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Abstract

transcriptome data.

expression and thus contribute to the tumorigenesis.

Background: Somatic variants, which occur in the genome of all cells, are well accepted to play a critical role in
cancer development, as their accumulation in genes could affect cell proliferations and cell cycle.

Methods: In order to understand the role of somatic mutations in human colorectal cancers, we characterized the
mutation spectrum in two colorectal tumor tissues and their matched normal tissues, by analyzing deep-sequenced

Results: We found a higher mutation rate of somatic variants in tumor tissues in comparison with normal tissues,
but no trend was observed for mutation properties. By applying a series of stringent filters, we identified 418 genes
with tumor specific disruptive somatic variants. Of these genes, three genes in mucin protein family (MUC2, MUCH4,
and MUT2) are of particular interests. It has been reported that the expression of mucin proteins was correlated
with the progression of colorectal cancer therefore somatic variants within those genes can interrupt their normal

Conclusions: Our findings provide evidence of the utility of RNA-Seq in mutation screening in cancer studies, and
suggest a list of candidate genes for future colorectal cancer diagnosis and treatment.
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Background

As the third most common malignancy and the fourth
major cause of cancer mortality [1], colorectal cancer is
an important threat to human health which accounts for 1
million new cases worldwide each year. The consistency
between incidence rates and economic development
reflects a westernized lifestyle and attendant risk factor
exposures [1]. As a complex condition, colorectal
tumor progression is associated with both genetic and
environmental factors. To date, only a few common low-
penetrance variants attributing to cancer risk have been
identified using genome-wide association studies (GWAS),
and it is still largely unknown to us the underlying mecha-
nisms and genes involved in tumor development.

Recently, the importance of somatic mutations in can-
cer development has been widely accepted. It is thought
that cancer evolves through the accumulation of somatic
mutations in specific genes, depending on various tumor
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type [2]. Evidence showed that mutation frequency of
candidate cancer genes is much higher than expected,
and that the particular combination of mutations could
influence the tumor's properties [3-6]. These mutations are
caused by a combination of environmental and heritable
factors [7]. Since the release of the human genome
sequence, great efforts have been taken to identify somatic
variants in colorectal cancers. For example, Sanger sequen-
cing technique is applied to 13,023 genes and resulted in
189 genes with unexpected excess of somatic mutations in
human breast and colorectal cancers [5]. Another group of
scientists have used mismatch repair detection (MRD)
approach to screen 93 matched tumor-normal sample pairs
and 22 cell lines for somatic mutations in 30 cancer
relevant genes, and found a total of 152 somatic mutations
in breast and colorectal cancers [8], including previously
reported genes, such as BRAF and KRAS.

The recent development of novel high-throughput
sequencing methods has provided an unprecedented
opportunity to conduct whole-genome scale studies at an
affordable cost, and is extensively applied in transcriptome
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profiling. This method, termed RNA-Seq, gives a far more
precise measurement of expression levels of transcripts
and a far more sophisticated characterization of their
isoforms [9,10], and has brought successes including
identification of differentially expressed genes [11], fusion
genes in tumor tissue [12-14], allele-specific expressed
genes [15,16]. Moreover, it can also serve as an efficient
and cost-effective approach to systematically screen
variants in transcribed regions [17-20]. To gain insight into
the variation spectrum in tumor samples, we developed a
sophisticated variant discovery pipeline and applied it to
deep-sequencing transcriptome data from 2 colorectal
cancer tissues and their matched normal tissues. There are
more variants found in tumor tissues than in normal
tissues. After additional filters, we also identified tumor-
specific mutations in unreported genes, which supplement
the increasing list of candidate colorectal cancer genes.

Methods

Sequence data

Whole transcriptome sequencing data of paired tumor and
normal tissues from 2 stage III colorectal cancer patients
were downloaded from NCBI Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo), with
the accession number SRP006900. Specifically, 65-bp
single-end short reads were generated by Illumina
Genome Analyzer, following the standard procedure.

Sequence alignment

All single-end reads were aligned to UCSC human genome
reference assembly (hg19), limited to chromosomes 1-22,
X and Y. The alignment was carried out using BWA [21]
with default parameters, which allows 4% mismatches in
each alignment.

