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Abstract

Background: Vitamin D is associated with lung health in epidemiologic studies, but mechanisms mediating
observed associations are poorly understood. This study explores mechanisms for an effect of vitamin D in lung
through an in vivo gene expression study, an expression quantitative trait loci (€QTL) analysis in lung tissue, and a
population-based cohort study of sequence variants.

Methods: Microarray analysis investigated the association of gene expression in small airway epithelial cells with
serum 25(0OH)D in adult non-smokers. Sequence variants in candidate genes identified by the microarray were
investigated in a lung tissue eQTL database, and also in relation to cross-sectional pulmonary function in the Health,
Aging, and Body Composition (Health ABC) studly, stratified by race, with replication in the Framingham Heart Study
(FHS).

Results: 13 candidate genes had significant differences in expression by serum 25(0OH)D (nominal p < 0.05), and a
genome-wide significant eQTL association was detected for SGPP2. In Health ABC, SGPP2 SNPs were associated with
FEV; in both European- and African-Americans, and the gene-level association was replicated in European-American
FHS participants. SNPs in 5 additional candidate genes (DAPK1, FSTL1, KAL1, KCNS3, and RSAD2) were associated with
FEV, in Health ABC participants.

Conclusions: SGPP2, a sphingosine-1-phosphate phosphatase, is a novel vitamin D-responsive gene associated with

lung function. The identified associations will need to be followed up in further studies.
Keywords: Vitamin D, Airflow obstruction, FEV,, SGPP2, FEV,/FVC

Background

Vitamin D is of interest in relation to a number of health
outcomes, with putative function beyond its classical role
in maintaining bone health. The active form of vitamin D,
1,25-dihydroxyvitamin D [1,25(OH),D], when bound to
the vitamin D receptor (VDR), regulates the expression of
genes in many molecular pathways, including inflamma-
tion, cell proliferation, cell death, and tissue-remodeling
pathways [1]. Serum 25-hydroxyvitamin D [25(OH)D] is
the primary circulating biomarker of vitamin D status, and
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recent national survey data in the U.S. indicate 32% of
Americans are at risk of vitamin D inadequacy or defi-
ciency, defined as 30—-49 nmol/L and <30 nmol/L serum
25(OH)D, respectively [2,3].

Chronic obstructive pulmonary disease (COPD) is the
third leading cause of death in the United States, and is
a large and growing burden on health care [4]. While
smoking is the primary risk factor for rapid lung func-
tion decline and development of COPD, about 15% of
individuals who have never smoked develop COPD and
not all smokers succumb, implicating other factors, such
as genetic, dietary, and lifestyle factors, in lifetime lung
function patterns and disease risk [5].

Recent evidence indicates that vitamin D, as a steroid
hormone capable of influencing gene expression, may be
a determinant of lung function [6]. A cross-sectional
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study in the National Health and Nutrition Examination
Survey (NHANES) III reported a strong positive associ-
ation between serum 25(OH)D and lung function, with
clinically relevant effect sizes for forced expiratory vol-
ume in the first second (FEV;) and forced vital capacity
(FVC) [7]. However, a subsequent cross-sectional study
in the UK. reported no association between serum 25
(OH)D and FEV; [8]. Causal inferences are limited in
the cross-sectional design, effect estimates may be biased
by uncontrolled confounders such as physical activity,
and, furthermore, comparisons are limited by differences
in the range in serum 25(OH)D between studies. Investi-
gations of serum 25(OH)D or high-dose vitamin D sup-
plementation in relation to the risk of exacerbations in
COPD patients reported overall null findings [9,10].
However, vitamin D supplementation led to a statisti-
cally significant reduction in COPD exacerbations in the
subgroup with severe vitamin D deficiency at the study
baseline (serum 25(OH)D < 10 ng/mL) [9], underscoring
the importance of considering the potential to benefit in
studies of nutritional supplementation.

