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Abstract

Background: Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant disorder characterised by facial
dysmorphism, growth and psychomotor developmental delay and skeletal defects. To date, causative mutations in
the NIPBL (cohesin regulator) and SMC1A (cohesin structural subunit) genes account for > 50% and 6% of cases,
respectively.

Methods: We recruited 50 patients with a CdLS clinical diagnosis or with features that overlap with CdLS, who
were negative for mutations at NIPBL and SMC1A at molecular screening. Chromosomal rearrangements accounting
for the clinical diagnosis were screened for using array Comparative Genomic Hybridisation (aCGH).

Results: Four patients were shown to carry imbalances considered to be candidates for having pathogenic roles in
their clinical phenotypes: patient 1 had a 4.2 Mb de novo deletion at chromosome 20q11.2-q12; patient 2 had a 4.8 Mb
deletion at chromosome 1p36.23-36.22; patient 3 carried an unbalanced translocation, t(7;17), with a 14 Mb duplication
of chromosome 17q24.2-25.3 and a 769 Kb deletion at chromosome 7p22.3; patient 4 had an 880 Kb duplication of
chromosome 19p13.3, for which his mother, who had a mild phenotype, was also shown to be a mosaic.

Conclusions: Notwithstanding the variability in size and gene content of the rearrangements comprising the four
different imbalances, they all map to regions containing genes encoding factors involved in cell cycle progression or
genome stability. These functional similarities, also exhibited by the known CdLS genes, may explain the phenotypic
overlap between the patients included in this study and CdLS. Our findings point to the complexity of the clinical
diagnosis of CdLS and confirm the existence of phenocopies, caused by imbalances affecting multiple genomic
regions, comprising 8% of patients included in this study, who did not have mutations at NIPBL and SMC1A. Our results
suggests that analysis by aCGH should be recommended for CdLS spectrum cases with an unexplained clinical
phenotype and included in the flow chart for diagnosis of cases with a clinical evaluation in the CdLS spectrum.
Background
Cornelia de Lange syndrome (CdLS) is a rare, genetically
heterogeneous (OMIM #122470, #300590 and #610759),
multiple congenital anomaly/intellectual disability disease
[1,2], characterised by distinctive facial dysmorphism,
pre- and post-natal growth deficiency, psychomotor delay,
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intellectual disability and malformations of the upper
limbs (ranging from small hands to complete limb reduc-
tion). CdLS also often involves specific medical complica-
tions such as gastroesophageal reflux, hypoacusia and
seizures. Its clinical presentation ranges from mild/border-
line to severe [3], and this variability has led to the defin-
ition of a list of consensus diagnostic criteria integrated
into a global scoring system of phenotype severity [4],
which are an accepted standard [5-7].
Known CdLS-associated genes encode structural and

regulatory proteins of the cohesin pathway, which is
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involved in chromosome segregation, DNA repair, gene
expression and chromosome conformation [8]. The first
major gene to be identified was NIPBL, which is located
at chromosome 5p13.2, encodes a member of the
adherin family [9,10], and mutations in this gene are re-
sponsible for > 50% of CdLS patients. All types of NIPBL
point mutations have been described, although truncat-
ing mutations are generally associated with a more se-
vere phenotype than missense and regulatory mutations
[5,9-24]. Microdeletions involving one or more exons of
the NIPBL genomic region, and large rearrangements
extending to the NIPBL flanking regions, and correlating
with severe syndromic presentation, have also been
reported [25-27].
Locus heterogeneity in CdLS has been demonstrated

by the X-linked form caused by mutation of the SMC1A
gene, which encodes a subunit of the cohesin complex
[28]. SMC1A alterations contribute up to 6% of all CdLS
cases and include only missense mutations or in-frame
deletions that preserve the protein reading frame
[14,24,28-31]. So far, only one patient has been found to
have a mutation in the SMC3 gene, which encodes the
other SMC cohesin component, and its epidemiological
impact has not yet been defined [29]. Very recently,
mutations in the HDAC8 gene, a vertebrate SMC3
deacetylase, have been identified in CdLS probands [32],
and mutations in RAD21 gene have been found in six
patients with CdLS features [33]. The remaining CdLS
cases may be due to as yet undetected mutations in the
known genes or by other causative anomalies.
The genomic technology of array Comparative Gen-

