels. Instead, we chose to be more mindful of the role of
type II error rates and apply a more liberal set of criteria in
the initial phases of the study and verify true genetic
effects by independent replication. The analysis of 78
selected markers in the Australian replication sample
resulted in multiple associations of continuing interest,
with rs1498608 displaying one of the strongest associa-

tions. A one-sided test of association comparing the
results in the discovery and replication samples yields a p-
value of 0.0074. This would not be considered significant
on an experiment-wide level after Bonferroni adjustment,
which would require a p-value on the order of 0.0006 or
lower. The analysis in the international replication sample
produced contradictory data in that the A allele, which in
the first two samples was associated with increased lum-
bar spine bone mineral density, was associated with
decreased BMD at all tested sites. The pattern of associa-
tion evident from the first two samples, with AT and TT
genotypes having very similar point estimates, was pre-
served in this sample, even in the face of the reverse direc-
tion of association. The highly statistically significant
association between rs1498608 and femoral neck and hip
BMD in this third sample and the consistency in the pat-
tern of association would be unexpected from a spurious
result. A possible explanation for the contradictory results
could be the fact that the international sample consists
mostly of individuals with low BMD since the probands
all have a BMD Z-score < -1.5, and most of the siblings
also have low BMD. It is possible that within such a
selected sample the relationship between rs1498608 and
BMD could be altered due to interactions with other
genetic or environmental factors.

The well-documented anabolic effect on bone by PDE4
inhibitors lends indirect support for the association
reported here, and it would seem that the possible role of
PDE4D variants in the genetic contribution to BMD in
humans merits further investigation.

Conclusion
The result of the present large scale association study
together with data from previously published animal
models suggest that genetic variation in the gene encoding
PDE4D contributes to the variation in lumbar spine BMD
in humans.
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