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Abstract

Background: Personalized health-care promises tailored health-care solutions to individual patients based on their
genetic background and/or environmental exposure history. To date, disease prediction has been based on a few
environmental factors and/or single nucleotide polymorphisms (SNPs), while complex diseases are usually affected
by many genetic and environmental factors with each factor contributing a small portion to the outcome. We
hypothesized that the use of random forests classifiers to select SNPs would result in an improved predictive
model of asthma exacerbations. We tested this hypothesis in a population of childhood asthmatics.

Methods: In this study, using emergency room visits or hospitalizations as the definition of a severe asthma
exacerbation, we first identified a list of top Genome Wide Association Study (GWAS) SNPs ranked by Random
Forests (RF) importance score for the CAMP (Childhood Asthma Management Program) population of 127
exacerbation cases and 290 non-exacerbation controls. We predict severe asthma exacerbations using the top 10
to 320 SNPs together with age, sex, pre-bronchodilator FEV1 percentage predicted, and treatment group.

Results: Testing in an independent set of the CAMP population shows that severe asthma exacerbations can be
predicted with an Area Under the Curve (AUC) = 0.66 with 160-320 SNPs in comparison to an AUC score of 0.57
with 10 SNPs. Using the clinical traits alone yielded AUC score of 0.54, suggesting the phenotype is affected by

genetic as well as environmental factors.

Conclusions: Our study shows that a random forests algorithm can effectively extract and use the information
contained in a small number of samples. Random forests, and other machine learning tools, can be used with
GWAS studies to integrate large numbers of predictors simultaneously.

Background

Personalized medicine, the ability to predict an indivi-
dual’s predisposition to disease and response to therapy
with genetic and phenotypic characteristics, promises to
deliver more efficient health outcomes [1-4]. As a field,
personalized medicine faces multiple issues when trying
to predict complex diseases such as cardiovascular dis-
eases, cancer, and asthma. This is largely due to the fact
that no single genotypic or phenotypic characteristic can
explain more than a small portion of any complex
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disease. Instead, complex diseases are influenced by
multiple genetic factors and environmental exposures.
For instance, the height of a person is considered to be
strongly heritable, but the top 20 single nucleotide poly-
morphisms (SNPs) chosen by p value, explain only ~2-
3% of the variability in adult height [5]. In addition to
the multitude of factors influencing complex traits, the
genetic and environmental factors interact with each
other adding to the complexity.

To integrate multiple genetic and environmental pre-
dictors into modeling, conventional statistical methods
and some data mining algorithms such as an artificial
neural network (ANN) can be easily over-fit typically
due to a small sample size in relation to the number of
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potential SNPs or predictors. Nevertheless, data mining
methods are available to handle this type of data that
are more resistant to over-fitting. Random Forests (RF)
[6,7] are a classification algorithm that is composed of a
set of random decision trees, with each tree making a
decision and voting for the final prediction outcome.
Being able to generate a highly accurate classifier with
many (even relatively weak) predictors without over-fit-
ting [6,7], Random Forests would appear to be an ideal
approach to the integration of hundreds of SNPs plus
clinical traits needed to predict complex clinical pheno-
types. An added benefit of Random Forests is that the
decision trees naturally handle interactions among input
variables.

Asthma is a complex disease known to be influenced
by both genetic and environmental factors [8-16]. 26.7
million or about 9.7% of the population in the United
States have had asthma during their lifetime [17]. In the
year 2000, asthma exacerbations resulted in 1,499
deaths, 1.1 million hospital days, and $2.9 billion in
direct expenditures in the United States [18]. The ability
to predict severe asthma exacerbations would therefore
have direct prognostic significance and might form the
basis for the development of novel therapeutic interven-
tions. Severe asthma exacerbations have been associated
with several clinical factors including the forced expira-
tory volume in one second as a percent of predicted
(FEV1%), oral corticosteroid usage [9,19], age [20], and
sex [21]. However, these factors by themselves are lim-
ited in their ability to successfully predict severe asthma
exacerbations [21,22]. To explore the potential power of
a multi-SNP model as incorporated into RF together
with clinical relevant risk factors to effectively predict
complex diseases, we applied this algorithm to the pre-
diction of exacerbations in a population of childhood
asthmatics participating in the Childhood Asthma Man-
agement Program (CAMP).

