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Abstract

Background: Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many

rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening
for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD,
screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier

false-positive rate.

between the screening and diagnostic cutoffs).

feasible.

defect

molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the

Methods: Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene
(for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels

Results: The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two
patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was
identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency
(1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the
mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin
deficiency and CUD without increasing the false-positive rate.

Conclusions: Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is
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Background

Tandem mass spectrometry (MS/MS) analysis is a
powerful tool for newborn screening [1]. Many rare in-
born errors of metabolism that were not covered by
newborn screening are now screened by MS/MS. How-
ever, the sensitivity of MS/MS screening for the 20-30
diseases included in its screening panel varies among the
individual diseases [2]. False negatives can also occur
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[3,4], due to the nature of the specific diseases. There-
fore, additional or second-tier testing may be required to
improve screening for these diseases [5].

Citrin deficiency refers to two disease entities: adult-
onset type II citrullinemia (CTLN2, OMIM#603471) and
neonatal intrahepatic cholestasis caused by citrin defi-
ciency (NICCD, OMIM#605814). Citrin is a mitochon-
drial membrane aspartate-glutamate carrier that functions
as part of the malate-aspartate (MA) shuttle, transferring
cytosolic NADH into the mitochondria of the liver
[6]. Patients with NICCD often present with jaundice,
hypoproteinemia, transient multiple aminoacidemia
(citrulline, methionine, tyrosine, threonine), fatty liver,
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galactosemia, hypoglycemia, disturbed coagulation, and
high «-fetoprotein [6,7]. Citrin deficiency can be detected
by newborn screening as an elevation of phenylalanine,
methionine, or galactose levels, but the detection rate is
only 50% [8]. It has been shown that 1 in 20 newborns
affected with NICCD have normal dried blood spot (DBS)
citrulline levels initially, but these levels increase at later
time points [9].

Carnitine uptake defect (MIM #212140; CUD), also
known as primary carnitine deficiency, is an autosomal
recessive disorder of fatty acid oxidation caused by
defects in OCTN2, a high-affinity carnitine transporter
expressed at the plasma membrane [10,11]. Carnitine is
responsible for transporting fatty acids into the mito-
chondria, and defective carnitine uptake results in an
intracellular carnitine deficiency, causing defects in the
[B-oxidation of fatty acids [12]. Patients with CUD can
suffer from cardiomyopathy, muscle weakness, recurrent
hypoketotic hypoglycemic coma, Reye-like syndrome,
and premature death [13-15]. Because most symptoms
are reversible, early treatment of the disease can result
in a good patient outcome [12,16]. CUD can be detected
in newborns by measuring free carnitine levels in DBS
[17]. However, because carnitine is transported through
the placenta [18], carnitine can be supplemented by the
mother, resulting in only half of fetuses with CUD being
detected by newborn screening [19]. Additionally, a
normal fetus can have low free carnitine levels due to
carnitine deficiency in the mother [17].

The molecular defects associated with the aforemen-
tioned diseases have been elucidated. Citrin deficiency is
caused by mutations in the SLC25A13 gene [20]. A
study of 4 169 normal Chinese individuals revealed four
SLC25A13 mutations: ¢.851_854del (851del4, p.M285PfsX2)
(70%), ¢.1638_1660dup23 (1638ins23, p.A554GfsX17) (5%),
IVS6+5 G>A (23%), and ¢.550C>T (p.R184X) (2%), and the
total carrier rate was 1 in 65 [21]. The SLC22A5 gene
encodes the carnitine transporter OCTN2 [10,11]. A
founder mutation, c¢.760C>T (p.R254X), in Chinese
patients has a carrier rate of 1 in 125 [22]. To improve
the newborn screening of citrin deficiency and CUD,
we employed hotspot mutations analysis as the second-
tier tests for these two diseases.

Methods

Newborn screening

Newborn screening was performed at the National Taiwan
University Hospital Newborn Screening Center. Both
screening and diagnostic cutoff values were set for citrul-
line and free carnitine to screen for citrin deficiency and
CUD, respectively. Newborns with an initial screening
value that exceeded the diagnostic cutoff were requested
to participate in a confirmation test at our hospital. New-
borns with an initial screening value not exceeding the
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diagnostic cutoff but equal to or exceeding the screening
cutoff (inconclusive cases) were requested for a repeat
DBS screening and enrollment in the second-tier molecu-
lar testing. Newborns with an abnormal repeat DBS result
were also requested for a confirmation test at our hospital.
Newborns with an abnormal result for galactosemia
(screened by total galactose concentration), homocysti-
nuria (screened by methionine concentration), or tyrosine-
mia (screened by tyrosine concentration) were also
enrolled in the second-tier molecular testing for citrin
deficiency. This study was approved by the Institute Review
Board of the National Taiwan University Hospital. Written,
informed consent for participation in the study was
obtained from a parent of each participant.

