Yu-jin et al. BMC Medical Genetics 2012, 13:86
http://www.biomedcentral.com/1471-2350/13/86

BMC
Medical Genetics

RESEARCH ARTICLE Open Access

Subtle mutations in the SMNT gene in Chinese
patients with SMA: p.Arg288Met mutation
causing SMN1 transcript exclusion of exon7

Qu Yu-jin', Du Juan', Li Er-zhen? Bai Jin-li', Jin Yu-wei', Wang Hong' and Song Fang'"

Abstract

were determined using quantitative RT-PCR.

Background: Proximal spinal muscular atrophy (SMA) is a common neuromuscular disorder resulting in death
during childhood. Around 81 ~ 95% of SMA cases are a result of homozygous deletions of survival motor neuron
gene 1 (SMNT) gene or gene conversions from SMNT to SMNZ2. Less than 5% of cases showed rare subtle mutations
in SMNT. Our aim was to identify subtle mutations in Chinese SMA patients carrying a single SMNT copy.

Methods: We examined 14 patients from 13 unrelated families. Multiplex ligation-dependent probe amplification
analysis was carried out to determine the copy numbers of SMNT and SMN2. Reverse transcription polymerase
chain reaction (RT-PCR) and clone sequencing were used to detect subtle mutations in SMNT. SMN transcript levels

Results: Six subtle mutations (p.Ser8LysfsX23, p.Glu134Lys, p.Leu228X, p.Ser230Leu, p.Tyr277Cys, and p.Arg288Met)
were identified in 12 patients. The p.Tyr277Cys mutation has not been reported previously. The p.Ser8LysfsX23,
p.Leu228X, and p.Tyr277Cys mutations have only been reported in Chinese SMA patients and the first two

mutations seem to be the common ones. Levels of full length SMNT (fl-SMNT) transcripts were very low in patients
carrying p.Ser8LysfsX23, p.Leu228X or p.Arg288Met compared with healthy carriers. In patients carrying p.Glu134Lys
or p.Ser230Leu, levels of fl-SMNT transcripts were reduced but not significant. The SMNT transcript almost skipped
exon 7 entirely in patients with the p.Arg288Met mutation.

Conclusions: Our study reveals a distinct spectrum of subtle mutations in SMNT of Chinese SMA patients from that
of other ethnicities. The p.Arg288Met missense mutation possibly influences the correct splicing of exon 7 in SMNT.
Mutation analysis of the SMNT gene in Chinese patients may contribute to the identification of potential ethnic
differences and enrich the SMNT subtle mutation database.
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Background

Proximal spinal muscular atrophy (SMA) is a common in-
fantile neuromuscular disease with an incidence of 1 in
6000 ~ 10,000 among newborns [1]. It is characterized by
the destruction of alpha motor neurons in anterior horn
cells of the spinal cord. This leads to progressive symmet-
rical limb and trunk muscle weakness, along with atrophy
[2]. This disease can be categorized into four clinical types
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(SMA I-1V) based on age at onset and maximum attained
motor functions [3].

The SMA-determining gene, survival motor neuron
(SMN), is located at chromosome 5q11.2-13.3 [4],
with two almost identical copies: telomeric SMNI
(MIM#600354; GenBank: NM_000344) and centromeric
SMN2 (MIM#601627; GenBank: NM_022875). SMNI1
and SMN2 sequences are highly homologous with only
five nucleotide differences, one in intron 6, one in exon
7, two in intron 7, and one in exon 8 [4]. Although these
differences do not alter the encoded amino acids, SMN1
produces mainly full-length SMN transcripts. However,
90% of the transcripts produced by SMN2 exclude exon
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7 owing to a conversion (C—T) at position 840 in exon
7 [5]. Mutations in SMNI result in the SMA phenotype,
whereas SMN2 copy numbers determine the severity of
SMA.

The majority of SMA patients have been found to have
a homozygous deletion in exon 7 of SMNI. Some SMA
cases are caused by compound mutations, with a SMNI
deletion on one allele and a subtle mutation on the
other. Since the first several mutations were identified at
1995 by Lefebvre et al. [4] and Bussaglia et al. [6], More
than 60 subtle mutations of SMNI gene have been con-
tinuously identified worldwide [7-24]. Although muta-
tions are distributed along the entire coding sequence of
SMNI, the majority are located in exons 3 and 6
(47.5%). Tsai et al. reported the first subtle mutation in
SMNI1 of Chinese SMA patients in 2001 [18]. To date,
eight subtle mutations have been successfully identified
in Chinese SMA patients [18-23]. In this article, our aim
was to identify subtle mutations in SMNI of Chinese
SMA patients and detect the SMNI transcript levels of
these patients based on the quantitative RT-PCR.