In vitro animal and cell culture studies demonstrate
that vitamin D-responsive genes play a role in airway
remodeling and inflammation, which are key processes
in the pathogenesis of COPD [11,12]. However, few
studies directly investigate mechanisms for vitamin D’s
effect in vivo, which would strengthen the causal infer-
ence of population-level association studies. Further-
more, most experimental work to date has focused on
effects of the active metabolite of vitamin D, 1,25-dihy-
droxyvitamin D. This metabolite is generated in the
kidney for systemic circulation, and in many tissues, in-
cluding lung [13]. It is not yet established whether the
population-level range in serum 25-hydroxyvitamin D,
the primary biomarker for vitamin D status in humans,
is associated with effects similar to those seen in vitro
for 1,25-hydroxyvitamin D.

We used an interdisciplinary approach to investigate the
mechanisms through which vitamin D affects lung func-
tion. Genes with in vitro evidence of vitamin D regulation
were studied to assess whether serum 25(OH)D concen-
tration was associated with gene expression in lung epithe-
lial tissues sampled from free-living humans. Identified
genes were investigated in a study of expression quantita-
tive trait loci (éQTL) in human lung epithelial cells to as-
sess if genetic variation affects gene expression. Also,
identified genes were investigated in an epidemiologic co-
hort study in relation to pulmonary function phenotypes.
We hypothesized that serum 25(OH)D affects expression
of vitamin D-responsive genes by modulating levels of ac-
tive 1,25(OH),D in lung tissue, and that variants in candi-
date genes directly regulated by 1,25(OH),D in lung tissue
are associated with FEV; and FEV,/FVC, the key parame-
ters used for COPD diagnosis and staging.
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Methods

Gene expression study

Twenty-six healthy nonsmoker adult volunteers (Additional
file 1) were recruited and evaluated at the Weill Cornell
Medical College General Clinical Research Center under
protocols approved by the Weill Cornell Medical College
Institutional Review Board, as described elsewhere [14].
Frozen sera samples were assayed for 25(OH)D by liquid
chromatography-tandem mass spectrometry at the Div-
ision of Laboratory Sciences, Centers for Disease Control
and Prevention (Atlanta, GA). Airway epithelial cells were
collected by brushing during bronchoscopy [14], and first
and second strand cDNA were synthesized from 6 pg of
RNA, in vitro transcribed, and fragmented according to
Affymetrix protocols; samples were hybridized to the Affy-
metrix HG-U133 Plus 2.0 array [14]. (Additional file 2 for
further details).

The microarray analysis considered 156 genes, which
were identified a priori based on evidence of regulation
by 1,25-dihydroxyvitamin D in squamous epithelial cells
[1] and evidence for at least one predicted binding site
for VDR (a DR3 or ER6 response element with up to 1
base mismatch from the consensus sequence) [1].

The statistical significance of fold-changes in expres-
sion between the first and third tertile of serum 25(OH)
D was calculated using a t-test with Bayesian correction
(Limma). Given that the purpose of the microarray study
was to identify candidate genes to take forward to both
the eQTL and the population-based cohort analysis, a
statistical significance threshold of nominal P < 0.05 was
used. Linear regression coefficients and the variance (R?
in gene expression explained by serum 25(OH)D were
calculated, and included the full range of 25(OH)D
concentrations.

eQTL study: data collection and statistical approach

The Expression Quantitative Trait Loci (eQTL) study
was conducted using lung small airway epithelium tissue
samples from 116 individuals (see Additional file 2 for
details). Tissue samples were collected under protocols
approved by the Weill Cornell Medical College Institu-
tional Review Board. Associations between SNPs and
gene expression of 13 vitamin D-responsive genes in
lung small airway epithelium tissue were analyzed. Tis-
sue samples were taken from a diverse cohort of 116
smokers and non-smokers of different genders and an-
cestries (see Table 1, Gao et al. [15]). Details of the sam-
ple collection are published elsewhere [14] and details
on normalization of gene expression values are available
in Gao et al. [15] SNPs were assayed using Affymetrix
500 k arrays, which provided data on 191,959 genotypes;
only SNPs with MAF of > 0.1 were analyzed for associa-
tions with gene expression. Thus, there were far fewer
SNPs available in the eQTL study in comparison to the
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Table 1 Fold change in expression and P-value of 13
genes reaching nominal P-value Threshold (p < 0.05) in
expression study