omic Hybridisation (aCGH), which monitors losses or
gains in chromosome regions that may harbour novel
candidate genes, is not yet a standard test for investiga-
tion of NIPBL- and SMC1A-mutation-negative CdLS
patients [11,18,34,35], but results obtained with the tech-
nique to date are consistent with those of > 30 conven-
tional cytogenetic and FISH-targeted studies that have
shown chromosomal abnormalities associated with the
CdLS phenotype involving almost all of the chromo-
somes (reviewed [36]). One study has used aCGH to
study probands with CdLS-like features, who had been
previously screened for mutations in the two major
causative genes; however, this was performed in a rela-
tively small patient cohort [35].
This aCGH study of 50 probands including patients

fulfilling CdLS diagnostic criteria and those not com-
pletely fulfil the criteria [4], and negative for mutations
at the NIPBL and SMC1A loci, led to the detection of
four carriers of large genomic imbalances that are candi-
dates to explain the clinical phenotype and represent a
fraction (8%) of patients with features overlapping those
of CdLS. We herein describe how the analysis of the
gene content of these imbalances, affecting different
genomic regions, links the altered dosage of specific
gene classes, shared by all rearrangements, to a common
CdLS-like phenotype.

Methods
Patients
CdLS is characterized by a wide phenotypic spectrum;
despite some features are quite typical the patients
present with a highly variable phenotype ranging from
severe to very mild. Out of the fifty probands (26 males
and 24 females) investigated in this study diagnosis by
our clinical geneticists (AS, RT, GZ) was CdLS for those
(60%) fulfilling the international CdLS diagnosis criteria
[4] or CdlS-like for the remaining (40%,) not fully satis-
fying the CdLS criteria. According to the CdLS scoring
system [4] the overall phenotype of the patients was se-
vere (~10%) or moderate-mild (~90% with slight preva-
lence of moderate phenotype). All patients were found
negative for NIPBL and SMC1A mutations by DHPLC,
direct sequencing and MLPA analyses.
Written informed consent to the research study, which

was approved by the Ethical Clinical Research Committee
of Istituto Auxologico Italiano, and to the publication of
the face photo(s) was obtained from one of the parents.

Array-CGH analysis
The probands were investigated by means of aCGH.
Genome scans were performed using the Human Gen-
ome CGH Microarray Kit 244 K (Agilent Technologies,
Palo Alto, CA), which consists of ~236,000 60-mer
oligonucleotide probes covering the entire genome at an
average spatial resolution of ~30 kb. The samples were
labelled and hybridised following the protocols provided
by Agilent, and the arrays were analysed using the
Agilent Scanner Control (v 7.0) and Feature Extraction
software (v 9.5.1). Graphical overviews were obtained
using CGH Analytic software (v4.0.81). Aberration calls
were identified using the ADM-2 algorithm.
An in silico analysis of the unbalanced regions indicated

by aCGH was performed using the March, 2006, release
of the UCSC Genome Browser (http://genome.ucsc.edu/)
and the Database of Genomic Variants (http://projects.
tcag.ca/variation).

FISH
Chromosome preparations were obtained by standard
cytogenetic techniques using peripheral blood lympho-
cytes cultured by 72 h. BAC probes were selected on the
basis of their physical location (http://www.genome.ucsc.
edu/ release March, 2006), and provided by Invitrogen
Ltd., UK. Their physical positions were verified on con-
trol metaphase chromosomes derived from peripheral
blood lymphocytes. FISH experiments were performed
using standard procedures [37].

http://genome.ucsc.edu/
http://projects.tcag.ca/variation
http://projects.tcag.ca/variation
http://www.genome.ucsc.edu/
http://www.genome.ucsc.edu/
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Results
The 50 probands negative for NIPBL and SMC1A muta-
tions were considered an ideal cohort to scan for the
presence of genomic gains/losses by aCGH, in the search
for novel genes responsible for phenotypes with features
that overlap CdLS.
We identified four probands with large or de novo

copy number variants (CNVs) (Table 1), whose clinical
data at birth and at age of evaluation are summarised in
Table 2 (see also Additional file 1: Table S1 for
auxological parameters). The four probands display a
high degree of phenotypic heterogeneity, but all share
the minimal diagnostic CdLS clinical features. Three of
them (Probands 1, 2 and 3) fulfil the diagnostic CdLS
criteria, whereas the fourth (Proband 4) does not fulfil
completely the criteria having synophrys and only two
(and not three) other facies criteria (Additional file 2:
Table S2).