Methods

Study Population

CAMP was a multicenter, randomized, double-blinded
clinical trial testing the safety and efficacy of inhaled
budesonide vs. nedocromil vs. placebo over a mean of
4.3 years. Trial design, methodology, and primary clini-
cal outcome have been previously published (The Child-
hood Asthma Management Program Research Group
1999; The > Childhood Asthma Management Program
Research Group 2000). Entry criteria included asthma
symptoms and/or medication use for > 6 months in the
previous year and airway responsiveness with a provoca-
tive concentration dose (PC,q) of methacholine < 12.5
mg/ml. 1,041 children with mild-moderate asthma were
enrolled.
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At baseline, data regarding demographics; home envir-
onment characteristics; asthma symptoms, severity, and
treatment; allergy history; and relevant family history
were collected. Each patient’s parent or guardian signed
a consent statement, with each child providing assent.
IRB approval was obtained for all participating CAMP
centers and the data coordinating center. A 6 week run-
in period which included therapy limited to as needed
albuterol preceded randomization. Visits occurred at
randomization, at two and four months after randomiza-
tion, and every four months thereafter. During these vis-
its, an interval asthma history was obtained, including
specific questions related to health care utilization
related to asthma.

The CAMP Genetics Ancillary Study was approved by
each individual study center’s Internal Review Board,
and informed consent/assent was obtained from all par-
ticipants and their parents.

Primary outcome

The occurrence of either an emergency room visit or a
hospitalization for asthma symptoms at any time during
the clinical trial period was used to define a severe
asthma exacerbation.

Clinical covariates

Age, sex, pre-bronchodilator FEV,%, and treatment
group are known to be associated with asthma exacerba-
tions and were included as clinical traits in our models.
Values for each predictor were those obtained at the
CAMP randomization visit. Age and pre-bronchodilator
FEV %, are coded as numeric variables; sex is coded as
1 for male, 2 for female; treatment group is coded as 1,
2, 3 for three different treatments.

GWAS data

Of the CAMP participants, 422 Caucasian parent-child
trios were genotyped using the Infinium II Human-
Hap550v3 Genotyping BeadChip (Illumina, San Diego,
CA), 164 Caucasian non-trio cohort children were sub-
sequently genotyped using the Human660W-Quad
BeadChip. 5 of the 422 trios had an excess of missing
genotypes and were removed from this study, and thus
417 trio children were actually used in this study. Over
500,000 SNPs were successfully genotyped in the CAMP
trios, with a reproducibility of > 99.99%. Reproducibility
is based on 4 samples that were each genotyped 15
times in the experiment. Genotype quality has been vali-
dated using the Mendel option of PLINK v0.99r http://
pngu.mgh.harvard.edu/purcell/plink/[23], verifying allele
calls against RefSeq to ensure correct orientation, and
testing for extreme departures from Hardy Weinburg
equilbrium in the parents.
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Selection of SNPs

Focusing on the trio probands as our initial test popula-
tion, we used RF importance scores to rank and select
SNPs in two steps. At each step, we used SNPs as pre-
dictors to predict asthma exacerbations with RF, and
obtained the RF importance score of each of the SNPs.
At the first step, we computed RF importance scores for
all SNPs genome-wide, 4,000 at a time, in chromosomal
order. At the second step, we ranked all SNPs based on
their RF importance scores, selected the top 4,000 SNPs,
and reran RF with these selected SNPs to re-rank them.