Molecular testing for citrin deficiency

DNA was extracted from one 3.2-mm punch from each
DBS sample using Generation DNA Purification Solution
and Generation DNA Elution Solution (Qiagen, Valencia,
CA.). For citrin deficiency, we designed two allele-specific
PCRs for the ¢.851_854del mutation (common left pri-
mer 5'-GTTAGGAGGAGGGCAGCAA, wild-type right
primer 5-CAATGTCTGCTAAGGTCATA, and mutant
right primer 5-CAATGTCTGCTAAGGTCGTC) and the
IVS6+5 G > A mutation (common left primer 5-TACAA
CTGGAGCACGCAAAG, wild-type right primer 5-TCA
TTAGGGCAAGTTACAAC, and mutant right primer 5'-
TCATTAGGGCAAGTTACAAT). The third PCR was
designed to detect the c.1638_1660dup23 mutation (left pri-
mer 5-TGTTGTGTCTCTRCCTCCTGCAGG, right pri-
mer 5-GCAGTCTATCACTCCGCTGT). All three PCR
products were subsequently analyzed using agarose gel
electrophoresis and reconfirmed via direct sequencing
with a sequencing primer set. Primer details will be pro-
vided upon request.

Molecular testing for CUD

To detect the p.R254X mutation, we amplified exon 4 of
the SLC25A13 gene with primers 5-CTCGCTGTTTTC
TTGTCTG and 5-TCTATGCTTCCTGTCTCTG. The
PCR product was then digested with Ddel and analyzed
using agarose gel electrophoresis. The resulting fragment
for the wild-type sequence was 393 bp in length, whereas
the fragments for the mutated sequence were 184 and
209 bp in length. Positive cases were reconfirmed by
direct sequencing using a sequencing primer set.

Results

Screening for citrin deficiency

During a 9-month period, the screening cutoff value
was initially set at 19.5 pM, equal to 6 standard devia-
tions (SD) above the population mean (mean=6.54, 1
SD=2.16) (first period), and this value was later reduced
to 13 uM (equal to mean+3 SD) (second period). In 46
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699 screened newborns, no cases exceeded the diagnos-
tic cutoff of 110 uM, and 314 DBS samples (0.7%) were
subjected to the second-tier testing due to abnormal
levels of total galactose, methionine, tyrosine, or citrul-
line (Figure 1A).

Seven DBS samples with elevated citrulline levels and two
with normal citrulline but abnormal methionine/tyrosine
levels were identified as positive by the second-tier testing:
two had the ¢.851_854del /IVS6+5 G > A compound het-
erozygous mutation, six had the ¢.851_854del heterozygous
mutation, and one had the ¢.1638_1660dup23 heterozygous
mutation (Table 1). Six of the newborns lived in the
northern region of Taiwan, and three lived in the south-
ern region; therefore, geographic clustering of this dis-
ease is unlikely. Of the DBS samples that demonstrated
abnormal galactose concentrations during the initial
screening, none were identified as positive for citrin de-
ficiency during the second-tier testing. Two of the four
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subjects with the c.851_854del heterozygous mutation
were found to have persistently elevated citrulline levels,
but full sequencing of the SLC25A13 gene showed no
other mutations, and these subjects were classified as car-
riers of citrin deficiency. In total, two citrin deficient
patients were identified; thus, the incidence of citrin defi-
ciency in this cohort was approximately 1:23 350. The car-
rier rates for the first and second periods were 1:80 and
1:24, respectively. The predicted incidences were approxi-
mately 1:25 000 and 1:2 200, respectively.

Screening for CUD

During a 6-month period, 30 237 newborns were
screened for CUD (Figure 1B). Four newborns had free
carnitine levels that were lower than the diagnostic cut-
off of 6.0 uM (representing the bottom 0.01% of the
population; population mean=24.46; 1 SD=7.52): three
were premature babies that later proved to be normal, and

A
46,699
1st period 2nd period
14,000 32,699
Gal AA Cit>19.5uM Gal AA Cit >13uM

25 51 3 41 122 72

0 1 He 0 0 1 He 2 citrin deficiency

5 He
B
30,237

206

!

