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Abstract

Background: Age-related macular degeneration (AMD) is a common disease of the elderly that leads to loss of the
central visual field due to atrophic or neovascular events. Evidence from human eyes and animal models suggests
an important role for macrophages and endothelial cell activation in the pathogenesis of AMD. We sought to
determine whether common ancestral variants in genes encoding the selectin family of proteins are associated
with AMD.

Methods: Expression of E-selectin, L-selectin and P-selectin was examined in choroid and retina by quantitative
PCR and immunofluorescence. Samples from patients with AMD (n = 341) and controls (n = 400) were genotyped
at a total of 34 SNPs in the SELE, SELL and SELP genes. Allele and genotype frequencies at these SNPs were
compared between AMD patients and controls as well as between subtypes of AMD (dry, geographic atrophy, and
wet) and controls.

Results: High expression of all three selectin genes was observed in the choroid as compared to the retina. Some
selectin labeling of retinal microglia, drusen cores and the choroidal vasculature was observed. In the genetic
screen of AMD versus controls, no positive associations were observed for SELE or SELL. One SNP in SELP
(rs3917751) produced p-values < 0.05 (uncorrected for multiple measures). In the subtype analyses, 6 SNPs (one in
SELE, two in SELL, and three in SELP) produced p-values < 0.05. However, when adjusted for multiple measures
with a Bonferroni correction, only one SNP in SELP (rs3917751) produced a statistically significant p-value (p =
0.0029).

Conclusions: This genetic screen did not detect any SNPs that were highly associated with AMD affection status
overall. However, subtype analysis showed that a single SNP located within an intron of SELP (rs3917751) is
statistically associated with dry AMD in our cohort. Future studies with additional cohorts and functional assays will
clarify the biological significance of this discovery. Based on our findings, it is unlikely that common ancestral
variants in the other selectin genes (SELE and SELL) are risk factors for AMD. Finally, it remains possible that
sporadic or rare mutations in SELE, SELL, or SELP have a role in the pathogenesis of AMD.

Background
Age-related macular degeneration (AMD) is a common
disease of the elderly that leads to loss of the central
visual field due to atrophic or neovascular events. Preva-
lence rates vary between populations [1], and as many
as 64% of individuals over the age of 80 may be affected
to some degree [2]. Despite the common prevalence of

this disease, the molecular and cellular events that lead
to AMD are not well understood.
One observation that has been made in human eyes

with AMD, and in some relevant animal models, is that
local inflammatory events are associated with the
progression of the disease [3,4]. These events include
elevated numbers of choroidal leukocytes and/or altered
behavior of these cells in eyes with AMD [5-8]. Evidence
for a potentially harmful role for monocytes and neutro-
phils in the etiology of choroidal neovascularization has
been provided by animal models of neovascular disease,
in which depletion of leukocyte populations has been
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found to ameliorate laser induced neovascularization
[9-11], although the role of macrophages in mouse
models of CNV may depend of the modality by which
they are depleted and by the age of the mouse leuko-
cytes used in the experiment [12,13].
The collective data indicating that the recruitment of

monocytes and neutrophils into the choroid and/or
retina occurs during the pathogenesis of AMD suggest
that increased leukocyte trafficking occurs in AMD at
the level of the choroidal microvasculature. While the
process of extravasation is essential in responding to
pathogens and maintaining a sterile environment, exces-
sive inflammation can lead to tissue damage in other
systems [14,15] Assuming that the mechanisms of leu-
kocyte recruitment to the choroid are similar to those in
other tissues, the principal molecules involved in this
process are soluble chemokines and cell surface adhe-
sion molecules. Among the latter are integrins, immu-
noglobulin superfamily members, and the selectins.
The selectins are type I transmembrane proteins char-

acterized by an N-terminal lectin domain, an EGF like
domain and a series of complement regulatory domains
in the extracellular space. These proteins function in the
early phases of leukocyte recruitment by promoting roll-
ing behavior in leukocytes [16]. Similar to other endothe-
lial cell activation molecules, expression of selectins is
upregulated by a variety of insults including oxidative
injury [17,18] and complement attack [19]–factors widely
proposed as central in the pathogenesis of AMD. Unlike
other endothelial cell adhesion molecules, selectins act
through protein-carbohydrate interactions, binding to car-
bohydrate epitopes on glycosylated target proteins [20].
In view of the role of inflammatory events and leukocyte

recruitment in AMD, we hypothesized that molecules that
mediate binding of leukocytes to the endothelium would
be involved in the pathogenesis of AMD, and that varia-
tions in the genes that encode these adhesion molecules
might be associated with the disease. To test this hypoth-
esis, we evaluated the expression of E-selectin, L-selectin
and P-selectin in the retina and choroid of aging human
donor eyes. We also evaluated 34 SNPs in the SELE, SELL
and SELP genes to assess whether ancestral variants in
these genes contribute to the risk of AMD.

