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Abstract

Background: Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway
smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic
variants were associated with AHR severity.

Methods: A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of
methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from
three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed
data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression
model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects
from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data
available for 419 white CAMP subjects.

Results: The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06),
located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level
in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value
(0.0067) for being an eQTL of AGFG1.

Conclusions: Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes
may be involved in modulating AHR. Future functional studies are required to confirm that our associations
represent true biologically significant findings.
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Background
Asthma is a common chronic respiratory disease affecting
over 25 million Americans and its prevalence has risen
over the past decade [1]. Airway hyperresponsiveness
(AHR), in which the muscles of the airway contract in re-
sponse to certain exposures, is one of the primary charac-
teristics of asthma and one that has been correlated with
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current asthma severity and future lung function [2-4].
Bronchoprovocation challenges with methacholine or his-
tamine have been widely used to quantify AHR in clinical
and research settings [5]. These tests consist in adminis-
tration of increasing dosages of a bronchoconstrictor until
a specific decrease in lung function is measured (e.g., 20%
drop in FEV1). The mechanisms by which AHR occurs
are not fully understood, but AHR has been related
directly to changes in airway smooth muscle contract-
ility as well as inflammation and airway remodeling
[6,7]. Asthma is a disease with demonstrated heritabil-
ity in humans, and several genes, including the IKZF3-
ZPBP2-GSDMB-ORMDL3 locus, HLA-DQ, IL1RL1, IL33,
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TSLP, SLC22A5, SMAD3, and RORA have been consist-
ently associated with asthma in genome-wide association
studies (GWAS) [8,9]. Although AHR is often used as a
quantifiable and reproducible surrogate of asthma in ani-
mal model studies of asthma genetics [10,11], the genetics
of AHR have not been widely studied in humans. None-
theless, the heritability of AHR is supported by a previous
twin study [12] and positional cloning and linkage analysis
studies of AHR [13,14]. Our goal was to measure the asso-
ciation of genetic variants with AHR severity via a GWAS.
We utilized data from 994 non-Hispanic white asthma

patients to measure the association of single nucleotide
polymorphisms (SNPs) with severity of AHR and found
that the strongest associations were at variants in two
genes: ArfGAP with FG repeats 1 (AGFG1) and integrin,
beta 5 (ITGB5). After attempting to replicate primary
findings in two independent populations (one composed
of subjects with asthma and one composed of patients
with COPD) and searching for evidence that variants
modified expression levels of their respective genes, we
found additional evidence to support the involvement of
AGFG1 in AHR. Evidence that ITGB5 was involved in
AHR was found in previous functional studies of human
airway smooth muscle cells.

Methods
Subjects
The primary group of subjects consisted of 994 non-
Hispanic white asthmatics from the Childhood Asthma
Management Program (CAMP) [15], and subsets of clin-
ical trials within the Childhood Asthma Research and
Education (CARE) network [16], and the Asthma Clinical
Research Network (ACRN) [17] participating in the
NHLBI SNP Health Association Resource Asthma
Table 1 Characteristics of GWAS subjects

CAMP

(n = 525)

Age - Mean (SD) 8.8 (2.1)

Gender – N (%) Male 322 (61)

Wash-out Prior to Methacholine Test* - Weeks 4

LnPC20 0.096 (1.21) −

Current smokers 0 (0)

Baseline FEV1 1.7 (0.5)

Baseline FEV1 % Predicted 94.4 (14.1)

Height [cm] 132.8 (13.6)

Weight [kg] 32.4 (10.9)

BMI [kg/cm^2] 17.9 (3.1)

*Subjects were allowed to use rescue medication during wash-out period.
§CARE trials included: CLIC, PACT, MARS.
¶ACRN trials included: BAGS, DICE, IMPACT, PRICE.
|The LnPC20 of the DAG cohort was calculated for 600 of the 650 asthmatics in the
Mean (Standard deviation) reported unless otherwise noted. CAMP, CARE, ACRN, an
composed of subjects with COPD who did not have asthma at the time of enrollme
Resource project (SHARP). Some demographic char-
acteristics of these cohorts are in Table 1 and further
details are provided in the Additional file 1. For each
trial, methacholine challenge tests were performed
according to American Thoracic Society criteria [18].
Baseline AHR measures were utilized, and AHR was
quantified as the natural log of the provocative con-
centration of methacholine that caused a 20% decrease
in FEV1 (LnPC20).