Methods

Patients and materials

Fourteen SMA patients and their parents, from 13 unre-
lated families, were enrolled in this study. All patients
met the diagnostic criteria of proximal SMA, with their
clinical data provided in Table 1. Of these cases, three
were diagnosed as type I SMA, nine were type II SMA,
and two were type III SMA. Case 9 was the younger sis-
ter of case 8. Genomic DNA and total RNA from these
individuals were isolated from peripheral venous blood
using phenol-chloroform extraction and an RNeasy Kit
(Qiagen, Germany), respectively. Samples of the parents
of cases 1 and 7 were not available. This study was
approved by the Ethics Committee of the Capital Insti-
tute of Pediatrics, and informed consent was obtained
from all subjects.

Analysis of subtle mutations in SMN1

Cloning and sequencing of reverse transcription poly-
merase chain reaction (RT-PCR) amplicons was carried
out to analyze subtle mutations. First-strand cDNA
synthesis was performed with 0.5 pg of total RNA,
random primers, and M-MLV Reverse Transcriptase
(Invitrogen, USA) in accordance with the manufacturer’s
instructions. Specific PCR primers (SMN575 [13] and
541C1120 [4]), were used to amplify the SMN gene
(exons 1-8) using LA Taq polymerase (TAKARA, Japan)
and cDNA template. Thermal cycling conditions
involved an initial denaturation step for 5 min at 94°C,
followed by 30 cycles of 45 s at 94°C, 50 s at 60°C, and
60 s at 72°C, with a final extension step at 72°C for
10 min. Amplicons were subcloned into the pGEM-T
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Easy cloning vector (Promega, USA) according to the
supplier’s protocol. SMNIand SMN2 subclones were dif-
ferentiated using restriction enzymes (Dral and Ddel)
[25]. Around 5~8 SMNI and 2~3 SMN2 clones for
each case were sequenced. Mutations were further con-
firmed by direct sequencing of the amplified products
from SMN genomic DNA samples.

Multiplex ligation-dependent probe amplification (MLPA)
analysis

MLPA analysis was performed to detect copy numbers of
SMNI and SMN?2 in all cases using a SALSA MLPA kit
(P021-A1; MRC-Holland, Amsterdam, The Netherlands)
according to the manufacturer’s recommendations. This
SALSA kit contained 16 probes specific for the SMA crit-
ical region (5q12.2—q13.3). Among these, two specific
probes for the C—T transition in exon 7 (C for SMNI
and T for SMN2) and two specific probes were for the
G—A transition in exon 8 (G for SMNI and A for
SMN?2) were included. In addition, the SALSA kit con-
tained 21 control probes mapping to other autosomes.
After MLPA treatment, products were run on the ABI
3730 automatic sequencing system (Applied Bio-Systems,
USA). Four healthy individuals carrying two SMNI cop-
ies were the normal controls, with eight carriers (parents
of the patients with a homozygous SMNI deletion) as the
single copy SMNI reference. For each sample, raw data
[relative peak area (RPA)] were analyzed and compared
with normal controls using Gene marker version 1.75
software. This software is able to calculate the RPA for
each probe and to compare RPAs with those derived
from normal controls. All samples were analyzed at least
twice. A ratio with normal controls in the range 0.7-1.3
indicated a normal copy number (two copies), a ratio less
than 0.7 indicated one copy, a ratio between 1.3—-1.6 was
indicative of three copies, and a ratio equal to 0 indicated
Zero copy.

Analysis of the novel p.Tyr277Cys mutation

The allele-specific primer, Y277CR (5/-CTG AGT GAT
TAC TTA CCA TAC-3'), was designed to identify only
the mutant allelic sequence, and was coupled with the
upstream primer SMNE6F [12]. This was applied in
an allele-specific PCR (AS-PCR) to screen for the
p.-Tyr277Cys mutation in 150 control individuals. Simul-
taneously, alignment analysis of SMN proteins from six
different species was performed using Clustal X version
1.8 to analyze levels of conservation for tyrosine 277.