Variant calling

In each tissue sample, we called variants from the read
alignment using SAMtools package [22]. To avoid
potential PCR duplicate fragments, we set —D as 100
when invoking vcfutils.pl script, although it varied little
when this option is set to 1000 (~3% increase in the total
number of variants). Next, we applied several filters to
reduce possible false positive calls.

Filter 1.1 We first removed variants that were mistakenly
called with a probability greater than 0.01. This was done
by requiring a value >20 for the ‘QUAL’ column in vcf files
generated by SAMtools.

Filter 1.2 We eliminated false positives that were
caused by extremely high sequence coverage. To obtain
the optimal upper bound for sequence coverage, we
searched for variants after filter 1.1 which were also
showed in the dbSNP build 135, and assign them as
known set. Then, we decided a cut-off value as 97.5% of
known variants have lower coverage than that and applied
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it to the remaining variants. This step was performed
independently for each sample.

Identification of somatic variants

Somatic variants were called by comparing paired normal
and tumor tissues. We used custom tools to parse variants
after initial filters with following additional filters:

Filter 2.1 Variants in genomic regions of low quality were
first excluded for further analysis. Poor quality regions
were defined as regions with read coverage in only one
sample of a pair, which could be caused by random bias.

Filter 2.2 We next removed variants that were presented
in dbSNP135 [23], leaving novel variants.

Filter 2.3 This filter removes variants that are found in
both of the matched normal and tumor tissues.

Filter 2.4 To reduce false positives caused by align-
ment difficulties around indels, we calculated the local
mismatch rate as the percentage of mismatches within
10-bp downstream and upstream of a variant. Variants
with high local mismatch rate (0.1, or >2 mismatches)
were discarded.

Gene ontology analysis

The gene ontology (GO) [24] information for genes was
assigned using bioconductor (http://www.bioconductor.org)
package “org.Hs.eg.db”. The enrichment tests were
performed using “topGO” package [25].

Result

Read alignment and mutation spectrum

The whole transcriptome data of paired normal and
tumor tissues from 2 patients contains ~40 million short
reads produced by Illumina Genome Analyzer (9.6 million
reads per sample), each 65-bp long. Using BWA aligner
[21], we mapped short reads to the human reference
genome (hgl9), and ~30 million (~76%) short reads were
mapped to a unique location (Table 1). Next, we made
variant calls using SAMtools package. Since massively
parallel sequencing technique has higher error rate, extra
care must be taken when we used RNA-Seq to identify
variants. Therefore we applied a series of stringent filters
to minimize false positive rate. First, we removed variants
mistakenly called with a probability greater than 0.01, and
obtained 89,129 variants. Since PCR duplicates can cause
false positives, we next filtered variants with high sequence
coverage. To decide the optimal upper boundary, we
denoted known variants as found in dbSNP 135 and novel
variants as not, and compared sequence coverage between
these two sets. We found that the sequence coverage of
known variants is significantly higher than that of novel
variants (Figure 1, P < 2.2 x 10'%, Wilcoxon rank sum test),
then we used the 97.5% percentile in known variants
(47 reads) as the cutoff to filter potential false positives.
After this step, 85,863 variants were remained, and we


http://www.ncbi.nlm.nih.gov/geo
http://www.bioconductor.org

Yin et al. BMC Medical Genetics 2013, 14:32 Page 3 of 8
http://www.biomedcentral.com/1471-2350/14/32

Table 1 Sample and alignment summary found that there are more variants in tumor samples when
Sample #reads #unique Read Total Aligned %  compared to normal samples (23,549 versus 19,383 per

reads length throughput sample, ratio = 1.22), with a higher proportion of novel
Normall 9037384 7022993  65bp 456494545  77.71 variants in tumor samples (42% versus 39%). Among these
Tumorl 8542144 6524738  65bp 424107970 7638 variants, a majority are transitions (Figure 2), and the
Normal2 11308009 8428484 65bp 547851460  74.54 transition/transversion ratio is 2.64 and 2.67 in tumor
Tumor2 11461875 8450429  65bp 549862885 7380 and normal samples, respectively. These ratios are

slightly higher than 2.1, the expected human genome
transition/transversion ratio obtained from whole genome
resequencing data [26], and it is not unexpected because
during transcription, RNA editing specifically changes
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Figure 1 The distribution of sequence coverage for variant calling. Known variants are those found in dbSNP 135 database, and novel
variants are those identified in this study. a. The pattern in normal samples. b. The pattern in tumor samples.
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Figure 2 Mutation spectra of normal and tumor tissues. The numbers of each of the six classes of base substitution and insertion/deletions
are shown. a. The pattern in normal samples. b. The pattern in tumor samples.