Genotyping and quality control
Genome-wide SNP genotyping for SHARP subjects was
performed by Affymetrix, Inc. (Santa Clara, CA) using
the Affymetrix Genome-Wide Human SNP Array 6.0.
Dataset quality control (QC) included the removal of re-
lated subjects (i.e. CAMP and CARE siblings), subjects
with missingness >5%, SNPs with minor allele frequency
(MAF) <0.05, missingness >5%, or not passing Hardy-
Weinberg equilibrium based on a threshold of 1E-03.
The genomic inflation factor (λGC) for the remaining
442,036 SNPs genotyped in SHARP subjects was 1.007,
demonstrating minimal population stratification. Fur-
ther genotyping and QC measures are provided in the
Additional file 1.

Statistical analysis
Imputation of all SNPs available in HapMap Phase 2 Re-
lease 22 CEU data using the Markov Chain Haplotyping
software (MaCH) [19] was performed for SHARP geno-
type data. The primary GWAS was based on the set of
2,154,322 imputed SNPs with MAF >0.05 and a ratio of
empirically observed dosage variance to the expected
(binomial) dosage variance greater than 0.3, indicating
good quality of imputation. The association of SNPs
CARE§ ACRN¶ LHS DAG|

(n = 195) (n = 274) (n = 3,354) (n = 650)

10.6 (2.9) 31.5 (10.3) 48.8 (6.7) 36.0 (13.8)

123 (63) 118 (43) 1949 (58.1) 291 (45)

0-4 1-6 - -

0.25 (1.35) 0.80 (0.68) 1.58 (0.93) 0.71 (1.63)

0 (0) 0 (0) 3,354 (100) 106 (16)

2.2 (0.8) 3.2 (0.8) 2.7 (0.6) 2.8 (0.9)

98.8 (13.0) 86.8 (13.5) 78.2 (10.0) 82.3 (20.5)

143.4 (16.8) 170.3 (10.0) 171.3 (8.9) 172.1 (11.5)

42.9 (18.1) 75.6 (18.2) 75.1 (14.8) 74.7 (17.6)

20.1 (4.9) 25.9 (5.3) 25.5 (3.9) 25.0 (4.8)

analysis.
d DAG are composed of subjects with asthma and not COPD, while LHS is
nt but may have had a past history of asthma.
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with LnPC20 was measured with a linear regression
model using dosage data as implemented in PLINK [20].
To be sure that demographic characteristics did not have
a strong influence on the association results, an add-
itional association model was created using sex, age,
height, and study as covariates. Plots of association re-
sults near specific genes were created using LocusZoom
with the hg18/HapMap Phase II CEU GenomeBuild/LD
Population [21]. Combined P-values with replication
populations were computed using Fisher’s combined
probability method [22] where hypothesis tests in repli-
cation populations had one-sided alternatives, based on
the direction of the association in SHARP, so that SNPs
with association tests in opposite directions would not
produce inappropriately small P-values. Replication of
SNPs with P-values <1E-05 in the primary GWAS was
attempted in two independent cohorts.

Genome-wide gene expression data
The Asthma BRIDGE project collected mRNA expres-
sion level data from 2,520 mRNA microarrays on 210
Illumina HumanHT-12 chips, among which 218 arrays
were genetic control arrays and 2,302 arrays were sam-
ple arrays from 1,481 subjects. We focused on the 419
arrays (47,053 gene probes) from whole blood samples
of 419 white CAMP subjects utilized in the current
study. Expression data were log2 transformed and quan-
tile normalized. The R Bioconductor GGtools package
(version 3.11.27) was used to perform cis-eQTL analysis,
in which chi squared tests were used to assess whether
genotypes of a SNP within 50 KB from both ends of a
gene were associated with the expression levels of the
gene after adjusting for age and gender [23].