Methods
Expression of selectins
Human donor eyes were obtained from the Iowa Lions
Eye Bank within 5 hours of death following informed
consent of the next of kin. All experiments were per-
formed in accordance with the tenets of the Declaration
of Helsinki. Expression of selectin genes was also
assessed in human retina and RPE-choroid using reverse
transcriptase PCR and immunohistochemistry. Briefly,
RNA was extracted from samples of normal human

neural retina (n = 3 donors) and RPE-choroid (n = 3
donors) snap frozen with in 5 hours of death. The three
donors were ages 79, 80 and 84 and had no known
history of macular disease. Samples were collected
immediately temporal to the macula and RNA was iso-
lated using the RNeasy kit according to manufacturer’s
instructions (Qiagen, Valencia, CA). Reverse transcrip-
tion was carried out using the RT2 First Strand Kit
(SABiosciences, Frederick, MD) and quantitative PCR
was performed using the Human Extracellular Matrix &
Adhesion Molecules Superarray (SABiosciences, Frederick,
MD) according to the manufacturer’s instructions. Values
for SELE, SELL, and SELP were collected for neural retina
and RPE/choroid and were normalized to the values for
the housekeeping genes beta actin (ACTB) and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) using the the
ΔΔCt method.
Immunohistochemistry was performed on human

macular punches without AMD containing retina, RPE,
choroid and sclera (n>3). Immunohistochemistry was
performed as described previously [21] using antibodies
directed against P-selectin (R&D Systems), E-selectin
(Santa Cruz) and L-selectin (Santa Cruz). Antibodies
were diluted 1:50 to 1:200. Primary antibodies were
visualized using Alexa-488-conjugated secondary antibo-
dies (Invitrogen; Carlsbad, CA). For P-selectin, an addi-
tional 9 eyes with early AMD, 5 eyes with end-stage wet
AMD, and 9 control eyes were also evaluated with
immunofluorescence. Sections were counterstained with
diamidino-phenol-indole (DAPI) and for some experi-
ments were dual-labeled with Ulex europaeus agglutinin-1
(Vector Laboratories, Burlingame, CA) which labels both
normal and neovascular EC, as described previously [22].

Genotyping
The study was approved by the University of Iowa’s
Institutional Review board and informed consent was
obtained from study participants. A cohort of 341 sub-
jects with AMD and 400 control subjects, all from the
University of Iowa Department of Ophthalmology and
Visual Sciences, were enrolled using standard criteria.
For the purposes of this study, AMD was defined as
AREDS grade 2 or higher and patients were further
categorized with either dry AMD, wet AMD, or geo-
graphic atrophy using criteria from previous studies
[23]. The control subjects were judged not to have
AMD after a complete eye exam. A total of 34 SNPs in
the SELE, SELL, and SELP genes were selected using
HAPMAP data to maximize the power to detect an
association using the UCLA Association Study Design
Server online software package http://design.cs.ucla.edu/.
The cohorts were genotyped at 7 SNPs within the SELE
gene, 11 SNPs within the SELL gene, and 16 SNPs
within the SELP gene using a mass spectroscopy-based
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system (Sequenom, San Diego, CA). Genotyping was
conducted using the MassArray platform and iPlex Gold
reagents with the manufacturer’s protocol by GeneSeek
(Lincoln, NE). SNP Genotypes and allele frequencies
were compared between AMD patients and controls
using Chi Square analysis. For rare variants for which
Chi Square test was unsuitable, we utilized the Fisher’s
test. The Bonferroni correction was used to adjust
p-values for multiple measures using a gene-based
approach to analyze 3 genes (SELP, SELL, and SELE)
and 3 phenotypes (Dry AMD, GA, Wet AMD), which
gave an adjusted threshold for significance of 0.05/9 =
0.0056. This gene-based Bonferroni correction was
validated by analyzing the contiguous genomic region
spanning SELP, SELL, and SELE with the Haploview
software package (data not shown). Only two strong
linkage disequilibrium blocks were detected in the
region (SNPs in SELL and SELE are in strong linkage
disequilibrium with each other) which suggests that our
correction with 3 genes may be conservative. Hardy-
Weinberg equilibrium (HWE) was estimated by analyz-
ing 1,000,000 simulations using the R statistics software
package http://www.r-project.org. An arbitrary threshold
for HWE was set at p > 0.001. One SNP (rs6693963)
did not meet these criteria and was removed from the
analysis.