Restriction endonuclease digestion of SMN transcripts

Total RNA (0.5 pg) was isolated from the peripheral
blood of patients and controls, and used to synthesize
first-strand cDNA as described earlier. The cDNAs were
amplified using primers SMN575 [13] and 541C1120 [4]



Table 1 Genotype and phenotype in patients with a subtle mutation of SMN1T gene

Family Case PhenoType Gender Age atlast Age of Attained motor function SMN1 genotype Point SMN2 FI-SMN2 FI-SMN Parental
No. No. examination onset Head Sit Walk Allelet Allele2 I\I/LL::;attii;): copies  transcript transcript origin
control unsupported independently

1 1 \ M 3y6m 4m + - - Deletion p.Ser8lysfsX23  Exon 1 2 - - ND

2 2 Il M Ty7m 1Tm + + - Deletion p.Ser8LysfsX23  Exon 1 2 6.33+£1.72 6.76+194 Paternal

3 3 Il M 6y8m Ty2m + + - Conversion p.Ser8LysfsXx23  Exon 1 3 2036+11.09 21.01+104 Paternal

4 4 Il M Sy 1Tm + + - Deletion p.Glu134Lys Exon 3 2 7.73+£544 1246 +547  Paternal

5 5 Il F 2y6m Tylm + + - Deletion p.Glu134Lys Exon 3 2 641+578 11.21£345 Paternal

6 6 \ F 2y3m 4m + - - Deletion p.Leu228X Exon 5 2 924+66 10277 +68  Maternal

7 7 Il M 4yTm 8m + + - Conversion p.Leu228X Exon 5 3 - - ND

8 8 Il M 14y 10m + + - Deletion p.Ser230Leu Exon 5 2 804+727 12.22+7.07 Paternal
9 Il F 9y8m 2y + + +1 Deletion p.Ser230Leu Exon 5 2 9.35+574 1483 £445 Paternal

9 10 Il M 6y4m Ty + + - Deletion p.Tyr277Cys§ Exon 6 2 453+347 6.54+433 Maternal

10 114# I F 2y10m 5m + - - Conversion  p.Arg288Met Exon 7 3 13.1+104 13.71£106 Paternal

1 12# Il F 4y4m Tyém + + - Conversion  p.Arg288Met Exon 7 3 946+ 784 1246+801 Paternal

12 13 Il M 5y 10m + + - Deletion - - 2 802+197 9.86 +2.01 ND

13 14 Il M 15y Ty5m + + +1 Conversion - - 3 2167110 2517118 ND

Conversion means deletion of SMNT owing to conversion of SMNT sequences to SMN2 with the copy number of SMN2 increasing. ND, not detected. §Novel mutation; #,these patients had been reported [22]; T, Walk

in waddling gait ;case 8 and case 9 are siblings.
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Table 2 Information of Primers and Probes Used for qRT-PCR

Fragment Primers Probe Amplify length

SMN1 SMN_mgb-F: 5TGGTACATGAGTGGCTATCATACTG3' 5'FAM-ATGGGTTTCAGAA-MGB-NFQ 75 bp
SMN_mgb-R: 5" GTGAGCACCTTCCTTCTTTTT3

SMN2 SMN_mgb-F: 5TGGTACATGAGTGGCTATCATACTG3' 5/FAM-ATGGGTTTTAGAA-MGB-NFQ 75 bp
SMN_mgb-R: 5" GTGAGCACCTTCCTTCTTTTT3

GAPDH[26] GAPDH_abs-F:5'GGGTGTGAACCATGAGAAGTATGA-3' 5/FAM-CAAGATCATCAGCAATGC-NFQ3’ 73 bp

GAPDH_abs-R: 5'CTAAGCAGTTGGTGGTGCAGG-3'

The bases C and T in bold are specific for SMNT and SMN2, respectively. The primers and probe sequences of GAPDH are described by Tiziano FD et al. [26].

in a 50-pl reaction with a 60°C annealing temperature
for 30 cycles as the section of “Analysis of subtle muta-
tions in SMNI1 ”described. In general, SMN transcripts
yielded three products, full-length SMNI (fl-SMNI,
1259 bp), full-length SMN2 (fl-SMN2, 1259 bp) and
SMN?2 isoform lacking exon 7 (A7-SMN2, 1205 bp). The
SMNI transcripts could be distinguished from SMN2
transcripts by digestion with the restriction enzyme
Ddel. Following digestion, there was a 1259-bp fragment
corresponding to fl-SMN1, a 1136-bp fragment corre-
sponding to fl-SMN2, a 1082-bp fragment indicative of
A7-SMN2 and a 123-bp fragment from SMNZ2. The

transcripts and their products after Ddel digestion were
separated on a 6% polyacrylamide gel at 500 volts for
2 h. Gels were stained with silver stain.