Replication study
Dutch Asthma GWAS (DAG). This cohort was com-
prised of 650 DAG subjects with doctor-diagnosed
asthma and documented AHR [14,24]. All subjects had
smoking history and steroid use data available at the
time of the AHR test. Participants with known AHR but
in remission during the test were excluded. Remission
was defined as not on steroids and without 20% or
greater fall in FEV1 during the AHR test. The AHR test
was conducted using histamine or methacholine as a
stimulus. AHR was quantified as the difference between
FEV1 at baseline and at the dose step at which a 20% or
greater FEV1 drop was achieved, divided by the dose of
stimulant used (slope). Because two protocols were used,
one with a 30-second tidal breathing method and a sec-
ond with a 2-minute tidal breathing phase, the AHR
slopes measured with the 30-second tidal breathing
method were divided by 4, in order to compensate for
the 4 times greater duration of administration of stimu-
lus. Slope values were log-transformed so that they
would follow a normal distribution. To compare DAG
subjects to those of the primary GWAS, PC20 was cal-
culated in 600 of the 650 subjects that had a 20% or
greater drop in FEV1 at the highest provocation dose.
Genotyping was performed using the Hapmap 317 K
platform or Illumina 370 Duo Chip. Tests of AHR asso-
ciation were performed via linear regression, with smok-
ing and inhaled/oral steroid use as covariates using
PLINK.
Lung Health Study (LHS). This cohort consisted in a

subset of 3,354 individuals with COPD from the multi-
center (10 centers) North American LHS [25]. The ini-
tial study population consisted of 5,887 men and women
(63% male) who were smokers (aged 35–60) at enroll-
ment with spirometric evidence of mild to moderate
lung function impairment. While a history of asthma
was not a criterion for study exclusion, subjects were ex-
cluded if they regularly used asthma medications, in-
cluding bronchodilators and glucocorticoids. For the
AHR GWAS, the subset of European American LHS
participants with adequate DNA and valid methacholine
measurements at baseline was utilized. Spirometry was
performed following ATS criteria, and details of the
methacholine challenge tests have been provided previ-
ously [26]. Samples were genotyped using the Illumina
Human660W-Quad v.1_A BeadChip. Genotyped SNPs
were imputed from CEU using 1000 Genomes Project
data as a reference. Association of SNPs with log10 of
PC20 was measured using linear regression under an
additive model and while adjusting for gender, age at
baseline, clinic site, log10(weight in kg), FEV1 (in L), and
FEV1/FVC.
The current study was approved by the Partners Hu-

man Research Committee (Partners HealthCare, Inc.,
Boston, MA). Collection of data for the existing human
cohort studies was approved by the Institutional Review
Board of the corresponding institution(s), which ensured
that all procedures followed were in accordance with the
ethical standards of the responsible committee on hu-
man experimentation, as detailed in the cited works. In-
formed consent was obtained for all study participants.

Results
Characteristics of all subjects are provided in Table 1.
The primary GWAS measured the association of SNPs
with AHR in 994 non-Hispanic white subjects. The
quantile-quantile (QQ) plots for both imputed and geno-
typed SNPs revealed that the distributions of association
P-values were similar to those expected for a null distri-
bution [Figure 1]. The lowest P-values (<1E-05; Table 2)
among the primary GWAS are in four regions, two of
which correspond to genes: ArfGAP with FG repeats 1
(AGFG1) and integrin, beta 5 (ITGB5) [Figure 2;
Additional file 1: Table S1]. Comparison of primary



Figure 1 Quantile-quantile (QQ) plot. Comparison of primary GWAS P-values to those expected for a null distribution. Distribution of
genotyped (red) and imputed (blue) GWAS results shows little evidence of deviation of measures at the tail, making the distinction among SNPs
having low P-values representing true associations vs. those SNPs having low P-values by chance challenging.
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association results to those generated with a model
that adjusted for sex, age, height, and study revealed
that there were no great changes in rankings or
P-values, particularly for the top SNPs [Figure 3].
Because some of the top-ranked associations could
Table 2 Primary GWAS top results (P-values <1E-05)