Gene Chromosome Fold change* P-value R%®
KCNS3 2 -1.62 0.00084 28%
FSTL1 3 -1.55 0.00163 40%
DAPK1 9 -2.06 0.00381 17%
RSAD2 2 141 0.01103 16%
CST6 11 1.79 0.01516 20%
KALT X -1.38 0.01840 28%
SLITRK6 13 -1.52 0.02482 25%
TMEM40 3 1.55 0.02518 23%
EMB 5 1.52 0.03099 23%
PTGER2 14 1.36 0.03574 9%
DTX4 1 -134 0.03812 15%
KLF4 9 1.66 0.03901 9%
SGPP2 2 1.69 0.04491 24%

*Fold change in high versus low tertile serum 25-hydroxyvitamin D.
SR-squared calculated in linear regression, considering the full range of serum
25-hydroxyvitamin D, thus equals the proportion of variance in expression
accounted for serum 25(0H)D.

Health ABC GWAS study, and although very few of the
exact SNPs studied in Health ABC were in the eQTL
database, the eQTL SNPs tagged the sequence variation
in each gene.

SNPs within 100 kb of the 13 candidate genes (Additional
file 3 for gene names) were tested for association with
gene expression using PLINK v1.07. Quantile-quantile
plots were generated in R and Locus Zoom [16] plots
were generated to visually examine P-value distribu-
tions. The genome-wide Q-Q plot and Manhattan plot
were also examined.

Population-based cohort study

The Health, Aging and Body Composition (Health ABC)
cohort study enrolled a random sample of European-
Americans and all African-American Medicare-eligible
residents, aged 70-79 at baseline (1997) and residing
in the ZIP codes in and around Memphis, TN and
Pittsburgh, PA (n=3,075). The Institutional Review
Boards at the University of Memphis, Tennessee, and the
University of Pittsburgh granted approval to conduct the
Health ABC Study. The Institutional Review Board at
Cornell University and the Health ABC Publications
Committee approved the use of Health ABC data for this
study. The Framingham Heart Study (FHS) cohort (n=
7,694; includes individuals from the original, offspring,
and third generation cohorts) [17] served as a replication
cohort for cross-sectional SNP—Ilung function associa-
tions discovered in Health ABC European-Americans
(Additional file 2 for further details on both cohort
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studies). The Institutional Review Board at the Boston
University Medical Campus granted approval for the FHS.

Spirometry met American Thoracic Society criteria for
acceptability [18,19]. Participants with missing covariate
data were excluded from further consideration (~ 300 in
each ancestry group). Participants with an FEV; meas-
urement and an FEV,/FVC ratio below the Lower Limit
of Normal were considered to have prevalent airflow ob-
struction [19,20]. The Illumina Human 1 M-Duo custom
chip was used for genotyping in Health ABC [21]. All
assayed SNPs in the 13 candidate genes (identified by
the expression study) with a minor allele frequency > 5%
and in Hardy Weinberg equilibrium were analyzed, com-
prising 313 SNPs in European-Americans and 355 SNPs
in African- Americans (Additional file 3).

Ordinary least squares linear regression models exam-
ined the relation between SNPs and FEV; and FEV,;/FVC
in sequential regressions (using SAS 9.2). An additive gen-
etic model was used to estimate the main effect of each
SNP; SNPs with a nominal P < 0.02 were further tested in
dominant and recessive genetic models to refine effect es-
timates. In genetic studies, the risk of false positives must
be minimized without ruling out true associations [22].
GWAS-scale multiple testing adjustments are not appro-
priate for the hypothesis-based investigation of the 13
genomic regions nominated by the gene expression study.
Thus, SNPs with nominally significant p-values are pre-
sented, and False Discovery Rate (FDR) multiple testing
correction was applied [23]. Models were adjusted for age,
height, cigarette smoking (smoking status and pack-years),
gender, study site, and ancestry principal components.