Quantitative RT-PCR (qRT-PCR)

Three plasmids (fl-SMN1, fl-SMN2 and GAPDH) were
constructed as external standards. Amplified SMN1 and
SMN?2 were obtained using normal control cDNA and
primers SMN-F (5-GCT GAT GCT TTG GGA AGT
ATG TTA-3") and SMN-R (5/-TCA ACT GCC TCA
CCA CCG TGC TGG-3/), specific for exons 6 and 8, re-
spectively. The primer pair for amplification of GAPDH
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Figure 1 Analysis of the novel p.Tyr277Cys mutation. (A) Sequencing map of the p.Tyr277Cys (TAT > TGT) mutation. Underlined bases
indicate codons affected by subtle mutations. Black arrows indicate the converted base peak. (B) AS-PCR screening results for the p.Tyr277Cys
mutation in normal controls. M, DNA marker; P, case 10; Fa and Ma are the father and mother of case 10, respectively; N1-6 are normal controls.
Case 10 and his mother carrying the p.Tyr277Cys mutation showed two products, a 251-bp fragment corresponding to the internal control and a
182-bp fragment corresponding to p.Tyr277Cys. (C) Alignment of the SMN protein. *
indicator of conserved amino acids. The period () indicates amino acids that are not conserved. P.Glu134 and p.Tyr277 located in the Tudor
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was GAPDH_exst-F and GAPDH_exst-R, as previously
described [26]. Amplicons for SMNI/SMN2 (395 bp)
and GAPDH (133 bp) were cloned into the pGEM-T
Easy cloning vector (Promega, USA). Cloned inserts
were all verified by sequencing. Plasmid DNA was
extracted and quantified by absorbance using a Nano-
Drop 2000 (Thermo, USA). Based on plasmid length
and concentration, the copy number of each plasmid
can be calculated. These plasmids were serially diluted
across a range (10°-10° copies) and used as external
standards to construct the standard curve.

A qPCR assay to quantify SMN transcripts was con-
ducted as described by Tiziano et al. [26]. The primers
and MGB-probes were designed using Primer Express
v1.5 software (Applied Biosystems, USA), with sequences
provided in Table 2. The fl-SMNI and fl-SMN2 tran-
scripts were amplified using the same primer pair
(SMN_mgb-F and SMN_mgb-R). Full-length transcripts
of the two genes were distinguished by two different
Tagman MGB probes on the basis of the C—T transi-
tion located in exon 7. For GAPDH, the primers (GAPD-
H_abs-F and GAPDH_abs-R) and MGB probe sequence
were the same as those described in Tiziano et al [26]
described. All reactions (20 pl) were carried out using a
7500 Real-Time PCR System (Applied Biosystems, USA)
and contained 2x GoldStar TagMan Mixture (KANGWEI,
China), 20 ng of cDNA, 0.4 pl of each primer (10 pmol/
ul), and 4 pmol of the SMNI, SMN2 or GAPDH probe.
The thermal cycling conditions involved 2 min at 50°C
then 10 min at 95°C, followed by 40 cycles of 15 s at 95°C
and 1 min at 60°C. Each sample was assayed in duplicate
and repeated at least twice. Evaluation of data was per-
formed using 7500 Software SDS version 1.4.

Statistical analysis

Transcript levels for fl-SMN1, fl-SMN2 and GAPDH
were expressed as copies per nanogram of total RNA.
Expression levels of fl-SMN1, fl-SMN2, and fl-SMN were
normalized to GAPDH. Statistical analysis was carried
out using SPSS 19.0. A parametric test (t-test) was used
to compare the transcript levels between normal con-
trols and carriers, as well as between carriers and
patients. Correlation between SMN2 gene copy numbers
and fl-SMN2 transcript levels were analyzed by a gern-
eral linear model(one-way ANOVA). A p-value less than
0.05 was regarded as significant.

Results

SMN1 and SMN2 copy numbers

The numbers of SMNI and SMN2 copies in the 14
patients analyzed by MLPA are presented in Table 1. All
patients carried only one copy of SMNI. Patients 3, 7,
11, 12, and 14 carried three copies of SMN2. The
remaining patients had two copies of SMNZ2.
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FL-SMN1

123bp

Figure 2 Ddel digestion of SMN transcripts. M: DNA marker; lane
1: normal controls carrying two SMNT and two SMN2 copies; 2: case
2 carrying the p.Ser8LysfsX23 mutation; 3: case 4 carrying the
p.Glu134Lys mutation; 4: case 6 carrying the p.Leu228X mutation;

5: case 8 carrying the p.Ser230Leu mutation; 6: case 10 carrying the
p.Tyr277Cys mutation; 7 and 8: patient 12 and her father carrying
the p.Arg288Met mutation; 9: the carrier with one copy of the SMN1
gene. Transcripts for fl-SMN1, fl-SMN2 and A7-SMN2 were separated
using 6% polyacrylamide gel electrophoresis following digestion
with Ddel. In patient 11 carrying the p.Arg288Met mutation (line 7),
the fl-SMNT transcript (1259 bp) almost disappeared, but the
undigested 27-SMN1 fragment (1205 bp) was more prominent. This
was also observed in the patient's father (line 8).