T T 1

15000 20000

adenosine (A) to inosine (I), which, in turn, is called as
guanosine (G) by sequencers [27].

Identification of somatic variants

To investigate the potential effect of variants on oncogen-
esis, we next compared somatic variants between paired
normal and tumor samples. Several additional filters were
applied to call high confident somatic variants. First, if
variant positions were only covered in one sample, we
removed them to avoid false positives that are probably
caused by sequence bias, resulting in 18,970 and 16,409
tumor and normal variants per sample. Next, we filtered
known variants found in dbSNP135 [23], which leads to
11,749 and 9,857 novel variants in each tumor and normal
sample, respectively. We also removed variants found in
both tumor samples and matched normal samples, as well

as variants with a high local mutation rate (2 mismatches in
the flanking 20-bp region), which might be a result of local
misalignment. In total, we obtained 3,382 tumor-specific
novel variants and 1,812 variants per sample, across all
autosomes and sex chromosomes.

Of note, the ratio of tumor versus normal samples is
significantly higher for novel variants when compared to all
variants (3,382/1,812 versus 23,549/19,383, P < 2.2 x 107,
Fisher’s exact test), but no bias is observed for transition/
transversion ratio between tumor and normal samples
(2,054/719 versus 3,929/1,466, P = 0.235, Fisher’s exact
test), so it is less likely that the excess of somatic variants in
tumor samples are due to high false positive rate.

Furthermore, we mapped these somatic variants to pro-
tein coding genes to screen for potential important genes
for tumor progression. In summary, 1,104 tumor-specific
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variants and 627 normal-specific variants were found in
coding regions. Of them, 671 (60.8%) and 413 (65.9%)
variants were disruptive variants (which either change
encoding amino acids or reading frames), belonging to
418 and 245 genes, respectively. Additionally, there
were 33 genes found to embed somatic mutations in
both tumor samples (Table 2).

Functional characterization of genes with somatic
variants

It is of great interest to understand functions and putative
contributions of genes bearing tumor- and normal-specific
variants, thus we extracted gene ontology (GO) [24] anno-
tation for these genes and performed gene enrichment ana-
lysis. 5 biological processes were found enriched in tumor

Table 2 List of genes that contain somatic disruptive
variants in both tumor samples in this study

Ensembl ID HNCN symbol Mutation count
ENSG00000100345 MYH9 3
ENSG00000100353 EIF3D 2
ENSG00000100461 RBM23 2
ENSG00000101182 PSMA7 2
ENSG00000108821 COL1AT 2
ENSGO00000110080 ST3GAL4 4
ENSGO00000113161 HMGCR 2
ENSG00000115457 IGFBP2 3
ENSG00000119888 EPCAM 3
ENSG00000125124 BBS2 2
ENSG00000125970 RALY 4
ENSG00000125991 ERGIC3 2
ENSG00000128298 BAIAP2L2 2
ENSG00000130429 ARPCIB 2
ENSG00000134398 ERN2 2
ENSG00000144659 SLC25A38 2
ENSG00000145113 MUC4 10
ENSG00000151846 PABPC3 2
ENSG00000163399 ATP1AT 2
ENSG00000166794 PPIB 2
ENSG00000166888 STAT6 3
ENSG00000168542 COL3A1 4
ENSG00000173988 LRRC63 3
ENSG00000180138 CSNKTAIL 2
ENSG00000182944 EWSRI1 2
ENSG00000184840 TMED9 3
ENSG00000188846 RPL14 2
ENSG00000197324 LRP10 2
ENSG00000198788 muc2 2
ENSG00000204628 GNB2L1 4
ENSG00000205277 Muci2 2
ENSG00000215570 — 4
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samples (Table 3), compared to none in matched normal
samples. Among these processes is protein localization
(GO:0008104) related to tumor development. Researches
found that aberrantly localized proteins have been linked to
human diseases, including cancers [28-30], suggesting that
variants we identified here may promote tumor progression
through this process. We also found that tumor-specific
variants were enriched in several molecular functions
including nucleotide binding (GO: 0000166), which is not
unexpected, as several nucleotide binding genes, such as
GNB2L1, are found to be involved in cancers [31].

