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CASE REPORT Open Access
Next generation sequencing with copy number
variant detection expands the phenotypic
spectrum of HSD17B4-deficiency
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Abstract

Background: D-bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe, infantile-onset
disorder of peroxisomal fatty acid oxidation. Few affected patients survive past two years of age. Compound heterozygous
mutations in HSD17B4 have also been reported in two sisters diagnosed with Perrault syndrome (MIM # 233400), who
presented in adolescence with ovarian dysgenesis, hearing loss, and ataxia.

Case presentation: An adult male presented with cerebellar ataxia, peripheral neuropathy, hearing loss, and
azoospermia. The clinical presentation, in combination with biochemical findings in serum, urine, and muscle biopsy,
suggested a mitochondrial disorder. Commercial genetic testing of 18 ataxia and mitochondrial disease genes was
negative. Targeted exome sequencing followed by analysis of single nucleotide variants and small insertions/deletions
failed to reveal a genetic basis of disease. Application of a computational algorithm to infer copy number variants
(CNVs) from exome data revealed a heterozygous 12 kb deletion of exons 10–13 of HSD17B4 that was compounded
with a rare missense variant (p.A196V) at a highly conserved residue. Retrospective review of patient records revealed
mildly elevated ratios of pristanic:phytanic acid and arachidonic:docosahexaenoic acid, consistent with dysfunctional
peroxisomal fatty acid oxidation.

Conclusion: Our case expands the phenotypic spectrum of HSD17B4-deficiency, representing the first male case
reported with infertility. Furthermore, it points to crosstalk between mitochondria and peroxisomes in HSD17B4-deficiency
and Perrault syndrome.
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Background
Patients with mitochondrial disorders can present with
cerebellar ataxia, often in combination with other neu-
rological and non-neurological symptoms [1]. Such dis-
orders can be caused by mutations in the mitochondrial
DNA or by recessive, dominant, or X-linked mutations
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in nuclear-encoded genes essential to mitochondrial
respiratory chain function [2]. Due to genetic and
phenotypic heterogeneity, single gene testing is often in-
effective and targeted exome sequencing is emerging as
an efficient alternative [3]. Here, we report the applica-
tion of such technology to a perplexing case of progres-
sive, cerebellar ataxia in whom traditional single gene
testing did not yield a molecular diagnosis.
Case presentation
A 35-year-old man presented for evaluation of a gait dis-
order progressing since childhood, cognitive impairment,
and sensorineural hearing loss. He had mildly delayed
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developmental milestones. Progressive ataxia necessitated
a cane by age 18, wheelchair-dependence by 29. He
needed assistance academically through school, and gra-
duated from college at age 26. Sensorineural hearing loss
was noted at age 34. Review of medical charts revealed
documented azoospermia. He was the product of neurolo-
gically healthy, non-consanguineous parents, with one
healthy, fertile sister.
Neurological examination revealed high arched feet,

hammer toes, and normal secondary sexual characteris-
tics. Oculomotor examination showed square wave jerks
at rest, gaze-evoked nystagmus, saccadic intrusions into
pursuit, hypermetric saccades, and failure to suppress
the vestibular ocular reflex. There was mild dysarthria,
moderate upper and lower extremity dysmetria, and
moderate gait ataxia (Brief Ataxia Rating Scale: 13/30).
Deep tendon reflexes were normal in the arms, exag-
gerated in the legs. Plantar responses were flexor. He
had impaired pin sense in the feet. Hearing was intact
on office testing. He had an average IQ (FSIQ = 98, 45th
percentile, WAIS-III), bland affect, reduced visual motor
Figure 1 MRI at age 35 demonstrating cerebellar volume loss with pr
I-J) Coronal T1; K-L) Sagittal T1.
processing speed, and was impaired on a card-sorting
task, a nonverbal test of concept formation and cognitive
flexibility, with perseverative errors and trouble main-
taining set.
Brain MRI from age 14 through 35 showed progressive

cerebellar volume loss (Figure 1). Nerve conduction stu-
dies revealed absent long latency responses in the legs,
symmetrically reduced motor conduction velocities in
arms and legs with normal amplitudes; needle exami-
nation was normal. Waking electroencephalogram was
normal. Audiology testing revealed mild decrease in hea-
ring for higher frequencies bilaterally, decreased speech
intelligibility, and word recognition 86% on the right, and
94% on the left.
Laboratory data included normal routine tests and