SMN1 subtle mutation

Six subtle mutations were identified in the present study
(Table 1). Five mutations (p.Ser8LysfsX23, p.Leu228X,
p-Ser230Leu, p.Glul34Lys, and p.Arg288Met) were
detected in more than one patient. A novel mutation
(p.Tyr277Cys) located in exon 6 of SMNI was identified
for the first time (Figure 1A). The p.Arg288Met mutation
has been previously described [22]. No subtle mutations
were detected in two of the patients carrying one copy
of SMN1.

Screening for the p.Tyr277Cys mutation

AS-PCR was performed to screen for the novel
p.-Tyr277Cys mutation in control individuals (Figure 1B).
This mutation was not observed in the 150 control
individuals. Sequence alignment of six different species
showed that the Tyr277 residue was highly conserved
(Figure 1C).

SMN transcripts analysis of patients with subtle mutations
A Ddel digest of SMN transcripts assay was carried
out to qualitative analysis the SMN transcript in all
the patients with subtle mutations. Following Ddel di-
gestion, three obvious products (fl-SMN1, fl-SMN2 and
A7-SMN?2) were detected, without obviously truncated
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Figure 3 Partial reverse-sequencing map of SMN1 clones for the patient with the p.Arg288Met mutation. (A) Antisense sequencing map
of SMNT clones. The C base (G in the sense sequence) is indicated by the black arrow, which is specific for SMNT on exon 8. The red arrow

indicates the position of the entire exon 7 sequence that was deleted in the SMNT clone. (B) Antisense sequencing map of a normal individual.
The G base (C in the sense sequence) is indicated by the black arrow and is specific for SMNT on exon 7. The intact sequence of exon 7 can be

or prolonged transcripts in most patients (Figure 2).
While in patients carrying the p.Arg288Met mutation,
the fl-SMNI1 transcript (1259 bp) was rare, but the un-
digested A7-SMNI fragment (1205 bp) was more prom-
inent (Figure 2). An undigested A7-SMN1 fragment was
also observed in their father with the p.Arg288Met
mutation.

Clone sequencing of the patients with p.Arg288Met
mutation

The SMN cDNA (from exon 1 to exon 8) of patients
with p.Arg288Met were amplified and subclone to the
PGEM-T vector. After screening the SMNI clones and
sequencing, we found that all 5 subclones of SMNI from
these patients had lost the entire sequence of exon 7
(Figure 3), while three full-length SMN clones belong to
the sequences of SMNZ2. This result was consistent to
the result of Ddel digest of SMN transcripts assay. The
p.Arg288Met mutation produces a transcript of A7-
SMNI1 other than the transcript of fl-SMNI, it implies
that it might cause the skip of exon 7 of SMNI gene.

Comparison of fl-SMN1 transcripts

To evaluate the effect of subtle mutations on fl-SMNI
levels, we compared flI-SMNI levels in patients with that
of normal controls, and with healthy carriers (Table 3
and Figure 4). The fl-SMNI levels in normal controls
and healthy carriers were 23.77 +7.74 and 9.47 £ 5.39,
respectively. The difference between these two groups
was statistically significant (t=5.296, P=0.000). The
fl-SMN1 transcript levels in all patients were signifi-
cantly decreased compared with normal controls (t=
7.839, P=0.000). Compared with healthy carriers carry-
ing one copy of SMNI, patients with the p.Glul34Lys or
p.Ser230Leu mutation showed no significant difference
(t=1.769, P=0.094 and t=1.660, P=0.115, respect-
ively), patients with the novel p.Tyr277Cys mutation
presented a slight decrease in fl-SMNI transcript levels
(t=2.337, P=0.032), while the patients with the p.Ser8-
LysfsX23, p.Leu228X, and p.Arg288Met mutations were
significantly reduced (t test, P =0.000). Especially for the
patients carrying p.Arg288Met, fl-SMNI transcript levels
were almost undetectable (0.017 + 0.15).



Table 3 FI-SMNT1 transcript levels of controls ,carrier , and patients with SMN1 subtle mutations