SNP CHR BP Reference allele Fre

rs848788 3 126011114 C

rs6731443 2 228105810 G

rs13382948 2 228127201 A

rs10189795 2 228087105 C

rs4861175 4 41932655 A

rs614664 3 125969683 A

rs702036 3 125983762 A

rs296282 5 106163683 C

rs4972983 2 228101412 A

rs7592613 2 228159434 C

rs11683662 2 228156272 A

rs7579157 2 228153974 C

rs7595130 2 228151796 A

rs11674314 2 228150452 C

rs4129709 2 228146793 A

rs4485561 2 228081927 G
represent biologically meaningful ones, we proceeded
to attempt to replicate them in two independent popu-
lations. The SNPs in/near AGFG1 replicated at a nom-
inally significant level (i.e. P-value <0.05) in LHS, while
no replication was obtained in DAG [Table 3].
quency Rsq BETA SE P-value Gene

0.36 0.97 −0.28 0.06 7.2E-07 ITGB5

0.55 1.00 −0.25 0.05 2.5E-06 AGFG1

0.45 1.00 0.25 0.05 2.6E-06 AGFG1

0.45 1.00 0.25 0.05 3.8E-06 AGFG1

0.18 1.00 −0.32 0.07 4.9E-06 -

0.37 1.00 −0.25 0.06 6.0E-06 ITGB5

0.63 0.98 0.25 0.06 7.1E-06 ITGB5

0.22 0.56 0.38 0.09 8.0E-06 -

0.57 1.00 −0.24 0.05 9.0E-06 AGFG1

0.61 1.00 −0.24 0.05 9.3E-06 AGFG1

0.61 1.00 −0.24 0.05 9.3E-06 AGFG1

0.39 1.00 0.24 0.05 9.4E-06 AGFG1

0.39 1.00 0.24 0.05 9.5E-06 AGFG1

0.39 1.00 0.24 0.05 9.6E-06 AGFG1

0.61 1.00 −0.24 0.05 9.7E-06 AGFG1

0.43 1.00 0.24 0.05 9.8E-06 AGFG1



Figure 2 Association regions of SNPs in/near (A) AGFG1 and (B) ITGB5. The x-axes denote position along corresponding chromosomes. The
y-axes denote –Log10(P) corresponding to primary GWAS P-values of association with AHR. LD between the SNPs with the lowest P-values
(rs6731443 and rs848788, in panels (A) and (B), respectively) to each SNP in the plots is denoted by colors and was computed according to
hg18/HapMap Phase II CEU data. Plots were created using LocusZoom [21].

Figure 3 Comparison of P-values generated for genotyped SNPs from the unadjusted primary GWAS vs. those from a model in which
sex, age, height, and study were used as covariates. The results reveal that adjustment for these covariates did not drastically alter the
ranking or P-values of SNPs.
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Table 3 Attempted replication of top results in independent populations

SHARP LHS DAG

SNP P-value Beta P-value Beta P-value Fisher combined P-value AGFG1 eQTL P-value in CAMP

