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Abstract

Background: Hemoglobin A1c (HbA1c) levels diagnose diabetes, predict mortality and are associated with ten single
nucleotide polymorphisms (SNPs) in white individuals. Genetic associations in other race groups are not known. We
tested the hypotheses that there is race-ethnic variation in 1) HbA1c-associated risk allele frequencies (RAFs) for SNPs
near SPTA1, HFE, ANK1, HK1, ATP11A, FN3K, TMPRSS6, G6PC2, GCK, MTNR1B; 2) association of SNPs with HbA1c and 3)
association of SNPs with mortality.

Methods: We studied 3,041 non-diabetic individuals in the NHANES (National Health and Nutrition Examination
Survey) III. We stratified the analysis by race/ethnicity (NHW: non-Hispanic white; NHB: non-Hispanic black; MA:
Mexican American) to calculate RAF, calculated a genotype score by adding risk SNPs, and tested associations with
SNPs and the genotype score using an additive genetic model, with type 1 error = 0.05.

Results: RAFs varied widely and at six loci race-ethnic differences in RAF were significant (p< 0.0002), with NHB
usually the most divergent. For instance, at ATP11A, the SNP RAF was 54% in NHB, 18% in MA and 14% in NHW
(p< .0001). The mean genotype score differed by race-ethnicity (NHW: 10.4, NHB: 11.0, MA: 10.7, p< .0001), and was
associated with increase in HbA1c in NHW (β= 0.012 HbA1c increase per risk allele, p = 0.04) and MA (β= 0.021,
p = 0.005) but not NHB (β= 0.007, p = 0.39). The genotype score was not associated with mortality in any group
(NHW: OR (per risk allele increase in mortality) = 1.07, p = 0.09; NHB: OR = 1.04, p = 0.39; MA: OR = 1.03, p = 0.71).

Conclusion: At many HbA1c loci in NHANES III there is substantial RAF race-ethnic heterogeneity. The combined
impact of common HbA1c-associated variants on HbA1c levels varied by race-ethnicity, but did not influence
mortality.
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Background
The prevalence of type 2 diabetes (T2D) is not equal among
race-ethnic groups in the United States, with a prevalence
of 12.8% in non-Hispanic blacks (NHB), 8.4% in Mexican
Americans (MA), and 6.6% in non-Hispanic whites (NHW)
aged 20 yrs or older [1]. Diabetes-related complications also
differ between race-ethnicities [2] and there is greater im-
pact of diabetes on life-years in minority groups [3]. Race-
ethnic differences in environmental exposures and health
care experiences [4] likely influence different outcomes for
people with diabetes, but genetic differences may also play
an important role. Despite recent advances in the study of
T2D genetics, relatively little is known about how race-eth-
nic genetic differences contribute to inter-race variability in
diabetes risk or diabetes-related traits.
Percent HbA1c (glycated hemoglobin) is an informative

trait for diabetes diagnosis and management. It is accurate in
quantifying chronic glycemic exposure of erythrocytes for
the preceding 2–3 months, and there is a robust correlation
between HbA1c levels and occurrence of diabetes complica-
tions [5,6]. Recently, MAGIC (Meta-analyses of Glucose and
Insulin related traits Consortium) identified ten genetic loci
associated with HbA1c [7]. The ten loci associated included
three loci in or near genes likely involved in glycemic control
pathways: G6PC2 (glucose-6-phosphatase catalytic subunit
2, MIM 608058), GCK (glucokinase, maturity onset diabetes
of the young (MODY) 2, MIM 138079), and MTNR1B
(melatonin receptor 1B, MIM 600804) and seven loci in or
near genes likely to be involved in erythrocyte biology, in-
cluding SPTA1 (spectrin alpha erythrocytic 1, MIM 182860),
HFE (hemochromatosis, MIM 235200), ANK1 (ankyrin 1,
MIM 612641), HK1 (hexokinase 1, MIM 142600), APT11A
(ATPase Class VI, type 11A, MIM 605868), FN3K (fructosa-
mine 3 kinase, MIM 608425), and TMPRSS6 (transmem-
brane protease serine 6, MIM 609862). Since MAGIC only
included individuals of European ancestry, nothing is known
about the impact of these risk alleles on HbA1c levels in
non-European-ancestry populations.
Given the selection pressure by infectious diseases such

as malaria on some erythrocyte-related genes in African
populations [8-10] and the influence of erythrocyte genes
on HbA1c [7,11], we hypothesized that risk alleles at
HbA1c-associated loci may have substantial race-ethnic
frequency variation and that associations with HbA1c

levels may also differ by race. Furthermore, since elevated
HbA1c is associated with risk of cardiovascular disease or
mortality [12-19], we hypothesized that an association be-
tween HbA1c-associated SNPs and mortality may exist and
there may be race-ethnic differences in this association.
Using 11 confirmed HbA1c-associated SNPs at ten loci [7],
we compared NHB, MA, and NHW individuals from
NHANES (National Health and Nutrition Examination
Survey) III to test the hypotheses that there is significant
race-ethnic variation in HbA1c risk (HbA1c-raising) allele
frequency, risk-allele association with HbA1c levels and
risk-allele association with mortality.