Characterization of potential colorectal cancer genes

As is well-known, accumulation of somatic variants is
the basic mechanism leading to the development of
malignancy. Due to the development of massively
parallel sequencing, which makes large-scale sequencing
affordable and available, we witnessed a rapid accumulation
of somatic variants found in colorectal cancer, such as
MLH3, BRAE GALNTI2, and TP53 [32-36]. In the present
analysis, we have identified 418 genes with somatic
disruptive variants in two tumor samples. Among these
genes, we found previously identified genes, such as TP53,
and tumor-related or oncogenes, such as RAB5C, PIM-3,
TPT1, ST14. Here we only present several high confident
candidate genes that were found in both tumor samples
and were good target for diagnosis marker and drug devel-
opment. Guanine nucleotide binding protein (G protein),
beta polypeptide 2-like 1 (GNB2LI), which is also known
as RACK1, encodes a ubiquitously expressed scaffolding
protein and plays a crucial regulatory role in tumor
growth [37]. We have detected a 1-bp insertion in both
tumor samples, and another 2-bp insertion and a C->T
point mutation in one tumor sample. These changes could
impact the normal function of GNB2LI and thus tumor
progression. We also found several members of the mucin
protein family that have somatic variants in both tumor
samples. Mucin proteins are the major constituents of
mucus, which is the viscous secretion that covers epithelial
surfaces. There were 2 indels in MUC2, 10 indels and point
variants in MUC4, as well as 1 indel and 1 point variant in
MUCI2. Since the expression of mucin proteins has been
correlated with aggressiveness of colorectal cancer [38], the
excess of disruptive variants in mucin genes further
confirmed their importance in colorectal carcinogenesis.

Discussion

Recent advances in sequencing technologies continuously
reduce sequencing costs and increase sequence output at
an unprecedented rate, making RNA-Seq an appropriate
method to characterize transcriptome profiles, such as gene
expression differences or splicing variations. Wang et al.
also used RNA-Seq data to derive sample-specific protein
databases [39]. By applying this method to two colorectal
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Table 3 Enriched molecular function categories in GO analysis

GO.ID Term Annotated Significant Expected P-value Corrected P
Biological process

G0:0044419 interspecies interaction between organisms 397 28 9.22 1.80E-07 0.001729
G0:0033036 macromolecule localization 1443 61 335 2.70E-06 0.010247
GO:0051704 multi-organism process 943 45 21.89 3.20E-06 0.010247
GO:0008104 protein localization 1190 52 27.63 6.60E-06 0.015852
GO:0030030 cell projection organization 712 35 16.53 2.30E-05 0.044192
Molecular function

GO:0005515 protein binding 7367 235 171.36 6.30E-12 2.26E-08
GO:0000166 nucleotide binding 2307 84 53.66 1.30E-05 0.01791
GO:0005488 binding 12172 314 283.12 1.50E-05 0.01791
GOID Term Annotated Significant Expected P-value Corrected P
Biological process

GO:0044419 interspecies interaction between organisms 397 28 9.22 1.80E-07 0.001729
G0:0033036 macromolecule localization 1443 61 335 2.70E-06 0.010247
GO:0051704 multi-organism process 943 45 21.89 3.20E-06 0.010247
GO:0008104 protein localization 1190 52 27.63 6.60E-06 0.015852
G0:0030030 cell projection organization 712 35 16.53 2.30E-05 0.044192
Molecular function