Sensitivity analyses were performed on the top find-
ings for the FEV, phenotype by repeating analyses after
excluding individuals with prevalent airflow obstruction
or individuals with lower quality spirometry (lower re-
producibility scores). Exploratory SNP x serum 25(OH)
D interaction analyses are presented in the additional file
only (Additional files 4, 5).

Results
Gene expression by serum 25-hydroxyvitamin D
Healthy, non-smoking adults (n=26) were divided into
tertiles of serum 25(OH)D (range of serum 25(OH)D: 2.3-
39.7 ng/mL); the lowest tertile boundary corresponded to
the cutpoint for deficiency (< 12 ng/mL), and the upper
tertile included only vitamin D sufficient individuals (all >
20 ng/mL), thus further analysis compared these two
groups. Expected associations were confirmed; serum vita-
min D concentrations were lower in African American
participants, and slightly higher in males (Additional file 1).
Among the 156 genes studied, thirteen genes (8.3%) had
statistically significant (nominal p < 0.05) differences in ex-
pression between the first and third tertiles of serum 25-
hydroxyvitamin D (Table 1). To further characterize the
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relation of serum 25-hydroxyvitamin D with the 13 nom-
inally significant genes, the linear association of gene ex-
pression with continuous serum 25-hydroxyvitamin D was
estimated (Table 1); the percent of variance (R?, from lin-
ear regression) explained by serum 25-hydroxyvitamin D
ranged from 8 to 40%, and FSTLI had the highest R*.

eQTL analysis

All 13 vitamin D-responsive genes were queried in the
eQTL data, but only 12 genes had available data (no data
for RSAD2). A highly statistically significant cis eQTL
reaching genome-wide significance thresholds was iden-
tified for SGPP2; a cluster of SNPs in the 3’ region of
SGPP2 was associated with SGPP2 gene expression in
lung tissue (the lead SNP, rs13009608 had a nominal p-
value of 2.99 x 10™°). Figure 1 shows gene-level results
and Additional files 6 and 7 show genome-wide Q-Q
and Manhattan plots, respectively. The association of
rs13009608 with SGPP2 gene expression was replicated
(p-value: 7.0 x 10™®) in a publically available eQTL data-
base of lymphoblastoid cell lines [24].

Population-level SNP—Iung function associations

All 13 vitamin D-responsive genes identified by the micro-
array screen were further studied in a population-based can-
didate gene association study. After excluding participants
with missing covariate data, 1,502 European-Americans and
996 African-Americans (81% of full cohort) had an accept-
able FEV; and were included in the FEV; analysis. 1,472
European-Americans and 943 African-Americans (79% of
cohort) had an acceptable FEV;/FVC, and were included in
the ratio analysis (Table 2).

Page 4 of 10

Five SNPs in two genes (DAPKI and SGPP2) were asso-
ciated with FEV; at a nominal P<0.02 in European-
American participants (P-value range: 2.88 x 10 to
1.92 x 10°°% Table 3). A SNP in DAPK1 (rs11141878) had
the largest effect; participants with two copies of the
minor allele (recessive genotype) were 104 mL lower on
FEV;. In African-Americans, 18 SNPs in 6 genes (DAPKI,
FSTL1, KALI, KCNS3, RSAD2, and SGPP2) were associ-
ated with FEV; at nominal P < 0.02 (range: 1.11 x 10 to
1.65 x 10°°% Table 4). A group of 3 linked SNPs in a linked
5" block of SGPP2 were associated with a decreased FEV,
and a reduced FEV;/FVC ratio in African-Americans with
nominal P-values <0.02 and FDR q-values <0.05 (Figure 2).
A fourth SNP in SGPP2, rs4597517, was borderline signifi-
cantly associated with FEV; in African-Americans in the
additive model (p=2.16 x 10), and statistically signifi-
cantly associated with FEV; (p =4.28 x 10 in the reces-
sive genetic model. A SNP in KCNS3 (rs3747515) had the
largest effect on FEV; in African-Americans; participants
with the recessive genotype were 244 mL higher on FEV;.
Due to linkage, some SNP associations were redundant;
thus, SNPs in the same gene with an R*>0.9 (indicating
strong linkage) are assumed to represent the same effect
and redundant SNPs are presented in the online additional
materials only (Additional files 8, 9).