1 CUD
10 He

l/>6uM but < 12uM l <6uM

4

|

1 He (dropped out)
3 prematurity

Figure 1 Results of citrullinemia and carnitine uptake defects screening. The study population included 46,699 newborns screened for
citrullinemia (A) and 30,237 for carnitine uptake defects (B). (A) A total of 314 newborns were enrolled in the second-tier screening due to
abnormal (but below the diagnostic cutoff) concentrations of total galactose, methionine, tyrosine, or citrulline in the initial dried blood spots.
Gal: abnormal galactosemia screening results; AA: abnormal homocystinuria or tyrosinemia screening results; He: heterozygotes for citrin
mutations. (B) A total of 210 newborns were enrolled in the second-tier screening due to low free carnitine concentration; among these, 4
exceeded the diagnostic cutoff. CUD: carnitine uptake defects; He: heterozygotes for p.R254X mutation.
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Table 1 Newborns with a positive second-tier screening
for citrin deficiency

No. First DBS citrulline (uM) Mutation analysis Diagnosis
1 17.31 €.851_854del /IVS6+5 G>A  NICCD
2 155 €.851_854del /IVS6+5 G>A NICCD
3 18.89 €.851_854del He Negative
4 18.36 c.851_854del He Negative
5 17.16 c.851_854del He Negative
6 15.06 €.851_854del He Negative
7 13.76 €.1638_1660dup23 He Negative
8 5.03 c.851_854del He Negative
9 5.01 €.851_854del He Negative

NICCD: neonatal intrahepatic cholestasis caused by citrin deficiency.

one (with a heterozygous p.R254X mutation) refused the
confirmatory test and was classified as a carrier (Table 2).
A total of 206 newborns (0.7%) had inconclusive free car-
nitine levels (free carnitine<12 uM, representing the bot-
tom 1.8% of the population) and were enrolled for CUD
second-tier molecular testing. The second-tier testing
identified 10 heterozygotes with the p.R254X mutation
and one subject with a compound heterozygous p.R254X/
p.F17L mutation (Table 2). The 10 heterozygous newborns
had normal free carnitine levels following second DBS
testing. Therefore, in this cohort, the incidence of CUD
was approximately 1:30 000 or greater, and the carrier rate
for the p.R254X mutation in newborns with low initial
DBS free carnitine levels was 1:19. The predicted inci-
dence of CUD in this population is approximately 1:1 400.
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Discussion

In this study, we sought to improve the performance of
newborn screening for citrin deficiency and CUD. New-
born screening programs must determine cutoff values
[2] to identify suspicious patients while minimizing false
positives. However, patients with citrin deficiency may
have nearly normal blood citrulline levels; similarly,
patients with CUD may have normal carnitine levels due
to placental transportation. Therefore, our strategy was
to set a screening cutoff and a diagnostic cutoff, so we
could test the inconclusive cases using a second-tier mu-
tation analysis. We demonstrated that this strategy can
improve the sensitivity of screening without increasing
the false-positive rate.

In current practice, a successful molecular screening
approach depends on the presence of founder or hotspot
mutations. In citrin deficiency, the three mutations we
screened (c.851_854del, ¢.1638_1660dup23, and IVS6+
5 G>A) represent 95% of all mutations in Taiwanese
patients [23] and 98% of all mutations in carrier screen-
ing [21]. In CUD, the p.R254X mutation accounts for
50% of all mutated alleles in clinical cases, but the preva-
lence of this mutation is lower in asymptomatic mothers
and in screened newborns [17]. Therefore, to improve
the performance of the screening program, we decided
to subject these mutations to the second-tier testing.