Proband 1
The first proband was a 9-year-old girl who showed both
intra-uterine (IUGR) and post-natal growth retardation
(PNGR) (Table 2 and Additional file 1: Table S1).
Post-natal growth was poor and psychomotor develop-

ment retarded due to feeding problems (sucking and
swallowing difficulties), and surgical correction of a bi-
lateral inguinal hernia was performed at 3 months of
age. At the age of 3.5 months, she developed behavioural
disorders including hyperactivity, frequent outbursts/
temper tantrums and self-injurious behaviour, with self-
hitting and self-biting.
When she was 6 years old, a clinical examination re-

vealed generalised hirsutism and dysmorphic features,
such as synophrys, long and downward-slanting palpebral
fissures, epicanthic folds, long and curved eyelashes, malar
hypoplasia, hypoplastic nasal bone, the columella below
the alae nasi, a thin upper lip and downturned corners
of the mouth and a high-arched palate (Figure 1a).
She also had slight limb involvement with bilateral
thenar and hypothenar hypoplasia. At the age of 9 years
and 10 months, she had developed brachycephaly and
her dysmorphic facial features were unchanged. Heart
Table 1 Chromosomal position and boundaries of large rearr
negative for mutations in NIPBL and SMC1A

Pt Rearrangement Size

1 del(20)(q11.2q12) 4.2 Mb (min 4.259-max 4.313)

2 del(1)(p36.23p36.22) 4.8 Mb (min 4.889-max 4.914)

3 der(7)t(7;17)(p22.3;q24.2) 769 Kb del(7)(p22.3) (min 769-max 916)

14 Mb dup(17)(q24.2q25.3) (min 14.744-ma

4 dup(19)(p13.3) 880 Kb (min 880–891)

*UCSC Genome Browser assembly Mar.2006 (NCBI36/hg18).
**Paternity confirmed by inheritance of benign CNVs.
***Mosaic condition.
sonography revealed a secundum small atrial septal defect.
She no longer presented gastrointestinal problems except
for mild rectal bleeding due to multiple juvenile polyps
(> 15) throughout the colon.
The aCGH analysis showed a large, 4.2 Mb, de novo

deletion of chromosome 20q11.2-q12 (Table 1, Figure 1b)
that was not found in her healthy parents (not shown).
More than 50 genes are localised to the deleted region
(Figure 1c).

Proband 2
Proband 2 was a 22-year-old woman who had been af-
fected by both IUGR and PNGR (Table 2 and Additional
file 1: Table S1). Clinical evaluation revealed slight hir-
sutism and dysmorphic features, including microcephaly
with temporal narrowing, synophrys, long eyelashes, a
large nasal tip, anteverted nares, a long philtrum, a large
mouth, a thin upper lip and micrognathia (Figure 1d).
Limb involvement was mild, marked by small hands, a
proximally placed thumb and slight toenail dysplasia.
The patient suffered from gastroesophageal reflux, and
mitral valve prolapse.
Neurological assessment showed severe psychomotor

and intellectual disability, with some behavioural disor-
ders such as hyperactivity.
The aCGH analysis revealed the presence of a

~4.8 Mb interstitial deletion of chromosome 1p36.23-
36.22 1 (Table 1, Figure 1e). Her healthy parents have a
normal molecular karyotype (not shown), indicating the
de novo origin of the rearrangement. The large deleted
region includes > 50 genes and does not overlap with
the 1p36 syndrome regions (Figure 1f ).