In European-Americans, 1 SNP in KLF4 was associated
with the FEV,/FVC ratio (P-value 1.15 x 10 Additional file
9). In African-Americans, 14 SNPs in 3 genes (FSTL1, KALI,
and SGPP2) were associated with the ratio at a nominal P <
0.02 (range: 1.32 x 10 to 1.27 x 10°%% Additional file 9).

A sensitivity analysis explored whether the SNP—FEV,
associations primarily reflected effects of genetic variation
on risk of COPD; analyses were repeated after excluding

-
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Table 2 Characteristics of Health, Aging and Body
Composition study participants included in the FEV,
phenotype* analysis, stratified by race

Covariate African-Americans European-Americans
(N=996) (N=1,502)
Age, years** 734 (29) 73.7 (2.8)
Women (%) 553 (55.5) 708 (47.1)
Memphis, TN site (%) 464 (46.6) 759 (50.5)
Former Smokers (%) 398 (40) 746 (49.7)
Current Smokers (%) 167 (16.8) 99 (6.6)
Pack-years 295 (24.1) 36.5 (31.9)
FEV;, mL 1948.7 (569.4) 23054 (654.3)
FEV,/FVC 755 (93) 744 (79)
Height, cm 165.7 (94) 167 (9.3)
Mean 25(OH)D (ng/mL)*** 209 (10.6) 29 (1)
COPD, defined by LLN (%) 66 (7.0) 110 (7.5)

*All participants in table have FEV, data; approximately 50 fewer individuals
have FEV,/FVC ratio data, but participant characteristics are the same for
both phenotypes.

**Data shown are mean (SD) or number (%).

***Serum 25(0OH)D measured for 1,412 (94%) European-Americans and 864
(87%) African-Americans with the FEV, phenotype, and for 1,383 European-
Americans and 864 African-Americans with the FEV,/FVC phenotype.

110 European Americans and 64 African-Americans with
prevalent airflow obstruction (as an indicator of COPD).
For European-Americans there was little or no difference
in analyses with and without prevalent cases. A Bland-
Altman analysis showed that for SNPs in SGPP2, the effect
estimates for African-Americans were attenuated after ex-
cluding cases of prevalent airflow obstruction (data not
shown). Thus, the SGPP2 SNPs that had statistically sig-
nificant associations with FEV; were further tested in logis-
tic regression models to assess the SGPP2—outcome
association in African-Americans. Individuals with two
copies of the SNP most statistically significantly associated
with FEV;, rs4528748, had a 2.6-fold increased risk of air-
flow obstruction. All 3 SGPP2 SNPs had odds ratios above
2 for the SNP—COPD association, and all confidence in-
tervals excluded 1 (Table 5), supporting a role for SGPP2
in mediating COPD risk.
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There was consistency of findings across both pheno-
types and both ancestry groups for 2 genes, namely
SGPP2 and DAPKI. SNPs in SGPP2 and DAPKI were
associated with FEV; in both European-Americans and
African-Americans, and SNPs in SGPP2 were also asso-
ciated with FEV;/FVC and with risk of prevalent airflow
obstruction in African-Americans.

Genes containing SNPs significantly associated with FEV,
or FEV,/FVC in Health ABC European-Americans, namely
DAPKI, KLF4, and SGPP2, were further evaluated in
the FHS cohort. Gene-level replication was observed for
DAPK1 and SGPP2; 23 out of 340 SNPs in DAPK1 (6.8%)
and 23 out of 145 SNPs (15.8%) in SGPP2 were associated
with cross-sectional FEV; at a nominal P-value <0.05 in the
FHS cohort, although these comprised different SNPs than
the ones associated with lung function in Health ABC
(Additional file 10).