Methods
Study subjects from the third national health and
nutrition examination survey
NHANES III was a nationally representative sample of the
non-institutionalized civilian U.S. population collected
using stratified multistage probability sampling. NHANES
participants underwent a physical examination, phlebot-
omy, and a household interview [20]. This study was lim-
ited to non-diabetic patients (aged 20 or older) with 8–23
hours of fasting prior to blood sampling. Blood from
NHANES III Phase II (1991–1994) participants aged 12 or
older were used to generate Epstein-Barr transformed
lymphocyte cell lines for DNA extraction. Mortality data
(death within a mean of 13.5 years of follow-up) were
merged from the NHANES III mortality-linked data file.
Race-ethnic group was assigned based on self-report. The
survey asked each subject to categorize his/her race as
“white,” “black,” or “other” and his/her ethnicity as “Mexi-
can-American,” “other Hispanic,” or “not Hispanic.” Of
3,894 individuals with complete data for analysis, we
excluded 149 who were not of NHB, MA or NHW race-
ethnicity and 704 with diabetes (293 NHW, 167 NHB and
244 MA), leaving 901 NHB, 909 MA, and 1,231 NHW
individuals in the analysis. Written informed consent was
obtained from all subjects and this study was approved by
the National Center for Health Statistics (NCHS) Ethics
Review Board.

Diabetes definition and HbA1c measures
Individuals with diabetes were excluded to avoid the con-
founding effects of treatment on HbA1c. We defined dia-
betes as a fasting plasma glucose≥ 7.0 mmol/L, report of a
diagnosis of diabetes or use of hypoglycemic medications.
HbA1c levels were measured using HPLC (Bio-Rad DIA-
MAT glycosylated hemoglobin analyzer system) [21].

SNP genotyping and allele frequencies
Genotyping was performed using Sequenom iPLEX. We
genotyped 11 SNPs at ten loci shown among white non-dia-
betic individuals in MAGIC to have genome-wide significant
association with HbA1c. [7] We used SNP rs282606 as a
proxy for ATP11A rs7998202 (CEU r2=1.0), SNP
rs10830956 as a proxy for MTNR1B rs1387153 (CEU
r2=1.0), and rs2022003 as a proxy for SPTA1 rs2779116
(CEU r2=0.927) [r2 for ASW and MEX populations not
available]. The minimum call rate for genotyping was 95%.
Allele frequencies of all SNPs were in Hardy Weinberg Equi-
librium (HWE) based on National Center for Health Statis-
tics standards (HWE rejected if p< 0.01 in≥2 or more race-
ethnic groups). We compared NHANES observed allele fre-
quencies with those available from HapMap (http://hapmap.
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ncbi.nlm.nih.gov/, Release 27, Phases II and III, NCBI build
36), comparing NHW with CEU (Utah residents with
Northern and Western European ancestry from the CEPH
collection), NHB with ASW (African ancestry in Southwest
USA), and MA with MEX (Mexican ancestry in Los
Angeles, California).

Genotype risk score
We calculated a genotype risk score to test the collective as-
sociation with HbA1c of 11 SNPs at 10 loci (2 uncorrelated
SNPs at ANK1). We assumed that each SNP was associated
with HbA1c based on previous association results in whites,
despite potential ancestral differences in NHB or MA in
linkage disequilibrium (LD) patterns [22]. Since we did not
know the effect size of the MAGIC SNPs in non-white
populations, we did not apply SNP-specific weights to ac-
count for SNP-specific differences in effect on HbA1c, but
simply summed the presence of 0, 1, or 2 risk alleles carried
by individuals at each SNP. In addition to the 11-SNP GRS,
we also performed a secondary analysis using an eight SNP
“non-glycemic” risk score by excluding the three glycemic
loci (G6PC2, GCK, MTNR1B) for score calculation.