GO:0005515 protein binding 7367 235 171.36 6.30E-12 2.26E-08
GO:0000166 nucleotide binding 2307 84 53.66 1.30E-05 0.01791
GO:0005488 binding 12172 314 283.12 1.50E-05 0.01791

cancer cell lines SW480 and RKO, they found a significant
improvement in protein identification. In addition, RNA-
Seq can also be used for variant detection in transcribed
regions, which is suitable for identification of somatic
mutations [17-20,40,41]. However, it has been concerned
that variant-calling by RNA-Seq is prone to error [18] and
could generate a high false discovery rate. To minimize
that, we implemented a series of stringent filters in our
bioinformatic discovery pipeline. First, we required each
variant should have a quality score no less than 20, remov-
ing poorly called variants. Next, we used variants that were
found in dbSNP135 dataset to train our pipeline and
filtered variants with extremely high read coverage. We also
applied additional stringent filters to call high confident
tissue-specific novel variants, including removing variants
with high local mismatch rate. In our final list, we identified
more somatic variants in tumor samples than in normal
samples, and some variants were in tumor-related genes.
Due to our strict filters, we argued that there should be
more genes containing tumor-specific somatic variants.

It is widely acknowledged that accumulations of
mutations in oncogenes and tumor suppressor genes are
the main cause of human cancer [2]. Mutations occurred
only in tumor tissues provide important information to
understand the potential biological processes underlying
carcinogenesis, as well as to facilitate the development of
diagnostic and therapeutic markers. As the development

of sequencing techniques and the decrease of corre-
sponding costs, large-scale studies begin to accumulate
to identify somatic mutations in colorectal cancers. In
one study, Sjoblom et al. used polymerase chain reaction
(PCR) approach to analyze 13,023 genes in 11 breast and
11 colorectal cancers [5], and found an average of ~90
mutated genes per tumor sample. Using stringent
criteria, they identified 189 significantly mutated genes,
which affect a wide range of cellular functions, including
transcription, adhesion, and invasion. In another study,
Timmerman et al. applied next-generation sequencing
to sequence the whole exome of primary colon tumors
as well as adjacent not affected normal colonic tissue
[32]. More than 50,000 small nucleotide variations were
identified for each tissue, and there are 359 and 45 most
significant mutations in microsatellite stable (MSS) and
microsatellite instable (MSI) colon cancers. Somatic
mutations were found in the intracellular kinase domain
of bone morphogenetic protein receptor 1A, BMPRIA,
of which germline mutations are associated with juvenile
polyposis syndrome. In this present study, we analyzed
RNA-Seq data from 2 colorectal tumors and their
matched normal tissues to compare their mutation spec-
tra. In general, tumor tissues were enriched in somatic
variants compared with normal tissues. By mapping
short reads to 54,665 annotated human genes, we have
detected 418 genes with somatic variants in tumor
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tissues, including 3 mucin genes found in both tumor
samples. Mucins are complex glycoproteins and play
important roles in protecting epithelial surfaces [38],
alterations in mucin expression and the extent of their
glycosylation have been reported to be associated with
neoplastic progression and metastasis in several human
cancers [42-44]. Since disruptive variants may radically
change protein functions instead of gene expression, we
further used SIFT tool [45] to assess their effects on pro-
tein functions. 10 of 12 variants were classified as tolerated
variants, which have a limited impact on the protein func-
tion. Thus it is more likely that these disruptive mutations
in mucin genes regulate gene expression and thus lead to
tumorigenesis. Additionally, mucins can form insoluble
mucous to protect gut lumen, therefore amino acid changes
in these genes could result in the modification of the
micro-environment. This change may in turn lead to the
proliferation of some bacteria such as Fusobacterium
nucleatum and Coriobacteria, which have been reported
to be significantly over-represented in colorectal tumor
specimens [46,47]. Somatic disruptive mutations in these
genes found here suggest the abnormality of their expres-
sion is related to colorectal tumorigenesis.

Conclusions

RNA-Seq is a powerful tool to identify somatic mutations
in protein-coding regions after sophisticated filters. The list
of genes we found in this study only represents a minimal
set of candidate genes, due to the stringent criteria we
applied. However, the identification of several oncogenes
and tumorigenesis genes, as well as signal pathway genes,
provides meaningful candidates to understand the molecu-
lar mechanism of colorectal cancer and for future drug
target development. Although additional validations and
functional examination are helpful, RNA-Seq, with well
developed bioinformatic pipeline, can serve as the first step
for somatic variant screening in human cancers.
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