Discussion

Using an interdisciplinary genomics approach we investi-
gated vitamin D and lung outcomes. SGPP2, a phosphatase
involved in the sphingosine-1-phosphate signaling pathway,
was identified in all stages of the study as a promising candi-
date gene contributing to vitamin D-mediated associations
with lung function. SGPP2 is differentially expressed in vivo
in lung epithelial cells by serum 25(OH)D. eQTL analysis
demonstrates that sequence variants in SGPP2 are associ-
ated with lung cell gene expression. Although the eQTL
finding does not prove that vitamin D regulation affects
gene expression, the location of associated variants in regu-
latory regions supports the hypothesis of vitamin D regula-
tion. Furthermore, a group of 3 linked SNPs in the SGPP2
promoter region are associated with lower FEV;, a reduced
FEV,/FVC ratio, and a 2-3 fold increased risk of airflow ob-
struction in African-Americans, suggesting that a causal
variant in this region may affect SGPP2 function and/or
vitamin D binding, and, consequently, lung outcomes. Add-
itionally, a SNP in SGPP2 is associated with FEV; in Health
ABC European-Americans and SGPP2 variants were also
associated with FEV; in the Framingham Heart Study, con-
firming effects across racial groups and in two cohort

Table 3 The association of SNPs in vitamin D-responsive genes (nominal P < 2.0 x 107°%) with FEV, (mL) for European-
Americans in the Health, Aging and Body Composition study (sorted by gene)*

Gene RS# Chr Coded allele MAF (%) p** SE Nominal P Model

DAPK1 rs11141878 9 A 36 -103.98 363 426 x 107 R
rs4877361t 9 G 14 7247 274 817 x 107 D
rs4878089 9 A 46 3968 169 192 x 107 A

SGPP2 rs4674656 2 A 25 -58.70 197 288 x 107 A

tone redundant SNP not shown.

*Abbreviations: Chr, chromosome; MAF, minor allele frequency; B, regression coefficient; SE, standard error; A = additive genetic model, D = dominant model,

R = recessive model.

**Beta-coefficient estimates the association of allele with FEV,, based on genetic model shown and adjusted for age, height, smoking, gender, study site, and

ancestry principal components.
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Table 4 The association of SNPs in vitamin D-responsive genes (nominal P < 2.0 x 10°°%) with FEV, (mL) for African-

Americans in the Health, Aging and Body Composition study (sorted by gene)*

Gene RS# Chr Coded allele MAF (%) B** SE Nominal P Model
DAPK1 rs3128491 9 G 33 5148 214 165 x 10 A
FSTL1 154676781 3 T 8 -110.13 353 188 x 10% A
rs13100865 3 G 9 -105.96 350 254 x 10% A
rs13097755F 3 T 28 -60.46 216 520 10 A
KAL1 rs6530200 23 T 47 —45.28 168 720 x 10 A
1s974655 23 A 49 79.23 303 9.14 x 10 D
KCNS3 rs1031771 2 A 16 24376 835 360 x 10 R
RSAD2 rs46691141+ 2 G 10 -119.55 362 993 x 10 D
rs6431837 2 C 47 -101.06 336 266 x 10 R
rs7570384 2 C 38 —55.35 20.1 588 x 10 A
rs4669111 2 A 41 —49.75 20.1 134 x 10% A
SGPP2 rs45287481+ 2 C 27 —209.95 54.1 101 x 107 R

*Abbreviations: Chr, chromosome; MAF, minor allele frequency; B, regression coefficient; SE, standard error; A = additive genetic model, D = dominant model,

R = recessive model.

**Beta-coefficient estimates the association of allele with FEV,, based on genetic model shown, adjusted for age, height, smoking, gender, study site, and ancestry

principal components.

***EDR g-value <0.05.

tone redundant SNP not shown.
Tttwo redundant SNPs not shown.

studies. This multi-faceted approach identifies putative
mechanistic pathways for observed vitamin D—lung func-
tion associations while reducing the chance of false positive
results.