Statistical analyses of association
We stratified the analysis by race-ethnicity (NHB, MA, and
NHW) and to estimate rates and proportions within groups
used weights to account for sampling probabilities using
methods previously described [23]. P-values for differences
across race-ethnic groups were calculated using Sat-
terthwaite adjusted- F statistics for continuous variables
and chi-square tests for categorical variables. To estimate
the significance of differences in allele frequencies across
groups we used Fisher’s Exact tests.
To investigate the relationship between SNPs and HbA1c

level we used linear regression and an additive genetic
model adjusted for age and sex. We included one SNP at a
time in the models for individual SNP associations with
HbA1c, with genotypes coded as 0, 1 or 2 depending on the
number of HbA1c-raising alleles present. To study the col-
lective effect of the 11 SNPs on HbA1c we used linear re-
gression adjusted for age and sex, totaled the number of
risk alleles at all 11 SNPs to calculate a risk score, and
tested associations of a per-risk-allele increase in genotype
risk score with HbA1c. We calculated the adjusted model
R2 with and without the genotype risk score for each group
to determine the percent variance in HbA1c explained by
genetic effects. The same procedure was carried out for the
8 SNP “non-glycemic” risk score, as well as for genetic
associations with mortality (percent dead as of 13.5 years
post-baseline exam). To determine if a significant genetic
risk score x ethnicity interaction effect on HbA1c exists, we
also applied the following linear regression model on the
whole sample: Hba1c level (outcome) = sex, age, genetic risk
score, ethnicity, genetic risk score x ethnicity interaction.
For tests of association with mortality we used logistic re-
gression to estimate the odds of mortality with per-risk-al-
lele increase in HbA1c. For analysis of mortality, Cox
models yielded similar results to logistic regression, so Cox
model results are not shown. We also applied the following
logistic regression model on the whole sample: mortality
(outcome)= sex, age, GRS, ethnicity, GRS x ethnicity inter-
action. For the analyses we used SUDAAN (version 10.0)
[24] and SAS (version 9.2, SAS Institute Inc, Cary, NC).
We considered p values less than 0.05 to indicate statistical
significance, based on one test per previously established
SNP at each locus for each hypothesis (SNP is associated
with HbA1c; SNP is associated with mortality).

Linkage disequilibrium, signatures of population
differentiation and natural selection at HbA1c-associated loci
To evaluate inter-ethnic differences in LD near the SNPs,
we examined 500 kb around each SNP (HapMap Release
27, Build 36, phases II and III) for four populations (CEU,
YRI, ASW, and MEX). Using Haploview version 4.2, [25]
we counted the number of “Gabriel” LD regions (based on
confidence intervals) [26] in that region for each popula-
tion. We investigated natural selection around the ten loci
using Haplotter [27] and HapMap Phase II data. Standar-
dized Integrated Haplotype Score (iHS) (a statistic based
on differential LD around positively selected alleles that
compares haplotype length with ancestral allele versus
derived allele to detect positive selection) [27], Fay and
Wu’s H+ statistic (a measure used to scan a region for al-
lele frequencies that are skewed from the neutral model)
[28] and the Fixation Index (FST) (a statistic using allele
frequencies to measure genetic divergence between subpo-
pulations) [29] were obtained through Haplotter SNP
queries spanning 2 Mb regions at each locus.

Results
Characteristics of participants
NHW individuals were older, had lower BMI and lower
mean HbA1c than did NHB and MA individuals (global
p values all <0.0001, Table 1).

Risk allele frequencies of HbA1c-associated variants
Risk allele frequencies across the 11 loci varied widely
within the three race-ethnic groups (Additional file 1: Table
S1). Six out of 11 HbA1c–associated SNPs had risk allele
frequencies that differed significantly across race-ethnic
groups (Fisher’s p <0.0002). At five of these six loci, risk al-
lele frequency of NHB was most divergent, including SNPs
near ANK1 (two uncorrelated SNPs), MTNR1B, ATP11A/
TUBGCP3 and TMPRSS6. At the SNP near SPTA1, risk al-
lele frequency differed most in MA. The HbA1c -raising al-
lele was the minor (less frequent) allele in all three ethnic
groups for SNPs near SPTA1, GCK, MTNR1B, FN3K, and
TMPRSS6. The HbA1c –raising allele was the major (more

http://hapmap.ncbi.nlm.nih.gov/
http://www.biomedcentral.com/supplementary/1471-2350-13-30-S1.xls


Table 1 Characteristics of participants by race-ethnicity,
Third National Health and Nutrition Examination Survey
(NHANES III)

Sample weighted distribution by
race-ethnicity1

Non-Hispanic
White

Non-Hispanic
Black

Mexican
American

Characteristics (n = 1231) (n = 901) (n = 909) p-value2

HbA1c (%) (SE) 5.22
(0.015)

5.36
(0.022)

5.30
(0.016)

<.0001

Age (years)

Mean (SE) 43.7
(0.52)

39.6
(0.52)

35.6
(0.45)

<.0001

Sex

Male, %
(95% CI)

48.6
(45.1–52.2)

44.1
(40.6–47.7)

53.3
(49.6–57.0)