Control Carrier p.Ser8LysfsX23 p.Glu134Lys p.Leu228X p.Ser230Leu p.Tyr277Cys p.Arg288Met
n 4 8 2 2 1 2 1 2
Type Il Il I Al Il L
fl -SMN1 Mean + SD 2649 +13.88 185.71 + 148.00 0.61+0.30 6.30£2.02 1.57£0.38 3.54+£0.95 7194272 0.05+0.10
Min-Max 11.16-50.8 29-470 0.22-0.95 3.58-8.26 1.24-1.98 2.94-4.64 4.90-10.20 0-0.19
GAPDH Mean + SD 23222 +11749 4857.3 24525 3720+ 1969 2742 £ 8294 3247 £ 1079 1695 + 456 8173 + 2957 3002 £ 1801
Min-Max 1232-4700 1976-8660 2000-6500 1788-3680 2040-4120 1388-2220 5340-11240 1315-5300
corrected fl -SMN1T Mean £ SD 2377774 947 +539 0.52+046 459 +0.68 1.04+£039 4.18+0.20 201+£089 0.07£0.15
Min-Max 15.92-34.74 1.05-18.73 0.15-1.15 3.98-5.29 0.69-1.46 3.98-4.38 1.23-2.98 0-0.29
P value (t-test) - 0.000 ° 0.000° 0094 0.000P 011" 0032° 0.000°

fl -SMN1, GAPDH ,and corrected fl- SMN1 indicate transcript levels, measured as no. of molecules per nanogram of total RNA. Superscripted a means that the t-test was carried out between controls and carriers;
Superscripted b means the t-test was performed between carrier and the patients with subtle mutations.
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Figure 4 Levels of fl-SMN1 transcripts in controls, carriers and patients with subtle mutations. The dark horizontal lines indicate the 95%
confidence interval. The empty circle indicate the median. FI-SMNT transcript levels were significantly different between normal controls and
healthy carriers. The levels of transcripts in patients were significantly reduced compared with those in controls. FI-SMNT transcript levels in
patients with the p.Arg288Met mutation were almost undetectable. In patients with p.Ser8LysfsX23 or p.Leu228X mutations, transcript levels were
severely reduced. In the patient carrying the novel p.Tyr277Cys mutation, transcript levels were decreased, while patients with missense
mutations (p.Ser230Leu and p.Glu134Lys) showed no significantly decrease compared with carriers.
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Figure 5 fl-SMN2 transcript levels among the individuals with different SMN2 copy numbers. Mean fl-SMN2 transcript levels in healthy
individuals (normal controls and healthy carriers) with a single copy of SMN2 were 6.3895 + 1.56, 11.48 £ 8.01 for those with two copies of SMN2,

and 1561 + 11.39 for patients with three SMN2 copies. No correlation was observed between fl-SMN2 transcript level and SMN2 copy numbers
(F=0391, P=0679).
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Table 4 Subtle mutations of SMN1 gene identified in Chinese SMA patients

Exon/ intron  ¢DNA mutation  Protein prediction = Mutation type  References Number of families  Phenotype
5/UTR c-39A>G - - Wang CC et al. [21] 1 NA
Exon 1 c22dupA p.Ser8LysfsX23 Frameshift Tsai et al. [18] (first report) 1 |
Zeng J et al. [23] 1 |
Wang CC et al. [21] 2% NA
This work 3 (Rl
Exon 2 c84C>T p.Ser28Ser Silence Wang CC et al. [21] 1 NA
Exon 3 c400 G>A p.Glu134Lys Missense This work 2 Il
Exon 5 c683T>A p.Leu228X Nonsense Tsai et al. [18] (first report) 1 |
Zeng J et al. [23] 1 |
This work 2 (Nl
Exon 5 c689C>T p.Ser230Leu Missense Zeng J et al. [19] (first report) 1 |
This work 1* (1Nl
Exon 6 c.830A>G p.Tyr277Cys Missense This work (first report) 1 Il
Intron 6 c.835-1 G>A - Splice site Zhu SY et al. [20] 1 |
Exon 7 c863G>T p.Arg288Met Missense Qu Y] et al. [22] 2 Il

*, indicate these families have two patients who were siblings. NA, not available; mutations in bold are common mutations in Chinese SMA patients.

Transcript levels of fl-SMN in different clinical cases
Although there was no correlation between fl-SMN2
transcript level and SMN2 copy numbers (one-way
ANOVA, F=0.391, P=0.679) in normal controls and
healthy carriers, the flI-SMN2 transcript level was
increased along with SMN2 copy numbers (Figure 5).
The fl-SMN2 transcript levels in patients are presented
in Table 1, with no significant differences (F =1.029, P =
0.430). Total fl-SMN transcript levels (fl-SMNI + fl-
SMN2) were used to assess the correlation between the
fl-SMN levels and the clinical severity. The fl-SMN tran-
script levels in normal controls and healthy carriers were
34.4+7.1 and 21.7 + 12.7, respectively, with a significant
difference (t=2.596, P=0.017). The fl-SMN transcript
levels in all patients were significantly decreased com-
pared with normal controls (t=7.060, P =0.000). Mean
fl-SMN transcript levels in type I (n=2) and type II
(n=8) were 11.27+6.8 and 11.67 +6.34, respectively.
For type III (n=2) patients, a slight increase in levels
could be observed (20.00 *+ 9.43). Because the number of
types I and III patients were low, statistical analysis of
fl-SMN transcript levels was only carried out between
type II patients and healthy carriers, with a significant
difference observed (t = 3.046, P = 0.009).