rs6731443 2.5E-06 −0.022 0.012 −0.026 0.39 2.14E-06 0.0067

rs13382948 2.6E-06 0.021 0.015 0.026 0.39 2.75E-06 0.0067

rs10189795 3.8E-06 0.022 0.012 0.030 0.37 2.97E-06 0.0052

rs4972983 9.0E-06 −0.021 0.017 −0.034 0.35 8.62E-06 0.0052

rs4485561 9.8E-06 0.020 0.022 0.034 0.35 1.15E-05 0.0052

rs848788 7.2E-07 −0.009 0.20 0.027 0.61 1.30E-05 -

rs11683662 9.3E-06 −0.020 0.025 0.043 0.68 2.21E-05 -

rs7579157 9.4E-06 0.019 0.025 −0.041 0.67 2.23E-05 -

rs7595130 9.5E-06 0.019 0.025 −0.040 0.67 2.24E-05 -

rs7592613 9.3E-06 −0.020 0.026 0.042 0.68 2.25E-05 -

rs4129709 9.7E-06 −0.019 0.025 0.045 0.69 2.27E-05 0.034

rs11674314 9.6E-06 0.019 0.025 −0.041 0.68 2.27E-05 0.034

rs614664 6.0E-06 −0.011 0.14 0.041 0.67 6.73E-05 -

rs702036 7.1E-06 0.011 0.14 −0.037 0.65 7.58E-05 -

rs4861175 4.9E-06 0.003 0.60 0.077 0.92 2.60E-04 -

rs296282 8.0E-06 0.001 0.46 - - - -

Reference alleles are those listed in Table 2. For eQTL, the gene for which transcripts are differentially expressed based on the corresponding SNP is AGFG1. SNPs
with no listed eQTL P-values do not meet nominal significance (i.e. P-value >0.05) for any gene.
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To find further support that the associations measured
represent biologically relevant findings, we searched for
evidence that any are eQTL for the genes in/near them
among CAMP subjects who were part of the Asthma
BRIDGE genomics study. The SNPs in/near AGFG1 had
Figure 4 Expression Quantitative Trait Loci (eQTL) results for AGFG1 e
represented along the x-axis are GG (0), GT (1) and TT (2). The AGFG1 prob
Hoirhennr8UexQTd6I. Plots of AGFG1 eQTLs for other top SNPs in Table 2 a
nominally significant unadjusted P-values for being asso-
ciated with expression levels of AGFG1 in whole blood
[Table 3, Figure 4]. None of these P-values passed
Benjamini-Hochberg correction criteria as part of a
genome-wide search for eQTL, nor were the expression
xpression levels by genotype of SNP rs6731443. The genotypes
e used to plot expression levels has Illumina Probe ID
re similar to those in this Figure.
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levels of AGFG1 significantly correlated with AHR. None
of the other SNPs with P-value <1E-05 in the primary
GWAS had nominally significant eQTL.

Discussion
Our understanding of asthma genetics has increased in re-
cent years, partly because of the success of large-scale
multi-center GWAS [8,9]. Asthma GWAS have identified
a robust set of genes that are consistently associated with
the disease in diverse populations (e.g. the IKZF3-ZPBP2-
GSDMB-ORMDL3 locus, TSLP, and RORA), as well as
genes that seem to be race/ethnicity specific (e.g. PYHIN1).
In addition to studying asthma directly, GWAS have been
carried out for related traits, including bronchodilator re-
sponse [27], plasma IgE concentration [28], and response
to inhaled corticosteroids [29]. Compared to asthma
GWAS, the study of asthma-related traits has been chal-
lenged by the smaller sized cohorts available and the lack
of uniform measures of interest across cohorts. While
asthma-related trait GWAS often suffer from decreased
statistical power due to their smaller sample sizes, they
have some advantages over the study of asthma. Asthma-
related traits can be expressed quantitatively, and this may
result in increased statistical power to detect associations
by capturing phenotypes that do not require arbitrary clas-
sification thresholds [30]. Moreover, the investigation of
specific intermediate phenotypes of asthma may reduce
phenotypic heterogeneity and facilitate the functional valid-
ation of association results as some of these traits are more
easily simulated in vitro and in animal models [27].
Because AHR is a complex phenotype, our GWAS re-

sults are limited by our ability to properly define it in
subjects. In a previous study of CAMP subjects, the re-
peatability of PC20 measures over the 4-year length of
the clinical trial was high, as demonstrated by intraclass
correlation coefficients, after adjusting for age, race/eth-
nicity, height, family income, parental education, and
symptom score, of 0.67 for subjects taking budesonide
or placebo and 0.73 for subjects taking nedocromil [31].
A twin study of methacholine responsiveness found that
the intrapair correlation coefficient among monozygotic
twins (0.67) was significantly greater than that for dizyg-
otic twins (0.34) [12]. Positional cloning and linkage ana-
lysis studies of AHR have identified two well-validated
asthma candidate genes: ADAM33 [13] and PCDH1
[14]. Although the high intraclass correlation of AHR
measures and previous twin and association studies sug-
gest that AHR is a heritable trait, AHR varies in time
within individuals and is influenced by environmental
factors and medication usage. Among the baseline AHR
measures used in our GWAS, some were taken after pla-
cebo washout periods of varying length, while others
were taken in subjects (e.g. some from CARE) who were
not necessarily off of asthma medications [Table 1]. This
difference would decrease our ability to detect signifi-
cant relationships, such that less significant associations
would be detected than if all subjects had had a placebo
washout.
We performed our GWAS using subjects with AHR