negative genetic tests for 18 mitochondrial or ataxia
genes (See Additional file 1). Testosterone was low at
164 ng/dL (270–1100) and follicle-stimulating hormone
(FSH) was elevated at 15 mIU/mL (1–8). Plasma lactate
was within normal limits, while pyruvate was essentially
normal at 0.18 mmol/L (0.08-0.16). Urine organic acid
eservation of cerebral hemispheres. A-D) FLAIR axial; E-H) T2 axial;
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analysis showed small amounts of lactate in urine. Tests
of long and very long chain fatty acids revealed elevated
total plasma ω-9 fatty acids (500 ug/mL or 24.07% of
total fatty acids; reference range: 15.4%-22.0%). The per-
centage of C18:2ω6 (linoleic) was low (490 ug/mL or
23.6% of total; range: 24.2%-33.8%), and the ratio of pris-
tanic acid/phytanic acid (0.19; range: 0.01-0.18), percen-
tage of arachidonic acid (208 ug/mL or 10.0% of total;
range: 4.0%-9.5%), and ratio of arachidonic/docosaehexe-
noic acid (5.6; range: 0.43-5.4) were mildly elevated.
Muscle biopsy appeared unremarkable on light and

electron microscopy. Muscle coenzyme Q10, free and
total carnitine, and acylcarnitine were normal, but elec-
tron transport chain testing of a skeletal muscle biopsy
(Additional file 1) revealed mild Complex I deficiency
(22% Complex I + III after normalization to citrate
synthase).

Results
Given the clinical suspicion of mitochondrial disease,
we performed targeted exome sequencing as previously
described, interrogating the entire mitochondrial DNA
(mtDNA) and the exons of 1598 nuclear genes im-
plicated in mitochondrial disease, mitochondrial func-
tion, or other disorders with phenotypic overlap [3].
We identified 1,569 single nucleotide variants (SNVs)
and small insertions/deletions (indels) in the patient’s
sample. We searched for pathogenic mtDNA variants
as well as autosomal recessive, dominant-acting, or
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hemizygous X-linked variants but did not identify a
likely genetic cause of disease [3].
To complement the SNV and indel analysis, we applied

CONIFER to identify large copy number variants (CNVs)
in our targeted exome data [4]. CNV analysis revealed
a potential 13 kb heterozygous in-frame deletion of
exons 10–13 of HSD17B4 (c.715-1207del; p.239_403del)
(Figure 2). Review of patient exome data revealed that
the patient also harbored a rare, heterozygous missense
variant in HSD17B4 (c.587C > T; p.A196V). The SNV was
not present in Exome Variant Server nor 1000 Genomes,
altered a residue conserved to bacteria within a predicted
NAD-binding domain, and is predicted to be “probably
damaging” by PolyPhen2. Familial genotyping confirmed
the deletion was inherited from the father, and com-
pounded with a missense mutation inherited from the
mother (Figure 2).
Recessive mutations in HSD17B4 have previously been

associated with infantile D-bifunctional protein (DBP)
deficiency (OMIM #261515) a severe disorder of pero-
xisomal fatty acid beta-oxidation that is generally fatal
within the first 2 years of life [5]. Recessive HSD17B4
mutations were more recently identified as the cause of
Perrault syndrome (OMIM #233400) in two sisters who
fulfilled the defining features of the syndrome (ovarian
dysgenesis and sensorineural deafness) and who also pre-
sented with peripheral neuropathy and ataxia [6]. Due to
the phenotypic overlap with the latter cases, the predicted
severity of the HSD17B4 mutations, and biochemical
C
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evidence of altered peroxisomal fatty acid metabolism, we
reached a diagnosis of HSD17B4 deficiency in our patient.

Discussion and conclusions
HSD17B4, also known as D-bifunctional protein (DBP), is
a peroxisomal enzyme that catalyzes multiple steps of
beta-oxidation of very long chain fatty acids (VLCFA).
While named for its homology to a steroid-converting
enzyme, the protein’s role in steroid hormone metabolism
is unclear [7]. The protein consists of three domains: an
N-terminal dehydrogenase domain, a hydratase domain,
and a sterol carrier protein (SCP) domain. The three
amino acids at the C-terminus (“AKL”) constitute the per-
oxisomal targeting signal (PTS). After peroxisomal import,
the 79-kDa full-length protein is proteolytically cleaved to
yield a 35-kDa dehydrogenase subunit and a 45-kDa
hydratase subunit containing the hydratase and SCP do-
mains [8].
Recessive mutations in HSD17B4 are known to cause