Proband 3
In the first years of life, proband 3, a 22-year-old man, suf-
fered from cryptorchidism and feeding problems with
swallowing difficulties, as well as post-natal growth delay
and cognitive impairment, with both psychomotor and in-
tellectual disability (Table 2 and Additional file 1: Table S1).
His current phenotype is characterised by hirsutism

and facial features consisting of microbrachycephaly, a
long face, low-set ears, synophrys, thick eyebrows, long
angements identified by aCGH in four CdLS probands

Boundaries (bp)* Origin

chr20:33228486-37488426 de novo**

chr1:7161146-12049775 de novo**

chr7:140213-909190 t(7;17)(p22.3;q24.2)pat

x 14.763) chr17:63665720-78409550

chr19:662118-1541750 mother: mos dup(19)(p13.3)***



Table 2 Spectrum of clinical features in CdLS probands carrying imbalances compared to those of classic CdLS
probands
Clinical
features

CdLS 1 2 3* 4** 40**

del(20)(q11.2q12) del(1)
(p36.23p36.22)

der(7)t(7;17)
(p22.3;q24.2)

dup(19)(p13.3) mos dup
(19)(p13.3)

Pre-/post-natal
growth
retardation

IUGR; PNGR IUGR; PNGR IUGR; PNGR PNGR; swallowing
difficulties

IUGR NA

Neurological
involvement

Psychomotor/cognitive impairment;
hypertonicity/ hypotonia; seizures (25%)

Psychomotor
retardation;
hypertonicity

Severe
psychomotor and

intellectual
disability.;

hyperactivity

Psychomotor and
intellectual
disability

Hyperactivity;
mild intellectual

disability;
emotional
problems

Dyslexia;
bulimia

Craniofacial
appearance

microbrachycephaly plagiocephaly Microcephaly;
temporal
narrowing

microbrachycephaly

Face Long and prominent philtrum;
micrognathia (80%)

Normal Long philtrum;
micrognathia

Long face; long
and prominent

philtrum

Long philtrum Long
hypoplastic
philtrum

Eyes Eyelashes
Eyebrows

Myopia; long curly eyelashes; synophrys;
arched eyebrows

Myopic
astigmatism; long

eyelashes;
synophrys

Long eyelashes;
synophrys

Long eyelashes;
synophrys; large

eyebrows

Synophrys Synophrys

Nose Depressed/broad nasal bridge; upturned
nasal tip; anteverted nares

Columella below
alae nasi

Large nasal tip;
anteverted nares

Depressed nasal
bridge; large
columella

NA NA

Mouth Thin upper lip; downturned corners of
the mouth; high and arched palate; cleft

lip/palate

Thin upper lip;
downturned
corners of the
mouth; arched

palate

Large mouth; thin
upper lip

Thin upper lip; high
palate; downturned

corners of the
mouth

Thin upper lip Thin upper
lip

Ears Low-set posteriorly rotated and/or
hirsute ears; thickened helices

Bilateral
hypoplastic helix

NA Low-set ears Ear lobe creases Ear lobe
creases

Hair Hirsutism (>80%); low posterior hairline Frontotemporal
hypertrichosis and
truncal hirsutism

Slight hirsutism Hirsutism NA NA

Skeleton Ranging from severe reduction defects
to milder defects such as micromelia,
proximally placed thumbs fifth finger
clinodactyly, limited elbow extension,
syndactyly of the toes, and occasional
orthopedic complications (scoliosis)

Normal Proximally placed
thumb; small
hands; slight

toenail dysplasia

Post-axial
polydactyly of left
hand and foot#

Clynodactyly of
5th finger

NA

Cardiovascular Cardiac defects (ASD/VSD, . . .) Secundum small
atrial septal defect

Mitral valve
prolapse

Normal Normal NA

Gastrointestinal Gastroesophageal reflux (30-80%);
congenital diaphragmatic hernia (1%)