Prediction model building with RF

The 417 Caucasian trio samples (Stage 1 samples) were
genotyped before the 164 cohort samples (Stage 2 sam-
ples), and were used to build and train the RF models
to predict asthma exacerbations. The R package ran-
domForest version 4.5-25 originally written in Fortran
by Leo Breiman and Adele Cutler and ported to R by
Andy Liaw and Matthew Wiener http://cran.r-project.
org/web/packages/randomForest/index.html was used to
build RF models in this study. The RF predicted score is
the percentage of trees voting for “yes”. During this step
and the steps described in “Selection of SNPs“ above,
RF parameter “ntree” (number of trees to grow) were
set to be 1,500 - a relatively large number to ensure
stable prediction results, and all other parameters,
including mtry, were set to use the default values.

Prediction Performance controls

In order to assess the performance of the RF classifier
built with the selected clinical traits and SNPs as predic-
tors, two types of controls were used in this study. One
type of control is called a permutation control, the
other a random SNP control. The permutation control
permuted the response variable (any severe exacerba-
tion) among samples while retaining the association of
the predictors with the samples; the random SNP con-
trol randomly selected SNPs used in the Genome-Wide
Association Study (GWAS) regardless of whether they
are associated with the phenotype or not, and used the
equivalent number of random SNPs to build predictive
models. Both controls were iterated 10 times.

Testing in an independent population

After the RF models were built with the Stage 1 sam-
ples, additional samples were genotyped and used as the
Stage 2 population for testing. The clinical traits and
SNPs of the Stage 2 samples were used to predict the
asthma exacerbations with these RF models. Because RF
does not allow missing values for prediction, missing
alleles were imputed by randomly selecting a genotype
based on the observed genotype frequency distribution
among controls.
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ROC curve and AUC computation

Receiver Operating Characteristic curve (ROC curve)
and the Area Under the ROC Curve (AUC) were com-
puted using the R package ROCR developed by Sing et
al (Sing 2005), which is downloadable from http://rocr.
bioinf.mpi-sb.mpg.de/. We used the AUC as our pri-
mary indicator of predictive success [24,25]. The com-
putation of the p-value for an AUC to be different from
that would be obtained by chance is described in
[24,26].

Results

Sample characteristics

The clinical characteristics of both our training (trios)
and test (probands) are shown in Table 1. The Stage 1
samples are 417 CAMP asthmatic family-trio children
genotyped and used in this study. 127 (30%) of them
experienced at least one severe asthma exacerbations
during the four year follow-up period as indicated by an
emergency room visit or hospitalization (Table 1). Chil-
dren with severe exacerbations were more likely to be
male, have lower pre-bronchodilator FEV;%, and be
untreated with drugs. The Stage 2 samples are 164
cohort children, who are independent of the Stage 1
samples. A similar percentage of the Stage 2 children
experienced exacerbations in the follow-up period when
compared with Stage 1 samples. Two of the four clinical
traits (gender and treatment group) in the study are dif-
ferent in the Stage 2 samples from the Stage 1 samples.
The clinical traits are used as covariates for the outcome
prediction.

The importance score landscape of SNPs genome-wide

RF importance score measures the relative contribution
of a predictor to the prediction. The importance score
of each of the SNPs is plotted in Figure 1 in chromoso-
mal order. The demarcation separates the top 4k SNPs
with the highest importance scores from the rest. This
plot is similar to the “Manhattan plot” seen in GWAS

Table 1 Sample Characteristics (All Subjects Are
Caucasian)

Training Population Testing Population

N =417 N = 164
Exac. Non-exac. Exac. Non-exac.
Subjects 127 (30%) 290 (70%) 50 (30%) 114 (70%)
Age (mean + sd.) 841 £ 207 889+ 207 854+ 228 945+ 219
Male 69% 61% 46% 53%
FEV1% (mean + sd.) 929 + 157 935+ 132 954+ 171 954 + 135
Treatment
Budesonide 20% 31% 36% 32%
Nedocromil 28% 29% 30% 32%
Placebo 52% 39% 34% 36%
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Figure 1 The “manhattan plot” of RF importance scores of all
the 550k SNPs. X-axis: the SNPs in chromosomal order; Y-axis: the
RF importance scores. The black demarcation separates the top 4k
SNPs from the rest.

analysis except the y-axis is the RF importance score
instead of the -log(p).