Discussion

Including the results from this study, 61 SMNI subtle
mutations have been detected among diverse popula-
tions worldwide. Nine subtle mutations have been iden-
tified in Chinese SMA patients [18-23] (Table 4). Among
these, the ¢.1-39A>G, p.Ser8LysfsX23, p.Ser28Ser,
p.Leu228X, p.Tyr277Cys, and ¢.835-1 G > A mutations

were only found in Chinese SMA patients, p.Arg288Met
mutation had been reported in another East Asian
country-Korea [17], only the two mutation (p.Glul34Lys
[27], and p.Ser230Leu [28]) were found in Caucasian
population. In East Asian country, there was still another
mutation p.Trp92Ser only reported in Japanese SMA
patient [15]. These reports showed the kinds of
SMNIsubtle mutation in the Chinese even East Asian
population are distinct from those in Caucasian popula-
tions. In addition, the type of common mutations dif-
fered between Chinese and Caucasian populations. In
Chinese SMA patients, p.Ser8LysfsX23 and p.Leu228X
seem to be the common mutations, which were detected
in seven families (33.3%, 7/21) and four families (19.0%,
4/21), respectively. While in Caucasian populations,
Mutations p.Argl33fsX15, p.Gly261LeufsX8, p.Tyr272Cys
and p.Thr274Ile were commonly detected [4,6-8,10,
11,16,25,29-31]. Our research implies that the SMNI
subtle mutations show high heterogeneity in various
populations.

Our results show that the level of fl-SMNI transcripts
in normal controls was significantly higher than in
healthy carriers, which corresponded to the different
number of SMNI copies carried in these individuals. Al-
though the patients with subtle mutation carried only
one SMNI1 copy, the effect of these mutations on the fl-
SMNI transcript levels were different. Based on the
qPCR analysis, fl-SMNI transcript levels in patients with
p-Ser8LysfsX23 or p.Leu228X mutations were much
lower than in healthy carriers. We presumed the reason
for this might be that these two premature termination
mutations initiate nonsense-mediated mMRNA decay
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(NMD). NMD procedure can result in rapid degradation
of SMN1 mRNA [32]. A lack of any significant difference
between carriers and patients with missense mutations
(p.Glul34Lys and p.Ser230Leu) implied that these mis-
sense mutations do not affect transcription of SMNI, or
degradation of SMNI mRNA. However, all the patients
with subtle mutations significantly reduced fl-SMN tran-
script levels compared with normal controls. These
results were similar to those seen in patients with a
homozygous deletion of SMNI [26]. We have attempted
to assess the correlation between the fl-SMN levels and
the clinical severity, while the difference of fl-SMN tran-
script levels in these patients were not significant. A dir-
ect relationship could not be observed between fl-SMN
transcript levels and phenotypic severity in this study.

The p.Arg288Met mutation was firstly reported in
2009 [17], and was also found in two unrelated Chinese
patients in a previous study [23]. Kang et al. predicted
that this mutation was likely to be deleterious to protein
structure and function [17]. In our study, an interesting
finding was that the SMNI transcript carrying the
p.Arg288Met mutation skipped exon 7 entirely. According
to sequence analysis and restriction digestion assays,
these two patients with p.Arg288Met mutation produce
a transcript corresponding to A7-SMNI other than a
transcript of fl-SMNI1. Subsequent qPCR analysis veri-
fied that fl-SMNI transcripts were almost undetectable
(0.017 £ 0.15). The effect of this mutation was similar to
that seen with the C to T conversion in SMN2 exon 7
producing A7-SMN mRNA. This transcript encodes a
truncated SMN protein that fails to undergo self-
oligomerization of SMN, is unstable, and degrades easily.
The pathogenic effect in a patient who has only one
copy of SMNI1 with the p.Arg288Met mutation is the
same as for the homozygous deletion of SMNI. The
phenotypes in patients carrying the p.Arg288Met muta-
tion were type I SMA in the two patients and type II
SMA in another patient. These results were consistent
with a phenotype in SMA patients that have a homozy-
gous deletion of SMNI.