measures from as many asthma trials as possible in
order to maximize our statistical power to detect associ-
ations. Nonetheless, partly because AHR is not always
measured in asthma clinical trials, our sample size was
limited to 994. One significant difference among the trials
we utilized is that the CAMP inclusion criteria included
having AHR, such that 12.5 mg/dl of methacholine or less
resulted in a 20% drop in FEV1. Nonetheless, CAMP and
CARE had similarly severe AHR (mean LnPC20 0.096 (SD
1.21) and −0.25 (SD 1.35), respectively). CAMP and CARE
were also similar in terms of age, sex, and baseline FEV1

[Table 1]. These two pediatric populations contrast with
ACRN, which was composed mostly of adults, had a
greater proportion of female participants, less severe AHR
(mean LnPC20 0.80 (SD 0.68)), and lower baseline FEV1.
We investigated some of the effects of trial heterogeneity
on our primary association results by performing the
GWAS while adjusting for sex, age, height, and study. As
Figure 3 shows, these covariates did not have a strong in-
fluence on the ranks or P-values obtained. Because
performing the adjustment for covariates limited our sam-
ple size further to 989 due to missing demographic vari-
able entries for some subjects, we opted to utilize the
unadjusted results.
The replication populations were also distinct from

our primary populations. DAG quantified AHR differ-
ently than all other cohorts, as the slope defined by the
change in FEV1 between the stimulant dose step at
which a 20% or greater FEV1 drop was achieved vs. base-
line, divided by the dose of stimulant used. This defin-
ition allowed for the inclusion of subjects who did not
achieve a PC20 at the doses of stimulants administered,
and hence, allowed for the inclusion of subjects with less
severe AHR. Fifty of 650 DAG subjects did not have
PC20 measures, and hence, the estimate of mean
LnPC20 provided in Table 1 is biased in that it does not
include the measures of patients with less severe AHR.
The AHR severity among LHS participants was also
lower, on average, than that for primary cohort subjects
(mean LnPC20 1.58 (SD 0.93)). While no participants of
CAMP, CARE, or ACRN were smokers at the time of
baseline AHR measures, LHS was a clinical trial that
specifically enrolled adult smokers with COPD, while
DAG was an observational study that included both
smokers and non-smokers with asthma. Because smoking
is known to affect lung function, AHR measures in both
of these cohorts are likely affected by the smoking status
of their participants. Further, LHS was not composed of
asthma patients, and hence, it is likely that some of the
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biological mechanisms underlying its subjects AHR do
not overlap with those of asthma patients. Despite the
large differences among cohorts, we attempted to replicate
our primary findings in LHS and DAG to assess their
generalizability.
For the primary GWAS, four independent regions had