Feeding problems
in the first year of

life

Gastroesophageal
reflux

Feeding problems
in the first years of

life

Normal NA

Breast Small nipples Normal NA Normal Polythelia NA

Other Thenar and
hypothenar

hypoplasia; bilateral
inguinal hernia;
hyperactivity

NA Cryptorchidism Scoliosis;
cryptorchidism

Monolateral
hypoplastic
kidney

Age at
evaluation

9 years 10 months 12 years 12 years 6 months 10 years NA

ASD/VSD: atrial septal defect/ventricular septal defect.
IUGR: intra-uterine growth retardation.
NA not assessed.
OFC Occipitofrontal Circumference.
PNGR: post-natal growth retardation.
# not inherited.
* Balanced translocation inherited from healthy father.
** Familial case (40: mother of proband 4).
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Figure 1 Facial appearance, genomic imbalances and genes with altered copy number in probands. (a, d, g, j) The facial appearance
of patients 1 (age 6 years), 2 (age 15 years), 3 (age 22 years) and 4 (age 9 years). (b, e, h, k) aCGH profiles. (Left) Ideogram of the
chromosome(s) involved in the imbalances with the log2 probe ratio plotted as a function of chromosomal position; h) profile of patient
4 (left) and his mother (right). (c, f, i, m) The gene content of each genomic imbalance. Magnification of the deleted/duplicated region
indicating the distal and proximal breakpoint positions (horizontal dotted lines) and a selection of gene content. Blue colour indicates
genes cited in the main text. The red bar in m) corresponds to the CTD-3009K5 BAC clone used in the FISH analysis (not to scale).
l) FISH analysis using the CTD-3009K5 BAC clone mapping to chromosome 19p13.3 shows a duplicated signal in all cells of proband
4 (left) and in approximately 76% of the nuclei in a maternal sample, confirming the presence of the rearrangement in a mosaic state
(right). White arrows indicate nuclei with a duplicated signal.
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eyelashes, a depressed nasal bridge, a large columella, a
long and prominent philtrum, a thin upper lip, a high
palate and downturned corners of the mouth (Figure 1g).
Limb involvement includes post-axial polydactily of the
left hand and foot.
The proband is a carrier of an unbalanced 46,XY
translocation der(7)t(7;17)(p22.3;q24.2), inherited from
his father, who carries a t(7;17)(p22.3;q24.2) balanced
translocation. The aCGH analysis performed to charac-
terise the double segmental imbalances revealed a
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14 Mb duplication at chromosome 17q24.2-25.3 and a
769 kb deletion of 7p22.3 (Table 1, Figure 1h). Both af-
fected genomic intervals include a number of genes
(Figure 1i).

Proband 4
This 10-year-old boy, who had presented prenatally with
IUGR, was found at clinical evaluation to have dys-
morphic facial features including synophrys, a long
philtrum, a thin upper lip and ear lobe creases (Figure 1l),
along with musculoskeletal anomalies (clynodactyly of the
fifth finger and scoliosis); other features were polythelia
and cryptorchidism (Table 2 and Additional file 1: Table
S1). He also had psychological and cognitive disorders, in-
cluding hyperactivity, emotional problems and mild intel-
lectual disability. The mother of the proband had similar
facial features (synophrys, a long hypoplastic philtrum, a
thin upper lip and ear lobe creases), and a monolate-
ral hypoplasic kidney. She has different neurocognitive
and psychological disorders, characterised by dyslexia
and bulimia.
The aCGH analyses of the proband and his parents re-

vealed an 880 Kb chromosome 19p13.3 duplication in
the son and mother who, on the basis of the signals ra-
tio, appeared to be a mosaic (Table 1, Figure 1m).
To estimate the mosaicism rate with a cell-to-cell-

based technique, an interphase FISH experiment was
carried out on the mother’s nuclei using the CTD-
3009K5 BAC clone, which maps within the duplicated
region (Figure 1m). Hybridisation signals were scored on
100 nuclei each from mother and son. A signal of either
duplicated or increased intensity was identified in all of
the son’s cells, whereas in the sample from the mother,
cells containing nuclei with this abnormal pattern were
prevalent (76%), but the remaining fraction showed a
normal hybridisation pattern, confirming the presence of
mosaicism for the mutation (Figure 1n).
Forty-three RefSeq genes are located in the duplicated

interval (Figure 1o).

Discussion
CdLS is a genetically heterogeneous disorder, with only
50–60% of clinically diagnosed probands shown to have
mutations in one of the known cohesin-associated genes
NIPBL, SMC1A, SMC3, HDAC8 or RAD21. This partial
knowledge of the molecular basis of CdLS parallels the
wide clinical spectrum, which ranges from extremely
mild to severe and includes “borderline” cases, which are
often at the interface with other syndromic conditions
caused by defects in interconnected cohesion pathways
[33]. The genes for cohesin structural subunits and
regulators perform crucial roles in the maintenance of
genome stability through surveillance of chromatid co-
hesion throughout the cell cycle, double-strand DNA
break repair and long-range regulation of transcription
(see [38] for a review). While transcriptional activation
and regulation occurs only in cycling and postmitotic
cells, the more ancient roles of cohesion in adhesion of
sister chromatids and DNA repair are performed
throughout the cell cycle (see [39] for a review). Filtering
atypical/borderline cases from the overall set of patients
with a presumptive or possible CdLS clinical diagnosis is
a major challenge. The technology used in this study
(aCGH) can identify genomic regions implicated in CdLS
and overlapping phenotypes by identifying CNVs that may
harbour genes encoding the large number of proteins that
may interact with those of the cohesin pathway. Here, we
describe four probands with a CdLS-like phenotype and
without evidence of mutations in NIPBL and SMC1A. The
aCGH analyses detected unbalanced rearrangements of
various sizes and involving chromosomal regions that have
not previously been associated with the Cornelia de Lange
phenotypic spectrum.
The four imbalances detected were: i) a de novo dele-