SGPP2 plays a key role in the sphingolipid signaling path-
way through dephosphorylation of sphingosine-1-phosphate
(S1P) to sphingosine, which is then converted to ceramide
or back to sphingosine-1-phosphate by other enzymes [25].
Sphingosine-1-phosphate acts as both an intracellular and
extracellular signaling molecule, and regulates critical cell
processes including apoptosis, cell growth, and immune
function [25,26]. Altered sphingolipid concentrations have
important ramifications for lung function; ceramide concen-
trations are elevated in COPD, contributing to lung alveolar
destruction [25]. Little research exists on SGPP2, although a
2006 paper showed that SGPP2 is up-regulated in response
to inflammatory stimuli in endothelial cells, suggesting a
possible role in mediating inflammation in lung tissue [27].
However, SGPP2’s biological function to alter sphingosine-1-
phosphate concentrations suggests that this gene contrib-
utes to the regulation of sphingolipid signaling pathways in
lung tissue.

We identified several additional genes, namely DAPKI,
KCNS3, and FSTLI, and all three had mechanistic links to
lung function identified through gene ontology analysis and
literature reviews (Additional files 11 and 12). Expression of
all three genes was strongly associated with serum 25(OH)D,
and variants in these genes were associated with pulmonary
function in the Health ABC cohort study. However, variants
were not replicated in the Framingham Heart Study, nor
were there observed eQTL associations. DAPKI, which is

down-regulated by 1,25(0OH),D both in vivo and in vitro, is a
pro-apoptotic kinase linked to cytoskeletal remodeling and
regulation of inflammatory gene expression in macrophages
[28,29]. SNPs in KCNS3, which encodes a voltage-gated po-
tassium channel protein, were associated with airway hyper-
responsiveness in past studies [30], which is of interest given
postulated associations of airways hyperresponsiveness with
an accelerated rate of FEV; decline and risk of COPD [31].
FSTLI up-regulates pro-inflammatory cytokines; in mice, the
highest expression level is in lung [32]. Dexamethasone,
which is a glucocorticoid used to treat both asthma and
COPD, is associated with expression of both KCNS3 and
FSTLI; interestingly, there are striking similarities in the
effects of dexamethasone and 1,25-dihydroxyvitamin on the
expression of these genes. The combination of 1,25-dihy-
droxyvitamin D with dexamethasone was investigated
in vitro as an anti-inflammatory treatment; our results sug-
gest the strong possibility of synergistic effects for this treat-
ment combination (Additional file 12 for references).

A major strength of this study is that it translates in vitro
animal and cell culture studies to an in vivo study, and then
extends to study population-level SNP associations with
lung phenotypes, which are partially replicated in an inde-
pendent cohort. The multi-stage approach identified
SGPP2 as a promising vitamin D-responsive gene for fur-
ther study. The demonstration of differential gene expres-
sion in lung tissue associated with the physiologic range of
25-hydroxyvitamin D in a diverse sample of free-living
humans confirms in vitro studies, and, while our study
does not manipulate vitamin D, the in vivo evidence of as-
sociation is novel. The Health ABC population-based
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Figure 2 Association between SNPs and FEV, in SGPP2. This figure shows all SNPs tested for association with FEV; in African-Americans (red
markers) and European-Americans (blue markers) in Health ABC. The top graph shows the p-values for each SNP on a negative log scale. The
threshold for significance, nominal P=2 x 10°% is shown as a line in the figure. Effect estimates (Bsyp) for FEV; (in mL) for each ancestry group
are shown underneath the P-values (dotted line shows null value of 0). Effect estimates and p-values are from recessive, dominant, or additive

genetic models for SNPs with p < 0.02, and from an additive genetic model for all other SNPs. Finally, the linkage disequilibrium structure of
SGPP2 in the Health ABC European-American population is shown at the bottom, with darker shading representing higher R”.

cohort study included high-quality spirometry, detailed in-  predictor of all-cause mortality [33], and thus SNP—FEV,
formation on confounding factors such as smoking and  associations are clinically relevant. Although associations
population stratification, and comprised 40% African- between SNPs and the FEV,/FVC ratio were also investi-
American participants, thus allowing consideration of this  gated, the associations were not as strong as for FEV;.
understudied population in genomic research. FEV; is a  Thus, vitamin D may have a stronger association with
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Table 5 Associations of SNPs in SGPP2 with risk of
prevalent COPD* in African-Americans in the Health,
Aging and Body Composition Study