Prediction of severe asthma exacerbations

Using clinical traits age, sex, pre-bronchodilator FEV,%,
and treatment group, plus different numbers of SNPs
selected based on RF importance score (see Methods) as
predictors, RF predicted severe asthma exacerbations
with varying degrees of success. With just the 4 clinical
attributes as predictors, the predictive model had an
externally replicated AUC of about 0.56 (Figure 2).
Since, an AUC of 0.5 indicates prediction equivalent to
chance, clinical predictors alone had weak predictability.
The addition of the 10 SNPs with the highest RF impor-
tance score for exacerbations increased the AUC to
0.57. The addition of SNPs continued to increase the
predictability of asthma exacerbations, with an indepen-
dently replicated AUC of 0.62, 0.66, and 0.66 for 40, 160
and 320 SNPs, respectively. The ROC curves for predic-
tion using 160 SNPs in the training and independent
populations are shown in Figure 3. The p-value for the
independent replication AUC 0.66 to be different from
0.5 by random guess is 0.000266. Starting at 160 SNPs
the AUC reached 0.66 and began to plateau with addi-
tional SNPs. The top 160 SNPs together with the closest
genes are listed in Additional File 1, Table S1.

Model validation

To evaluate the RF models, we performed permutation
and random SNP controls and used an independent
replication population (Figure 2). Permutation control:
after permuting exacerbations labels among samples, RF
models were built and tested for predictability in terms
of AUC. For all RF models built with permuted data,
the AUC scores were about 0.5, suggesting the true pre-
dictability of RF models built with original data. Random
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Figure 2 Comparison of performance of predicting severe
asthma exacerbation with different methods. Y-axis: AUC; X-axis:
the number of SNPs used in a model. “Random SNPs": SNPs are
chosen randomly from all SNPs and used as input variables to
predict asthma exacerbations, and this process has been iterated 10
times [see Methods for details]; “Permuted”: asthma exacerbation is
permuted across samples while clinical traits and SNPs are kept with
the samples, and this process has been iterated 10 times [see
Methods for details]; “Training": the AUC of the model trained and
built with all the Stage 1 samples predicting on the same samples;
“Internal cross-validation": the AUC of the model built with 90% of
the randomly selected Stage 1 samples predicting on the rest (10%)
of the Stage 1 samples; “Independent replication": the AUC of the
model built with all the Stage 1 samples predicting on all the Stage

2 samples.
- J

SNP control: random SNPs showed AUC scores slightly
higher than 0.5 (data not shown). The evidence for
weak predictability in the Random SNP control models
likely comes from the clinical traits used in the models
rather than the random SNPs. These results indicate
that the RF selected SNPs contain information about
exacerbation, while the random SNPs do not.

Discussion

One of the biggest challenges of complex trait predic-
tion is the lack of statistical power that is the direct
result of small effects of many causal factors and rela-
tively small sample sizes. These problems are exacer-
bated when consideration is given to the potential for
interaction among the causal factors to interact with
one another. We have shown that RF modeling can pro-
duce accurate results using hundreds of SNPs obtained
from a relatively small study (131 cases, 291 controls).
With only 417 subjects, using 160 SNPs, we are able to
generate a good predictive model for childhood asthma
exacerbations, with a > 0.66 AUC and about 0.66 sensi-
tivity and 0.6 specificity (Figures 2, 3). Depending on the
portion of the ROC curve that is used, this can equate
to a positive predictive value (PPV) of 0.81 and a nega-
tive predictive value (NPV) of 0.74 with proportion of
exacerbators = 0.3 as shown in Table 1 and choosing a
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Figure 3 ROC curves using clinical attributes plus 160 SNPs as
predictors. The red curve is obtained for the training of the Stage

1 samples, the blue curve is for the testing of the Stage 2 samples,
the grey diagonal line is a theoretical curve representing random
guess. Both the red and the blue curves are higher than the grey
line, indicating better than random prediction; and they are similar
to each other, suggesting the true predictability of the RF model.
The p-value for the independent testing AUC to be different from
0.5 is 0.000266.

scoring threshold corresponding to sensitivity = 0.2 and
specificity = 0.95, allowing for reasonable prediction of
asthma exacerbations. The permutation control, random
SNP control, and independent replication results all
support the validity and robustness of the random forest
predictive model. The ROC curve obtained for the
model training using the Stage 2 (independent replica-
tion) samples is very similar to that obtained for the
Stage 1 (training) samples (Figure 3), and the p-value
for the independent replication AUC is < 0.05, indicat-
ing reproducibility of the predictive accuracy in the
model using 160 SNPs.