Female, %
(95% CI)

51.4
(47.9–54.9)

55.9
(52.3–59.4)

46.7
(43.0–50.4)

0.2713

BMI (kg/m2)

≤25
(95% CI)

45.1
(41.6–48.6)

33.4
(30.0–36.7)

32.4
(28.9–35.9)

25 to ≤30
(95% CI)

34.3
(30.9–37.8)

36.3
(32.8–39.7)

41.6
(37.9–45.3)

> 30
(95% CI)

20.6
(17.9–23.4)

30.4
(27.2–33.6)

26.1
(22.7–29.4)

<.0001

CI= confidence interval; Std Dev: standard deviation; SE: standard error; BMI:
Body Mass Index; NHW: non-Hispanic white; NHB: Non-Hispanic black; MA:
Mexican American.
1. For continuous variables, means were adjusted for age and sex.
2. p-values were tests for the difference across race-ethnicity based on
Satterthwaite adjusted-F statistics for continuous variables and X2 for
categorical variables.
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frequent) allele at SNPs near ABCB11, HFE, ANKI
(rs6474359) and HK1. At two loci, ATP11A, and ANK1
(rs4737009), the HbA1c –raising allele was the minor allele
in NHW and MA, but the major allele in NHB (Additional
file 1: Table S1). Risk allele frequencies observed in this
study and those available from HapMap were generally
similar, although at some loci minor dissimilarity with Hap-
Map was observed in NHB and MA cohorts (Figure 1;
Additional file 1: Table S2).
SNP associations with HbA1c

Though single-SNP associations are underpowered (Add-
itional file 1: Table S3), we did observe that in NHW, eight
of the 11 SNPs in NHW were consistent with Soranzo et al.
(2010) in having a positive risk effect on HbA1c levels, with
three of the SNPs used in our analysis (rs282606 [ATP11A],
rs10830956 [MTNR1B], and rs2022003 [SPTA1]) serving as
proxies for those in the MAGIC study. Beta coefficients
were negative for three, three and four of the 11 SNPs in
NHW, NHB and MA groups, respectively, but correspond-
ing SNPs did not generate significant associations (Table 2).
Three out of 11 HbA1c-associated SNPs had nominally
significant (p< 0.05) associations with HbA1c levels in at
least one of the three race-ethnic groups, but altogether
only four of the 33 possible associations (11 SNPs x three
race-ethnic groups) were significant (p< 0.05). No signifi-
cant associations were observed in NHB. Two HbA1c-SNPs
produced a significant association only in NHW (both
SNPs at ANK1), and one produced a significant association
in both NHW and MA (rs855791 near TMPRSS6).

Combined associations of 11 HbA1c SNPS with HbA1c

The mean 11-SNP genotype scores (actual scores ranged
from 1–18) were 11.0 (± 0.09 [SE]) in NHB, 10.7 (± 0.08)
in MA and 10.4 (± 0.07) in NHW, (p value for global dif-
ference across race-ethnicity< 0.0001, Table 3). Median
genetic risk scores (unweighted) were 11.0 (SD =2.2),
11.0 (SD =2.3) and 11.0 (SD =2.0) in NHW, NHB and
MA, respectively, with distributions of genetic risk scores
negatively skewed toward a lower score in all three eth-
nic groups. The per-risk allele increase in the score was
significantly associated with HbA1c levels in NHW and
MA, but not NHB. When comparing the top and bottom
10% of the genotype score distribution for each race-
ethnic group, the smallest difference in HbA1c was
observed in NHW (NHW: 0.49%; NHB: 0.56%; MA:
0.54%). The genotype score explained very little of the
variance in HbA1c levels in NHB (0.0005%) compared
with NHW (0.0016%) and MA (0.0121%). Variance
explained in NHW is comparable to the previously pub-
lished value [7]. We observed no significant genetic risk
score x ethnicity interaction on HbA1c level (p = 0.68).

Combined associations of eight non-glycemic SNPs with
HbA1c

The mean “non-glycemic” 8-SNP genotype scores (actual
scores ranged from 4–15) were 8.80 (± 0.06[SE]) in
NHB, 8.72 (± 0.06) in MA and 8.41(± 0.06) in NHW,
(p value for global difference across race-ethnicity
< 0.0001) (Additional file 1: Table S4). The per-risk allele
increase in the score was significantly associated with
HbA1c levels in NHW, but not in NHB and MA.

Association of 11 HbA1c SNPs with mortality
Mortality rates differed between race-ethnic groups
(Table 4) with a higher mortality rate observed in NHB
(19.4%) compared with NHW (12.8%) and MA (14.5%).
The 11-SNP genotype score was not associated with
mortality in any race-ethnic group. We observed no sig-
nificant genetic risk score x ethnicity interaction on mor-
tality (p=0.62). Power calculations for the mortality
analysis are provided in Additional file 1: Table S5.