DBP-deficiency, an early-onset neurological disorder cha-
racterized by neonatal hypotonia, seizures, visual impair-
ment, and psychomotor retardation [5]. Patients with the
disorder generally die in infancy, although a small number
survive into their teens [9]. Like our patient, individuals
with DBP deficiency often show an elevated ratio of pris-
tanic to phytanic acid in plasma, reflective of dysfunctional
beta-oxidation in the peroxisome [10].
DBP-deficiency has been classified into subtypes based

on the affected enzymatic activities of HSD17B4. Type I
patients have deficiencies of both the hydratase and de-
hydrogenase subunits whereas types II and III have iso-
lated hydratase or dehydrogenase deficiency, respectively.
Recently, a Type IV category was proposed to describe
mildly affected patients with compound heterozygous
mutations affecting both subunits [11]. Our case may be
classified as type IV due to the mutations affecting both
subunits and the phenotypic similarity between our
patient and two teenage brothers categorized as type IV,
including the presence of cerebellar ataxia, polyneuro-
pathy, pes cavus, and hearing loss [11].
Recently, recessive mutations in HSD17B4 have been

identified in two sisters as a cause of Perrault syndrome
(OMIM #233400). Perrault syndrome was first defined in
1951 as ovarian dysgenesis and sensorineural hearing loss
in females [12]. Brothers of Perrault syndrome females
have been reported with hearing loss but are reportedly
fertile [13]. Perrault syndrome is genetically heteroge-
neous and recessive mutations in three additional genes
have been implicated to date, including HARS2, LARS2,
and CLPP, which respectively encode the mitochondrial
histidyl- and leucyl-tRNA synthetases and a mitochondrial
ATP-dependent protease [14-17].
The genotype and phenotype of our patient resemble

that of the two sisters recently diagnosed with Perrault
syndrome [6]. All three cases harbored compound hete-
rozygous HSD17B4 mutations affecting the dehydro-
genase and hydratase subunits. Both our patient and the
older of the two sisters presented with ataxia, demye-
linating polyneuropathy, pes cavus, and hearing loss,
with marked cerebellar atrophy on MRI. Although levels
of VLCFA levels were reportedly normal in the older
sister [18], our patient had alterations compatible with
DBP deficiency. While the previously reported sisters [6]
presented with ovarian dysgenesis, an essential charac-
teristic of Perrault syndrome, our male patient has azoo-
spermia with normal secondary sexual characteristics.
Our case raises the hypothesis that azoospermia can be a
feature of HSD17B4 deficiency in males, consistent with
the finding that HSD17B4 knockout mice exhibit male-
specific sterility with testicular lipid accumulation [19].
The mechanisms linking HSD17B4 deficiency and azoo-

spermia remain unclear. Our patient had low testosterone
levels, combined with an elevated FSH, suggesting primary
testicular failure. HSD17B4 was initially thought to be a
steroid-converting enzyme due to its sequence homology,
and the enzyme has been shown to display multifunc-
tional properties, including both fatty acid and estradiol
oxidation [7,20]. However, in vivo studies and computa-
tional evidence have suggested that its primary role is
likely in fatty-acid metabolism, while steroid conversion is
only a secondary and possibly minor activity in vivo [21].
Evidence in mice suggests that HSD17B4 may play an im-
portant role in lipid homeostasis in the testes, specifically
in Sertoli cells [19]. Further investigation is required to de-
termine how HSD17B4 deficiency may lead to male infer-
tility and low testosterone in humans.
The current case underscores clinical and biochemical

overlap between mitochondrial and peroxisomal disor-
ders. Our patient’s clinical presentation raised suspicion
of mitochondrial disease, leading to a skeletal muscle
biopsy that demonstrated mild respiratory chain defi-
ciency. Yet the genetic lesion lies within HSD17B4,
a protein classically annotated as being peroxisomal
based on detailed localization studies [7]. Interestingly,
HSD17B4 is also found within MitoCarta, a large-scale
inventory of the mitochondrial proteome [22], sugges-
ting that the protein may be dual localized. The other
three genes associated with Perrault syndrome (HARS2,
LARS2, CLPP) are also present in MitoCarta, were targeted
for sequencing, and no rare, protein-modifying variants
were present in the patient. Future studies will be required
to determine whether HSD17B4 can indeed be dual-loca-
lized to mitochondria and peroxisomes. If so, HSD17B4
would be added to a small but growing list of disease gene
products that can be dual localized to these two com-
partments (e.g. AGXT, MPV17) [23-24]. An alternative
explanation may be that defective peroxisomal fatty
acid catabolism can lead to secondary mitochondrial
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dysfunction [25], indicating biochemical crosstalk across
the two organelles.

Consent
Study protocols were approved by the Partners Human
Research Committee. Written informed consent was ob-
tained for publication of this case report and any accom-
panying images.
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Additional file 1: Supplementary materials including experimental
methods, clinical information, and a table of biochemical assay
results.
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