The 160 SNPs are in or near to 140 genes (Additional
File 1, Table S1). Among the top 160 SNPs, one SNP
(rs10496476) is located within the intron of gene
DPP10, which has been shown to be associated with
asthma in multiple populations, based on a recent
review [27]. All other genes are not on the list of repli-
cated asthma genes reported by [27], suggesting most
SNPs and genes identified by our RF method are novel.
A couple of factors may contribute to the discovery of
new SNPs and genes: 1) RF evaluates individual SNPs in
the context of interactions. This is different from con-
ventional statistical methods such as logistic regression,
applied in GWAS which searches SNPs one by one
without consideration of SNP-SNP interactions; 2)
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asthma exacerbations are related to but different pheno-
types from asthma diagnosis.

Our study highlights an innovative way of integrating
a large number of individually weak predictors to effec-
tively build a reasonable predictive model for asthma
exacerbations. Given that complex trait studies so far
have used only up to a dozen predictors (i.e. an order of
magnitude fewer than what we use here) with limited
consideration of interaction and have generated rela-
tively poor predictability, our approach of employing RF
with hundreds of predictors with a relatively small sam-
ple size gives hope for additional improvement in com-
plex trait prediction using a variety of machine learning
approaches. Talmud, et al, studied 20 SNPs derived
from genome-wide association studies of type 2 diabetes
susceptibility in a population of 5,535 subjects followed
for 10 years [28]. They noted that clinical factors out-
performed genetic markers in the prediction of incident
diabetes and that the addition of the SNPs produced
minimal improvement in risk estimation based only on
clinical variables. In contrast to this study, which
focused on the additive effects of 20 SNPs, our RF
model simultaneously accounts for both additive and
interactive effects using 160 SNPs to more effectively
predict asthma exacerbations compared with clinical fac-
tors alone.

Most complex traits such as adult height, cardiovascu-
lar diseases, cancer, diabetes, autism, and asthma etc.
are likely to be encoded by a large number of both
genetic and environmental factors [5,29-32]. Asthma
exacerbations, as shown in this study, is associated with
at least several hundred genetic markers and environ-
mental factors. The top 10 SNPs has AUC score 0.57,
showing marginal predictability. But with 160 SNPs, the
AUC of the RF model approached 0.66. Our study sug-
gests that in order to get good prediction of a complex
trait, methods capable of integrating hundreds of predic-
tors, such as machine learning approaches, like random
forests, will be valuable.

Asthma exacerbations have historically been difficult
to predict. Several clinical models have been designed to
try to enhance the ability to predict exacerbations
[21,33-36]. Most studies [21,33,36] attempted to isolate
predictive clinical variables individually without account-
ing for interaction using odds ratio or regression analy-
sis. The results of these studies are reported as odds
ratios or as p-values for individual factors, and cannot
be directly compared with ours using AUC.

There have been several publications that have evalu-
ated the use of a clinical classification tree in the devel-
opment of a prognostic model for asthma exacerbations
[34]. One study evaluated six clinical variables including
prior year hospitalization, the classification tree method
was able to achieve - without independent replication -
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94% sensitivity and 68% specificity, better than logistic
regression (87% sensitivity and 48% specificity) or an
additive risk model (46% sensitivity and 93% specificity),
suggesting the value of accounting for interactions
among predictive variables. A recent study [35] reported
66.8% sensitivity and 85.8% specificity (with no indepen-
dent validation testing) on childhood asthma exacerba-
tions (defined as rescue oral corticosteroid use, an
unscheduled visit to a physician or emergency room, or
hospitalization) prediction with daytime cough, daytime
wheeze, and B2-agonist use at night 1 day before the
exacerbations as predictors. However, none of the clini-
cal models developed to date have been independently
validated. In our model, we successfully used both inter-
nal (e.g. permutation) controls as well as external repli-
cation in an independent subset of subjects to
demonstrate predictive power of our model. While the
independent subset of subjects were derived from the
same source population, there were some differences in
baseline characteristics between the two samples (Table
1), further supporting the generalizability of our model.
RF also uses a classification tree, but with a difference -
it uses many classification trees (1500 trees in our mod-
els), not just one, and it can handle a greater number of
input variables without over-fitting.