Linkage disequilibrium at HbA1c-associated loci
There were consistently fewer LD regions in the CEU popu-
lation compared to YRI at every locus (YRI:CEU): SPTA1
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Figure 1 Risk allele frequencies of 11 HbA1c-associated SNPs. NHB: Non-Hispanic black NHANES III; MA: Mexican American NHANES III; NHW:
Non-Hispanic white NHANES III; ASW: African ancestry in Southwest USA HapMap; MEX: Mexican ancestry in Los Angeles, California HapMap; CEU:
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42:25; ABCB11/G6PC2 49:27; HFE 31:17; GCK 28:21; ANK1
(rs41668351) 35:29; ANK1 (rs41749562) 30:25; HK1 45:38;
MTNR1B 39:22; FN3K 42:27; TMPRSS6 78:52; ATP11A/
TUBGCP3 49:31 (Additional file 1: Table 6). ASW, which
represents a population with African ancestry in the south-
western United States, only had higher numbers of LD
regions compared to CEU in two out of 11 regions, possibly
due to lower coverage of ASW compared to CEU (and YRI)
in HapMap Release 27.
Table 2 Regression coefficients of 11 HbA1c-associated SNPs o
and Nutrition Examination Survey (NHANES III)

Non-Hispanic White N

SNPs Chr. Nearest Gene β1 (SE) p-value2

rs2022003 1 SPTA1 0.021 (0.02) 0.34 0.0

rs552976 2 ABCB11/G6PC2 0.030 (0.02) 0.13 0.0

rs1800562 6 HFE 0.022 (0.06) 0.73 0.1

rs1799884 7 GCK -0.003 (0.03) 0.91 -0.0

rs4737009 8 ANK1 0.047 (0.02) 0.03 0.0

rs6474359 8 ANK1 0.1024 (0.05) 0.03 0.0

rs16926246 10 HK1 -0.050 (0.03) 0.08 0.0

rs10830956 11 MTNR1B -0.010 (0.02) 0.62 -0.0

rs282606 13 ATP11A / 0.037 (0.03) 0.17 0.0

rs1046896 17 FN3K 0.014 (0.02) 0.47 -0.0

rs855791 22 TMPRSS6 0.048 (0.02) 0.01 0.0

SE: standard error; Chr.: chromosome.
1. β-coefficients (SE) (change in HbA1c per SNP risk allele) of linear regression mode
2. p-values for β-coefficients based on Satterthwaite adjusted-F test.
3. p-values for difference in β-coefficients acris race-ethnic groups.
Evidence of population differentiation and natural
selection at HbA1c-associated loci
Fay and Wu’s H+was highly skewed at two loci (HK1 and
ATP11A) in CEU (Additional file 1: Table S7). Integrated
haplotype scores (iHS) were not highly negative or positive
at these SNPs, as would be characteristic for regions under-
going recent natural selection. FST, a measure of the amount
of allelic fixation due to drift, was greater than 15% at ANK1
and ATP11A in both CEU and YRI, suggesting population
n HbA1c levels by race-ethnicity, Third National Health

on-Hispanic Black Mexican American p-value for
heterogeneity3β1 (SE) p-value2 β1 (SE) p-value2

24 (0.03) 0.48 0.038 (0.02) 0.09 0.75

15 (0.03) 0.64 0.011 (0.02) 0.62 0.76

041 (0.07) 0.14 0.005 (0.10) 0.96 0.27

31 (0.04) 0.40 0.041 (0.03) 0.13 0.78

38 (0.03) 0.20 0.052 (0.03) 0.06 0.99

26 (0.04) 0.49 -0.002 (0.06) 0.97 0.41

36 (0.04) 0.37 -0.005 (0.03) 0.87 0.71

11 (0.03) 0.74 0.030 (0.03) 0.24 0.38

19 (0.03) 0.53 -0.015 (0.03) 0.60 0.90

34 (0.03) 0.24 -0.021 (0.02) 0.35 0.23

25 (0.04) 0.49 0.050 (0.02) 0.02 0.52

ls adjusted for age and sex.