Adding a second-tier mutation test can improve screen-
ing performance. In citrin deficiency, the two cases that
we identified would have been missed by our original
screening cutoff (19.5 pM), but we identified these cases
after lowering the screening cutoff. The incidence of citrin

Table 2 Newborns with a positive second-tier screening for CUD

No. First DBS free carnitine (uM) p.R254X screening Diagnosis
Positive 1°! screening

1 594 + Lost to follow-up

2 523 - Prematurity

3 327 - Prematurity

4 451 - Prematurity
Inconclusive 1°* screening

1 7.90 + Normal

2 10.20 + Normal

3 11.70 + Normal

4 11.36 + Normal

5 1191 + Normal

6 765 + Normal

7 10.26 + Normal

8 736 + Normal

9 8.50 + Normal

10 10.32 + Normal

11 6.84 + CUD (pR254X/pF17L)
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deficiency derived from the current study (1:23 350) is
close to the incidence (1:16 900) calculated from a muta-
tion carrier rate of 1:70 [24]. From our study, in the group
of newborns with high citrulline, methionine, tyrosine, or
galactose, the carrier rates (i.e., 1:80 for the first period
and 1:24 for the second period) were not significantly dif-
ferent from those identified in the previous study [24] or
from those found in another study that included 479
healthy controls from Southern Taiwan [25]. The carriers
that we detected in this study with elevated citrulline
levels might harbor another SLC25A13 mutation, or het-
erozygous carriers may even have slightly increased citrul-
line levels. Nevertheless, we would likely continue to miss
some cases in which the subjects have normal citrulline
levels at the newborn stage and only later present with
cholestasis.

In CUD, the population carrier rate for p.R254X was
shown to be 1:125, which suggests an incidence of 1:62
500 [22]. This mutation represented 50% of all muta-
tions identified in clinically diagnosed patients and only
30% of mutations identified by newborn screening [17],
which suggests that the actual incidence of CUD may be
much higher. The CUD patient identified during this
study was a compound heterozygote, which had an inci-
dence of approximately 1 in 30 000 during this study
period. Although this patient might have been identified
without a second-tier mutation testing, not utilizing a
second-tier mutation test approach would have required
retesting 206 newborns (0.7%). Additionally, in the
group of newborns exhibiting borderline low free carni-
tine, the carrier rate of the p.R254X mutation was 1:19
(11/206). Because 10 of the p.R254X heterozygous new-
borns were found to have normal free carnitine levels in
the second screen, we speculate that those were true
heterozygous carriers, not patients. This is a reasonable
assumption because carriers of CUD may present with
slightly low free carnitine, and our selection biased the
carrier rate of this mutation. Although carnitine admin-
istration ameliorates all symptoms of CUD, we continue
to screen patients using a second screen, but we do
not apply this new algorithm using a second-tier test
due to cost.

The major limitation of this study was our selection of
patients based on an abnormal initial screening. If the
levels of citrulline, galactose, methionine, tyrosine or car-
nitine were normal, the second-tier testing would not
have been performed. A rapid genetic test for citrin defi-
ciency performed by screening for 11 common muta-
tions of SLC25A13 has been developed [26], but further
validation using a larger scale of dried blood samples is
necessary prior to the clinical application of this tech-
nique. In addition, the low incidence of these diseases
makes it difficult to attain a case number of sufficient
size for a statistically significant conclusion. Lastly, the
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cost of molecular testing may hinder the availability of
genetic screening programs. However, if molecular
screening for other diseases has previously been con-
ducted, a second-tier molecular test may be easier to
perform because the cost would be minimized by previ-
ous DNA extraction.

In Taiwan, we initiated newborn screening for citrin de-
ficiency and CUD in 2001. Newborn screening for citrin
deficiency has been shown to result in early treatment for
newborns suffering from NICCD, or preventing erroneous
management if CTLN2 develops in these patients. The
plasma citrulline level is the current marker for newborn
screening of NICCD, but this marker is not sensitive
enough to detect all patients with NICCD: we have
encountered patients with normal newborn screening
results for whom a diagnosis could not be made before
the occurrence of liver failure. Similarly, we have shown
that newborn screening leads to early treatment for new-
borns suffering from CUD and that carnitine administra-
tion prevents the occurrence of symptoms in these
patients. Plasma carnitine is the current marker for CUD,
but both false-positive and false-negative results occur: we
diagnosed one CUD patient who had recurrent hyperam-
monemia but whose newborn screening, performed by an-
other screening center, was normal. Therefore, while it is
very important to maintain current screening for citrin de-
ficiency and CUD, there is an urgent need to find a
method to further improve these screening tests.

Conclusion

We demonstrate the improvement of newborn screening
for citrin deficiency and carnitine uptake defects using a
second-tier mutation analysis. Further adjustments to
improve the sensitivity of this test are warranted.

Key notes

The addition of a second-tier mutation testing can improve
newborn screening sensitivity for citrin deficiency and
carnitine uptake defect.
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