A critical issue for complex disease prediction is the
difficulty of extending the predictive power of a model
obtained from one population to an independent popu-
lation. None of the studies mentioned in the proceeding
paragraph has tested their models in independent popu-
lations. One important factor that makes researchers
hesitate to do so is the concerns of small sample sizes
and the heterogeneity of asthma exacerbations. We
applied the RF models built with the Stage 1 samples to
predict the independent Stage 2 samples (Figure 2).
Overall, the independent test samples paralleled the pre-
dictive accuracy of the Stage 1 (training) samples with
increasing numbers of SNPs until 160 SNPs. At 160, the
replicating AUC reached its maximum and flattens out
thereafter. As such, we cite the 160 SNP model as our
best performing model. The independent replication
AUCs are obviously higher than 0.5, indicating true pre-
dictability of the RF models. However, they are lower
than the training and internal cross-validation AUCs for
160 and 320 SNPs, suggesting certain degree of over-fit-
ting may still exist.

As discussed above, clinical traits alone did not pro-
duce desirable predictability for asthma exacerbation.
We did, however, exclude one predictor that is a strong
predictor of severe exacerbations - prior exacerbations
[37]. The rationale for excluding this predictor was that
we were interested in developing a predictive model
based upon determinants of exacerbations; these deter-
minants would by their nature include both prior and
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current exacerbations. Moreover, since we sought to
determine genetic predictors of exacerbations, the inclu-
sion of prior exacerbations would mitigate the strength
of the genetic association in our analyses.

One of the reasons that clinical predictors may not
have provided the same strength of prediction as our
genetic models is that many of the clinical traits them-
selves are genetically determined. Indeed, our results
(Figure 4) have shown that without clinical traits,
SNPs alone can predict as well as with the clinical
traits, suggesting asthma exacerbations are at least
partly caused by genetic factors. For instance, among
our clinical predictors, sex is genetically determined;
age itself is not genetic, but it may be associated with
age of onset due to the patient recruitment process,
and age of onset in turn can be genetic [38,39]; and
pre-bronchodilator FEV1% is influenced by genetics,
especially in children.

There were several potential limitations to our study.
We have already discussed the limitation due to a lim-
ited sample size. One potential problem is that with
more than 160 SNPs, the training AUC keeps increasing
(Figure 2), but the replicating AUC does not. This sug-
gests that the chance of getting false positive SNPs
increases with the number of SNPs used for prediction.
One way to reduce false positive SNPs is to increase the
sample size, which is costly.

Conclusions

In conclusion, we have demonstrated that reasonable
prediction of asthma exacerbations can be achieved
through the use of hundreds of SNPs in a random for-
ests model. This model can increase our understanding
of the biologic mechanisms behind why only certain
individuals with asthma are at risk for exacerbations, as
well as the basis for the epistatic (gene-gene)

Bw/ clinical 1xaite

linical traits

# of SNPs

Figure 4 Performance comparison of predicting severe asthma
exacerbation with or without clinical traits. Y-axis: AUC; X-axis:
the number of SNPs used for prediction. Blue: SNPs plus clinical
traits; Red: SNPs alone.
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interactions underlying asthma severity, providing
insight into novel preventative and therapeutic
strategies.

Additional material

Additional File 1: Table S1. Top 160 SNPs based on importance scores
computed by RF. “GENE" is the closest gene to the SNP, “GENE REGION"
is the relative location of the SNP to the gene.
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