Table 3 Association of HbA1c with the 11 SNP genetic risk score by race-ethnicity, Third National Health and Nutrition
Examination Survey (NHANES III)

Race/ethnicity β (SE)1 p-value2 Sample N Genetic Risk
Score (SE)4

R2 Without
Score3

R2With
Score3

R2 Difference HbA1c (%)
difference top -
bottom 10% of

score distribution

Non-Hispanic
White

HbA1c (%) 0.012 (0.006) 0.04 1231 10.42 (0.07) 0.214 0.218 0.004 0.49

Non-Hispanic
Black

HbA1c (%) 0.007 (0.008) 0.39 901 10.95 (0.09) 0.095 0.096 0.001 0.56

Mexican
Americans

HbA1c (%) 0.021 (0.008) 0.005 909 10.67 (0.08) 0.131 0.168 0.037 0.54

HbA1c: Hemoglobin A1c (glycated hemoglobin); SE: standard error.
1. β-coefficients (SE) for the per-risk allele increase in HbA1c (%) from linear regression models fro the risk score adjusted for age and sex.
2. p-values for β-coefficients based on Satterthwaite adjusted-F test.
3. Adjusted R2 for regression models with and without (age and sex only) weighted genetic risk score.
4. p =<.0001 for the global difference in weighted genetic risk score across race-ethnic groups.
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differentiation at these loci [29]. Haplotter queries by gene
did not reveal evidence of natural selection directly at the
genes queried, but evidence of natural selection was
observed within a 2 Mb region of ABC11/G6PC2 and
TMPRSS6 for CEU and YRI, respectively.

Discussion
Genome-wide association studies of HbA1c levels in cohorts
of white individuals of European ancestry revealed a combin-
ation of glycemic and non-glycemic biological influences on
HbA1c, with three loci associated with HbA1c in or near
genes likely involved in glycemic control pathways and seven
loci associated with HbA1c in or near genes likely to be
involved in erythrocyte biology [7]. In this study we found
that in the nationally representative NHANES III sample of
US adults, heterogeneity in risk allele frequencies exists
across race-ethnic groups for six of these HbA1c-associated
SNPs. Five SNP risk allele frequencies in NHB were signifi-
cantly lower or higher than the other two groups. Risk allele
frequencies observed in NHANES III were generally consist-
ent with frequencies of comparable populations available in
HapMap, suggesting that HapMap and NHANES III can be
considered representative of each other at these SNPs at
least with respect to white, African American and Mexican
American race-ethnic populations. An 11-HbA1c- associated
SNP genotype score was subtly different by race-ethnicity
and was associated with increase in HbA1c in NHW and
MA but not NHB. The 11-SNP genotype score was not sig-
nificantly associated with mortality in any group.
There are several potential sources for the inter-race-eth-

nic heterogeneity of SNP and genotype risk score associa-
tions with HbA1c that we observed. One potential source
of heterogeneity is race-specific selection acting on
erythrocyte-related loci that influence HbA1c. Variants in
the β- hemoglobin gene (HBB), for example, produce
abnormal erythrocytes that can affect HbA1c levels [30] but
are protective against malaria and are thus maintained in
populations and found at highest frequencies in regions
historically exposed to this disease like Africa and India
[31]. Rare mutations in many loci associated with HbA1c

(SPTA1, ANK1, HK1, TMPRSS6) are known to cause her-
editary red blood cell disorders [7] and common variants
at several loci (SPTA1, HFE, ANK1, HK1, TMPRSS6) are
associated with hematological traits like hemoglobin con-
centration and mean corpuscular volume [32-34]. Adjust-
ment of models of these common variants predicting
HbA1c levels for levels of hemoglobin concentration or
mean corpuscular volume attenuate SNP-HbA1c relation-
ships, suggesting mediation of HbA1c varation by elements
of erythrocyte biology [7]. Further, a recent genetic associ-
ation study showed some differences in the genetic regula-
tion of hematological traits in Europeans compared with
Africans [35]. Our analyses of differentiation and selection
suggest that there may be some selection pressure at the
ANK1, HK1, ATP11A, TMPRSS6 and ABC11/G6PC2 loci,
the first four of which are erythrocyte-related loci. How-
ever, in the present study, race-ethnic differences in associ-
ation with HbA1c by SNP were observed at only two of
these loci (ANK1 [rs4737009] and TMPRSS6). We also
examined inter-population allele frequency differences of
trait-associated SNPs which may indicate that selection is
operating on the trait [36]. While frequencies of some dis-
ease-associated alleles have been reported as largely het-
erogeneous between race-ethnicities [36-39], other data
suggest no greater differentiation than would be expected
from a random set of SNPs [40]. We found heterogeneous
inter-race-ethnic risk allele frequencies at six of the HbA1c-
associated SNPs and three of these (SNPs near ANK1 [both
SNPs] and TMPRSS6) showed inter-race heterogeneity in
SNP association with HbA1c.



able 4 Association of 11 SNPs and the Genotype Score with mortality by race-ethnicity, Third National Health and Nutrition Examination Survey (NHANES III)

Mortality at 13.5 years

with 0, 1, or 2 Risk Allele
ace-ethnicity SNPs N 0 1 2 SNP per-risk alelle

increase in mortality
(OR) (95% CI)

p-value1 mortality
events

Age and race
standardized weighted
mortality (%) per 1000
person-years (95% CI)