P-values <1E-05 [Table 2]. While due to the small sam-
ple size of our primary GWAS, it is not surprising that
none of these regions met traditional genome-wide sig-
nificance levels, two of the top regions were composed
of multiple SNPs within two genes (i.e. AGFG1 and
ITGB5), which increased the likelihood that the associa-
tions were biologically significant. The top ITGB5 asso-
ciation was at SNP rs848788 (P-value 7.2E-07), while the
top AGFG1 association was at SNP rs6731443 (P-value
2.5E-06), both intronic SNPs of the corresponding genes.
We utilized the AceView tool [32] to gather current in-
formation for these genes. The ITGB5 gene maps to
chromosome 3 at 3q21.2, and covers 139.46 kb, from
124620254 to 124480791 (NCBI 37, August 2010).
ITGB5 is a highly expressed gene in many tissues, in-
cluding lung, with 15 different mRNAs and 10 probable
alternative promoters. The gene has been studied widely
and its product, integrin β5, is involved in cell adhesion
and integrin-mediated signaling. Of most relevance to
AHR, one study by Tatler, et al., investigated whether
contraction agonists could promote TGF-β activation in
human airway smooth muscle (HASM) cells and found
that integrin ανβ5 was a mediator of this activation [33].
Specifically, lysophosphatidic acid (LPA) and methacholine
activation of TGF-β, a cytokine that has been implicated in
airway remodeling in asthma, was shown to be abrogated
by an ανβ5 blocking antibody. Further, the β5 cytoplasmic
domain of integrin ανβ5 was found to be involved in LPA
activation because a polymorphism in this subunit reversed
the integrin ανβ5 activation of TGF-β. Comparison of
normal and asthmatic HASM cells found that asth-
matic HASM had increased LPA-induced, integrin
ανβ5-mediated TGF-β activity, and that this increase
was not due to increased cell surface expression of in-
tegrin ανβ5. While we were unable to replicate the pri-
mary GWAS ITGB5 associations in two independent
populations, and there was no evidence that the corre-
sponding SNPs were eQTL in whole blood of CAMP
subjects, the study by Tatler, et al., suggests that polymor-
phisms in ITGB5 could play a role in modulating HASM
response to contraction agonists via mechanisms that do
not involve changes to the expression levels of the genes
whose products form integrin ανβ5. Further, it is possible
that our top ITGB5 SNPs are eQTLs of this gene HASM
cells and not in whole blood, which is the tissue for which
we currently have eQTL measures. Thus, it is possible that
the ITGB5 association we observed truly reflects a genetic
change that modulates AHR.
Our association results for AGFG1 variants were stron-
ger than for ITGB5 ones in that we were able to replicate
them in one of two independent populations (lowest com-
bined P-value across all cohorts was rs6731443 2.14E-06)
and the corresponding SNPs were nominally significant
eQTL of AGFG1. The AGFG1 gene maps to chromosome
2, at 2q36.3, covering 89.07 kb, from 228336873 to
228425938 (NCBI 37, August 2010). AGFG1 is also a
highly expressed gene in many tissues, including lung, with
17 different mRNAs and 4 probable alternative promoters.
The protein encoded by this gene (a.k.a. RIP, HRB) binds
the activation domain of the human immunodeficiency
virus (HIV) Rev protein when Rev is assembled onto its
RNA target, and is required for the nuclear export of Rev-
directed RNAs [34]. While many studies of AGFG1 focus
on its relationship to HIV, AGFG1 has also been found to
be involved in influenza A genome trafficking from the
host nucleus to plasma membrane [35]. Because asthma
development and severity are known to be influenced by
respiratory pathogens, including influenza [36], current
knowledge of AGFG1 suggests that if our association and
eQTL data for this gene represent true biologically signifi-
cant findings, their relationship with AHR may involve
changes in immune response or susceptibility to external
factors (e.g., influenza). Further functional validation
of the eQTL results, including via quantitative RT-PCR
of AGFG1 in subjects with various genotypes of the
SNPs listed in Table 3 and for various tissues/cell
types, would help clarify whether any relationship
between the identified AGFG1 variants and its expres-
sion levels truly exists. Because the nominal replication
of AGFG1 associations was observed in LHS, a clinical
trial that measured baseline AHR in smokers who did
not have current asthma, it is possible that the AGFG1
association reflects biological processes modulating
AHR that are not unique to asthma.

Conclusions
An AHR GWAS among 994 asthma patients found that
the most strongly associated SNPs, rs848788 (P-value
7.2E-07) and rs6731443 (P-value 2.5E-06), were in the
ITGB5 and AGFG1 genes, respectively. The ITGB5 asso-
ciation did not replicate in two independent populations,
nor was there any evidence that the corresponding SNP
was an eQTL of ITGB5. The AGFG1 result replicated
at a nominally significant level in one independent
population of COPD subjects (LHS P-value 0.012),
and the SNP had a nominally significant unadjusted
P-value (0.0067) for being eQTL of AGFG1. While fu-
ture functional studies are required to validate the
potential involvement of these SNPs in modulating
AHR, current knowledge of both genes suggests that
our associations may represent biologically significant
findings.
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