Rare missense mutations were reported to affect the
splicing of SMNI. There were two variations that oc-
curred in exon 7 of SMN2 that were described to affect
the splicing of SMN2. The C—T conversion at position
six of SMN2 exon 7 was found to cause the entire
exon to be skipped [33,34]. The missense mutation
p.Gly287Arg (c.859 G >C) in SMN2, recently described
as a positive disease modifier, could improve SMN2 exon
7 inclusion [35]. Many studies have revealed that mul-
tiple cis-elements and splicing factors participate in the
regulation of SMN exon 7 splicing. Singh et al. [36]
showed that the Conserved tract is a positive element
located in the middle of exon 7 at positions 16—44. Hof-
mann et al. [37] revealed binding of exonic splicing
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enhancers (ESEs) with Htra2-bl in the middle of exon 7
at positions 19-27. In this study, our results show that
the p.Arg288Met mutation may influence splicing of exon
7, causing the entire exon to be skipped. Serine/arginine-
rich protein-binding ESE elements were not observed
in wild-type or mutant sequences at c.863 using ESE
finder 2.0 (http://rulai.cshl.edu/tools/ESE2). However, the
p.Arg288Met mutation at position 29 of exon 7 was
located within the Conserved tract element, and near
where the ESE binds with Htra2-b1. We speculate that an
unascertained ESE, regulating SMN exon 7 splicing,
might exist in the Conserved tract element and that this
variant of G>T in ¢.863 may influence the ESE site or
produce a new exonic splicing silencer element (ESS).

The tyrosine/glycine-rich sequence (Y/G box), con-
taining highly conserved residues Tyr268 and Gly279
(YXXGYXXGYXXQ) in the C-terminus of SMN, is an
essential self-oligomerization domain of SMN. It plays
role in assembling of the SMN complex and participat-
ing in pre-mRNA splicing [38,39]. The aromatic amino
acids Tyr268, Tyr272, and Tyr276, each at three-base
intervals, seem to be more important than other amino
acids in the Y/G box because two SMN monomers
might form a stable dimer through aromatic stacking of
these tyrosines [16]. When these three tyrosines
mutate, SMN self-oligomerization could be severely dis-
turbed. To date, several missense mutations in the Y/G
box, including p.Tyr272Cys, p.His273Arg, p.Thr274lle,
p.Gly275Ser, p.Gly279Cys and p.Gly279Val, have been
reported [4,7,10-14,16,40-44]. Among these, p.Tyr272Cys
and p.Gly279Val were reported to be usually associated
with the more severe type I form of SMA [4,11-13,44].
The p.Thr2741le, p.Gly275Ser and p.Gly279Cys mutations
were generally associated with the milder, type II and III
phenotypes [7,10-13,16,41-43].

In this paper, the p.Tyr277Cys mutation within the
Y/G box is reported for the first time. Although Tyr277
is an aromatic amino acid, it is near the critical Tyr276
residue. Both Tyr276 residues from two SMN monomers
require adequate space to form aromatic stacking. We
speculate that Tyr277 replaced by a Cys residue might
disturb the space structure of aromatic stacking, thereby
affecting the stability of the SMN dimer. The patient
carrying the p.Tyr277Cys mutation also had two copies
of SMN2. The mean fl-SMN transcript level in this pa-
tient was 6.54 + 4.33, which was much lower than that in
normal controls (34.4 +7.1) and healthy carriers (21.7 +
12.7). The phenotype of this patient in our study was in-
dicative of type II SMA. Although Tyr277 is a highly
conserved residue, we predicted that the p.Tyr277Cys
mutation might be a milder mutation affecting the struc-
ture of the Y/G box.

It was worth to note that two siblings (cases 8 and 9)
with the same p.Ser230Leu mutation displayed different
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phenotypes. The elder brother was diagnosed as type II
SMA, while his younger sister was type III SMA. Cases
8 and 9 carried two SMN2 copies, with mean fl-SMN
transcript levels of 12.22 + 7.07 and 14.83 + 4.45, respect-
ively. The difference between them was not significant
(t=-0.453, P =0.682). We hypothesized that there might
be other modifying factors that affect phenotypes, such
as Plastin 3, which has been reported as a sex-specific
protective modifier of SMA [45-47].

Conclusion

In conclusion, six SMNI subtle mutations were identi-
fied in 12 patients, including the novel p.Tyr277Cys
mutation. Based on our research and other studies,
p-Ser8LysfsX23 and p.Leu228X mutations seem to be the
common SMNI subtle mutations in Chinese patients.
This preliminary study revealed that SMNI subtle muta-
tions in Chinese SMA were different to those observed in
Caucasian populations. A qRT-PCR assay implied that
p-Ser8LysfsX23, p.Leu228X, and p.Arg288Met mutations
affected fl-SMNI transcript levels. Besides, we discovered
that the p.Arg288Met mutation disturbed the splicing of
exon7 SMNI pre-mRNA, resulting in SMNI transcripts
skipping exon 7.
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