95% Confidence interval

SNP#** Odds ratio Lower Upper Nominal P-value
rs4528748 263 119 5.80 164 x 10%
157556867 271 123 599 135 % 10%
rs6758392 234 1.07 511 333%x 10

*COPD defined as FEV; and FEV,/FVC ratio below the Lower Limit of Normal.
*All SNPs modeled as recessive (two copies of the minor allele) to reflect the
most significant coding from Table 3, and models adjusted for age, height,
smoking, gender, study site, and ancestry principal components.

overall lung health versus the risk of COPD. This study
identifies plausible biological mechanisms that support a
true effect of vitamin D on lung function, and will help to
guide the design and analysis of randomized controlled
intervention trials of the role of vitamin D in lung disease.

Given that the microarray analysis was used exclusively
as a candidate screen, limitations including the lack of
qPCR confirmation (not possible due to sample volume
limitations), use of nominal P values, and the lack of race-
stratified analysis (not possible due to sample size limita-
tions) are less of a concern. As expected, the proportion of
participants in the race/ethnicity groups varied by tertile
of serum 25(OH)D given the role of skin pigmentation
in vitamin D synthesis in response to sunlight [2]. Race
may either confound the serum 25(OH)D—gene expres-
sion association, or, race may be a causal antecedent
variable that, in part, causes serum 25(OH)D concentra-
tion and, in turn, differences in gene expression; adjust-
ing for race may be an over-adjustment. Of note, in
regressions adjusted for race the regression coefficients
for the serum 25(OH)D—gene expression association
were similar to unadjusted analyses.

While the studies were all cross-sectional, which limits
causal inference, the harmony of findings across different
designs partly mitigates this concern. Although it would
have been ideal to use the same samples in all studies (that
is, expression, eQTL and SNP—lung function studies), prac-
tical limitations led to the use of different samples in each
phase. Finally, although gene-level replication was observed
for SGPP2 and DAPKI, the specific SNPs associated with
FEV; in Health ABC did not reach statistical significance
in FHS. We hypothesize that the SGPP2 SNPs identified
in the two cohort studies may be tagging the same un-
known causal variant(s) or there may be multiple SGPP2
regulatory regions associated with lung function. Add-
itionally, the strongest SNP—Ilung function associations in
Health ABC were in African-Americans, and, because
FHS includes only European Americans, the replication
was partial. In summary, SNPs in SGPP2 were statistically
significantly associated with lung outcomes after FDR
multiple testing adjustment and a highly statistically
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significant lung eQTL was identified for SGPP2; SGPP2
emerged as a clear candidate in all stages of this work.

Conclusions

This study establishes for the first time that physiological
concentrations of serum 25(OH)D are associated with differ-
ences in gene expression in human lung tissue, and that
candidate vitamin D responsive genes are associated with
pulmonary function outcomes. We hypothesize that genetic
variants associated with pulmonary function in our study
affect binding of the VDR/RXR heterodimer to the genome;
however, further studies are needed to map lung tissue-
specific regulatory regions. Recent evidence shows that vita-
min D regulatory elements (VDRESs) are located both prox-
imal and distal to vitamin D-responsive genes at promoter
regions and enhancer regions, respectively, and that VDR/
RXR binding is cell-type specific [34]. This emphasizes the
importance of genome-wide VDR/RXR mapping in lung
cells to identify regulatory regions [34]. Additionally, in vitro
studies of bronchial epithelial cells to directly assess gene ex-
pression changes due to vitamin D would contribute to the
current understanding. Overall, the results of our study
identify putative mechanisms through which vitamin D may
affect lung function and, suggest a physiological range for
25-hydroxyvitamin D at which differential responses occur
at the molecular level. Demonstrated associations strengthen
the evidence for monitoring serum 25(OH)D concentrations
in individuals at risk of rapid decline in lung function.
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