tion at chromosome 20q11.2-q12 (4.2 Mb); ii) a de novo
1p36.23-36.22 deletion (4.8 Mb); iii) a der(7)t(7;17)
(p22.3;q24.2) with a 14 Mb duplication in 17q24.2-25.3
and a 769 Kb deletion in 7p22.3; and iv) a familial 880
Kb duplication in 19p13.3, apparently de novo in the
mother, who presented with a mosaic state and transmit-
ted the duplication to the affected child.
A number of patients carrying pathogenic deletions or

duplications partially overlapping those of our cases have
been deposited in DECIPHER or ISCA databases. How-
ever, the paucity of the accessory clinical data does not
permit conclusive comparisons for genotype phenotype
correlations.
To the best of our knowledge, only the chromosome

20q imbalance has previously been described in three
patients not classified as having CdLS (although they
have some features in common with CdLS) who carry a
pure 20q deletion that completely or partially overlaps
that identified in our proband 1 (Additional file 3: Figure
S1 and Additional file 4: Table S3) [40-42]. No patients
have been reported in the literature sharing imbalances
in the same regions as the other probands. Four patients
have been described bearing a terminal or interstitial
deletion of 1p36, with proximal breakpoints falling
within the region deleted in our proband 2 (patients A,
B, and F in [43], and patient D1P3 in [44]), with whom
they share a very small part of the deleted region, con-
sistent with the lack of a common clinical picture. Five
patients with a duplicated 19p13.3 region have been de-
scribed, but all carry a deletion of a different genomic
region, thus making them not directly comparable to
our proband 4 [45-49].
A large number of the genes located in the regions in-

volved in the imbalances identified in this study have
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been associated with clinical conditions, making it likely
that the phenotypes of our probands are the result of
contiguous gene syndromes that mimic the multifaceted
CdLS syndrome. Our four probands display a high de-
gree of phenotypic heterogeneity, but all share the
minimal diagnostic CdLS clinical features including pre-
and post-natal growth retardation (Additional file 1:
Table S1), mild to severe psychomotor and cognitive
impairment and a cranio-facial appearance (Figure 1)
characterised by microcephaly or plagiocephaly, long
eyelashes, synophrys, thin upper lip and downturned
corners of the mouth, long and prominent philtrum, and
hirsutism (Table 2).
It is interesting to note that all of the genomic regions

involved in the imbalances described here harbour some
dosage-altered genes whose functions are directly or
indirectly related to those of the known CdLS genes
(NIPBL, SMC1A, SMC3) (Figure 1). The genes of
interest (CEP250, DSN1, MAD2L2, APITD1/CENP-S,
Table 3 Potential functionally relevant genes residing in regi
phenotypes

Pt Gene Name Function

1 CEP250 Centrosomal
protein 250kDa

Core centrosomal protein required for
centriole-centriole cohesion during the
interphase of the cell cycle.

DSN1 MIND kinetochore
complex
component,
homologue (S.
cerevisiae)

Kinetochore protein that functions as pa
the minichromosome instability-12
centromere complex, required for prope
kinetochore assembly and progression
through the cell cycle.

2 MAD2L2 MAD2 mitotic arrest
deficient-like 2
(yeast)

Component of the mitotic spindle assem
checkpoint that prevents the onset of
anaphase until all chromosomes are pro
aligned at the metaphase plate.