11 SNP Genotype Score
per-risk alelle increase

in mortality (OR) (95% CI)

p-value3

143 12.8 (11.0–14.6) 1.07 (0.99–1.16) 0.09

on-Hispanic
hite

rs2022003 1,226 52.8 39.1 8.1 1.12 (0.81–1.55) 0.48

rs552976 1,192 9.9 41.5 48.6 0.93 (0.68–1.27) 0.68

rs1800562 1,204 0.1 8.0 91.9 1.07 (0.45–2.55) 0.88

rs1799884 1,207 69.2 27.6 3.3 0.98 (0.68–1.40) 0.90

rs4737009 1,183 57.7 35.1 7.2 0.97 (0.65–1.47) 0.91

rs6474359 1,174 0.1 6.8 93.1 0.91 (0.48–1.69) 0.76

rs16926246 1,206 2.5 20.7 76.8 1.34 (0.88–2.05) 0.17

rs10830956 1,173 49.3 42.9 7.9 1.14 (0.79–1.65) 0.48

rs282606 1,183 74.4 22.9 2.7 0.85 (0.58–1.22) 0.37

rs1046896 1,205 47.4 42.9 9.7 1.11 (0.80–1.54) 0.52

rs855791 1,183 33.2 48.3 18.5 1.14 (0.81–1.62) 0.45

100 19.4 (15.8–22.9) 1.04(0.95–1.14) 0.39

on-Hispanic
lack

rs2022003 869 55.2 39.2 5.6 1.40 (0.97–2.04) 0.07

rs552976 882 10.2 42.8 47.0 0.96 (0.67–1.39) 0.84

rs1800562 887 0.1 7.1 92.8 2.81 (1.11–7.13) 0.03

rs1799884 888 68.7 28.2 3.1 0.96 (0.65–1.43) 0.86

rs4737009 861 19.0 51.7 29.3 1.11 (0.77–1.59) 0.57

rs6474359 853 6.4 38.6 55.1 0.73 (0.51–1.03) 0.08

rs16926246 885 1.6 19.7 78.7 1.13 (0.66–1.92) 0.66

rs10830956 832 37.7 47.0 15.3 1.18 (0.84–1.67) 0.34

rs282606 859 20.2 50.8 29.1 0.93 (0.68–1.27) 0.63

rs1046896 888 50.2 40.9 8.9 1.17 (0.85–1.63) 0.33

rs855791 857 70.2 25.6 4.2 0.93 (0.63–1.38) 0.73
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Table 4 Association of 11 SNPs and the Genotype Score with mortality by race-ethnicity, Third National Health and Nutrition Examination Survey (NHANES III)
(Continued)

55 14.5 (12.0–16.9) 1.03 (0.90–1.18) 0.71

Mexican
American

rs2022003 896 41.9 45.6 12.5 0.96 (0.64–1.44) 0.84

rs552976 890 13.6 41.5 44.8 0.99 (0.67–1.46) 0.97

rs1800562 904 0.1 4.8 95.1 1.30 (0.44–3.85) 0.63

rs1799884 904 68.7 27.3 4.0 0.85 (0.54–1.36) 0.50

rs4737009 884 57.6 37.1 5.2 1.33 (0.88–2.02) 0.18

rs6474359 883 0.2 6.8 93.0 0.85 (0.35–2.03) 0.71

rs16926246 904 1.3 19.4 79.3 2.04 (1.02–4.08) 0.04

rs10830956 874 59.7 33.8 6.5 0.90 (0.57–1.40) 0.64

rs282606 882 67.6 28.4 4.0 0.68 (0.41–1.12) 0.13

rs1046896 904 47.3 43.6 9.2 1.06 (0.70–1.60) 0.78

rs855791 878 30.2 50.7 19.2 0.95 (0.64–1.40) 0.80

SNP: single nucleaotide polymorphism; OR: odds ratio; CI: confidence interval.
1. p-value associated with the OR for the per-risk allele increase in mortality for each SNP.
2. p=<.0001 for the global difference in mortality across race-ethnic groups.
3. p-value associated with the OR for the per-risk allele increase in mortality for the genotype risk score.
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We found modest race-ethnic differences in the associ-
ation of individual or collective HbA1c-associated SNPs
and levels of HbA1c. We found nominally significant asso-
ciations with an HbA1c-associated SNP genotype score
and levels of HbA1c in NHW, as expected, and also in
MA, but not in NHB individuals. Ancestral variation in
LD probably accounts for some of this difference in associ-
ation. LD is more fine-grained in genomes of African indi-
viduals [22], so some of the HbA1c-associated SNPs may
be more tightly linked to putative functional alleles in
NHW and MA than in NHB. Modest power given the
relatively small sample size of NHANES III could also ac-
count for the relatively weak association of HbA1c SNPs
with HbA1c in each race-ethnic group (Additional file 1:
Table S3). No significant interactions were observed, also
possibly due to low power. T2D diagnosis was based on
fasting glucose with no OGTT, which may have intro-
duced misclassification in T2D status of study subjects.
Furthermore, greater heterogeneity exists in NHB, and this
heterogeneity may have influenced variability in HbA1c