APITD1/
CENPnS

Apoptosis-inducing,
TAF9-like domain 1

Component of multiple complexes, inclu
the Fanconi anemia (FA) core complex,
APITD1/CENPS complex, and the CENPA
(nucleosome distal) complex. Known rol
the stable assembly of the outer kinetoc

3 RECQL5 RecQ protein-like 5 Member of DNA-helicase with a specific
being coupled to RNAPII transcription a
DNA recombination.

ANAPC11 Anaphase-
promoting complex
subunit 11

Component of the anaphase.promoting
complex/cyclosome (APC/C), a cell cycle
regulated E3 ubiquitin ligase that contro
progression through mitosis and the G1
phase of the cell cycle.

4 MED16 Mediator complex
subunit 16

Component of the Mediator complex, a
coactivator involved in the regulated
transcription of nearly all RNA polymera
dependent genes

MBD3 Methyl-CpG
binding domain
protein 3

Subunit of the NuRD, a multisubunit
complex containing nucleosome remod
and histone deacetylase activities. It acts
transcriptional repressor and plays a role
gene silencing

*UCSC Genome Browser assembly Mar.2006 (NCBI36/hg18).
RECQL5, ANAPC11, MED16, MBD3) encode proteins
involved in controlling cell cycle progression, including
components of the centrosome, the kinetochore, the
mitotic spindle assembly checkpoint, the anaphase-
promoting complex, and proteins involved in the methy-
lation and unwinding of DNA (Table 3) [50-63].
In addition to the presence of genes whose products

functionally overlap with those of known CdLS genes, fur-
ther findings supporting the hypothesis that our probands
are phenocopies of CdLS include: i) the localisation of the
CEP170 gene which encodes a component of the centro-
some [64], within a region (chromosome 1q44) shown to
be deleted in a CdLS proband by Borck et al. [11]; ii) the
localisation of the TNKS gene, involved in sister chromatid
cohesion, within the chromosome 8p23.1 region in the
CdLS proband reported by Baynam et al. [65].
Moreover, genes with similar functions (RECQL4,

BUB1B, BUB3, CENPA, CENPL, SMARCA4, SMARCC1
and ATRX) have also been found to be dysregulated in
ons showing imbalances in patients with CdLS-like

Biological process Ref Position* Gene
alteration

Cell cycle progression
(centriole-centriole
cohesion) ; transcritpion
regulation

50 chr20:33506637-
33563217

Loss

rt of

r

Cell cycle progression
(kinetochore assembly)

51,52 chr20:34813608-
34835644

Loss

bly

perly

Cell cycle progression;
DNA repair

53 chr1:11657124-
11674265

Loss

ding
the
-CAD
e in
hore.

Mitotic cell cycle
progression; DNA repair;
DNA-dependent
transcription initiation

54 chr1:10412746-
10425459

Loss

role
nd

DNA helicase activity
(DNA repair,
transcription regulation)

55,56,
57

chr17:71134545-
71174860

Gain

-
ls

Mitotic cellcycle
progression

58,59,60 chr17:77442895-
77451655

Gain

se II-

Transcription regulation 61 chr19:867,962-
893,218

Gain

elling
as a
in

Histone acetylation
(transcription regulation,
cell cycle progression)

62, 63 chr19:1527678-
1543652

Interrupted



Gervasini et al. BMC Medical Genetics 2013, 14:41 Page 8 of 10
http://www.biomedcentral.com/1471-2350/14/41
expression studies of CdLS patients with mutations in
NIPBL [66].

Conclusions
We found that a considerable fraction (8%) of the NIPBL
and SMC1A mutation-negative probands with features
overlapping with CdLS included in this study were car-
riers of chromosomal imbalances that may underlie their
phenotypes.
The four probands had different chromosomal imbal-

ances, but all involved a number of genes related to pro-
gression through the cell cycle and the safeguarding of
chromosomal stability (Table 3). Given the similar func-
tions of delangin and the proteins of the cohesin net-
work, we hypothesise that an imbalance of these genes,
which probably act in concert with other functionally
related genes, contributes to the observed CdLS-like
phenotypes.
Our data raise the issue of the complex clinical diag-

nosis of a syndrome such as CdLS which, through the
multifunctional proteins encoded by its known causative
genes, has an impact on a myriad of interconnected
pathways. It is therefore not surprising that the clinical
diagnosis of a CdLS-like phenotype often includes cases
of carriers of chromosomal imbalances affecting multiple
genomic regions.
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