levels. Since there are no ancestry markers available in
NHANES to evaluate genetic heterogeneity within popula-
tions, we were unable to evaluate substructure within eth-
nic groups and, for the purposes of this study, assumed
little to no intra-population substructure.
Despite previous epidemiological associations of HbA1c

levels with mortality or cardiovascular disease [12-19] and
race-ethnic variation in mortality rates in NHANES III, we
did not see any evidence of an association of HbA1c-asso-
ciated loci with mortality in any race-ethnic group. If
HbA1c is associated with mortality, it is likely to be
mediated through HbA1c’s association with hyperglycemia
and insulin resistance, but many HbA1c-associated loci are
associated with erythrocyte biology and not hyperglycemia.
A lack of association of the HbA1c-associated SNPs stud-
ied here and cardiovascular disease events has also been
shown previously in white cohorts [7]. This unlinking of
hyperglycemia from HbA1c biology also has bearing on
diabetes screening and diagnosis. Another explanation for
a lack of association of the HbA1c genetic risk score with
mortality is the lack of statistical power due to small sam-
ple size within each ethnicity (Additional file 1: Table S5).
When pooling the entire sample and carrying out an inter-
action model we also observed no significant genetic risk
score x ethnicity interaction on mortality.
Race-ethnic differences in HbA1c levels were observed in

the present study and have been shown previously [41-46].
Population differences in HbA1c levels are partly attribut-
able to variability in non-biological factors including race-
ethnic differences in lifestyle, socioeconomics, health insur-
ance access or screening intensity [41,44]. Further, there are
likely race ethnic differences in non-glycemic biological fac-
tors including glycemic level, hemoglobinopathies [30,47-
49], iron deficiency anemias [21,48,50-54], and erythrocyte
survival [48,55,56]. The data suggest that glycemic control
is not the only root cause of inter-race-ethnic differences in
HbA1c. Although the clinical impact of HbA1c genetics on
diabetes detection appears to be modest in whites, at least ,
whether race-ethnic heterogeneity in HbA1c genetics influ-
ences diabetes diagnosis in other race-ethnic groups
requires further investigation.
The major strengths of this study include genotyping of

all 11 known HbA1c-associated SNPs in the nationally rep-
resentative, multi-race-ethnic NHANES III cohort. The
heterogeneity of HbA1c–associated SNP frequencies across
race-ethnic groups and the limited impact of these SNPs
on HbA1c level in NHB individuals underscore the import-
ance of extending association studies and the discovery of
causal variants to diverse populations for a comprehensive
understanding of HbA1c genetic architecture. As diverse
populations become increasingly incorporated into genetic
studies for variant detection, inter-race-ethnic variation
will likely continue to be revealed, necessitating careful in-
vestigation of its sources and significance.
Conclusions
In NHANES III there is substantial RAF race-ethnic het-
erogeneity at many HbA1c loci. An 11-HbA1c- associated
SNP genotype score was subtly different by race-ethnicity
and was associated with increase in HbA1c in NHW and
MA but not NHB. While the numerous potential sources
for this race-ethnic heterogeneity in association with
HbA1c require further exploration, the data underscore
the importance of extending genetic analysis to non-white
populations, especially where they may have impact on
guidelines for disease screening, diagnosis or management.
Additional file

Additional file 1: Table S1. Weighted Risk (HbA1c-raising) allele
frequencies of 11 HbA1c-associated SNPs by race-ethnicity, Third National
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versus HapMap; Table S3. Power calculations for HbA1c at alpha=0.05
and alpha=0.05/11 (Bonferroni corrected) assuming similar effect sizes to
those published by Soranzo et al. (2010); Table S4. Adjusted mean HbA1c
levels (%) and an 8-SNP "non-glycemic" genetic risk score by race-
ethnicity, Third National Health and Nutrition Examination Survey
(NHANES III); Table S5. Power calculations for mortality at alpha=0.05 and
alpha=0.05/11 (Bonferroni corrected); Table S6. Number of LD blocks in
500 kb regions flanking each SNP (based on Haploview version 4.2,
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Europeans from Haplotter queries by SNP and queries by locus (2Mb
regions).
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