Results
Expression studies
Expression of selectin mRNAs was evaluated using a
commercial quantitative PCR array. Both retina and
RPE-choroid showed expression of all three selectin
genes, but the normalized expression in RPE-choroid
was much greater than seen in retina (3.4x, 5.1x, and
50.6x higher for SELL, SELE and SELP, respectively).
Selectins were localized in sections of human choroid.

Overall, as assessed by immunohistochemistry, expres-
sion was similar to that seen in other vessel beds and
was much weaker than generally observed in the chor-
oid for other adhesion molecules (e.g., ICAM-1 and
ICAM-2 [24]). E-selectin was observed on retinal cells
we interpreted to be microglia and normal choroidal
endothelial cells (Figure 1A), in addition some drusen
with core domains [25] showed immunoreactivity
(Figure 1C). Drusen cores were also reactive with anti-
bodies directed against L-selectin (Figure 1D), consistent
with the observation of other leukocyte antigens asso-
ciated with these domains [3]. L-selectin also showed
some immunoreactivity in cells we interpreted to be
microglia (Figure 1B). P-selectin antibodies reacted with
the choroidal endothelium of medium and large caliber
vessels (Figure 2A). Reactivity was generally not
observed in the microvasculature. When present, clus-
ters of platelets were immunoreactive. We also evaluated

P-selectin labeling in a series of 18 donor eyes (9 control
and 9 early AMD). Labeling intensity varied donor-to-
donor, without a clear relationship to disease status.
Findings for P-selectin were similar to those described
previously in normal and diabetic choroid [26]. More-
over, 5 eyes with neovascular AMD were also assessed
with anti-P-selectin antibody. Little or no labeling was
detected in the endothelial cells in the neovascular
membranes (Figure 3).

SNP analysis of selectin genes
A cohort of 341 AMD patients and 400 control subjects
from Iowa were genotyped at a total of 34 SNPS in the
SELE, SELL, and SELP genes. Of the 341 AMD patients,
126 (37%) had dry AMD, 41 (12%) had geographic atro-
phy, and 174 (51%) had wet AMD. High quality genotypes
were obtained at 32 (96%) of the 34 SNPs with an average
spacing of 2.5 kb between each SNP and an average call
rate of over 97%. However, two SNPs in SELL were elimi-
nated from our analysis because one was not polymorphic
in our cohort (rs4987382) and the other violated Hardy-
Weinberg equilibrium (rs6693963). The allele frequencies
and genoytpe frequencies for these 30 SNPs are shown in
Table 1. There was no significant difference between the
AMD subjects and the control subjects when the allele
frequencies and the genotype frequencies of the 15 SNPs
in SELE and SELL were compared (p > 0.05 uncorrected
for multiple measures). When the allele frequencies and
genotype frequencies of the 16 SNPs in SELP were com-
pared between AMD patients and controls, one SNP
(rs3917751) produced p-values < 0.05 (uncorrected for
multiple measures). However, when adjusted for multiple
measures with a Bonferroni correction neither genotype
nor allele p-values are statistically significant. The other
15 SNPs in SELP produced p-values > 0.05 (Table 1).
Patients were divided into AMD subgroups (dry AMD,

wet AMD, and geographic atrophy and further analyzed
for associations with the SNPs in SELE, SELL, and SELP
(Table 2). When genotype and allele frequencies
between each of these AMD subgroups and normal con-
trols were compared, a total of six SNPs (one in SELE,
two in SELL, and three in SELP) produced p-values <
0.05. However, after multiple measures corrections, only
one SNP in SELP (rs3917751) produced a statistically
significant p-value of 0.0029.

Discussion
Endothelial cell activation is a term that refers broadly
to the set of responses that the endothelium undergoes
to promote adhesion and extravasation of leukocytes
from the lumen to the extravascular space of a tissue.
Among the molecular changes that characterize
endothelial cell activation is upregulation of adhesion
molecules on the luminal surface of the endothelium
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Figure 1 Expression of E-selectin and L-selectin in retina and choroid. Antibodies directed. against E-selectin (A, C) and L-selectin (B, D)
were found to react with microglia in some retinas (A, B, arrows) as well as the cores of drusen (arrowheads, C, D). Blue fluorescence is due to
DAPI staining. Note the bright yellow autofluorescence of the RPE. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; IS,
inner segments; RPE, retinal pigment epithelium; CC, choriocapillaris.
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Figure 2 Localization of P-selectin to choroidal vessels. The endothelium of large choroidal vascular elements in Sattler’s and Haller’s layers
of the choroid showed immunoreactivity with antibodies directed against P-selectin (A). Modest labeling is observed in the choriocapillaris.
Labeling was not observed when the primary antibody was omitted (B). RPE, retinal pigment epithelium; CC, choriocapillaris; CH, outer choroid.

Figure 3 Evaluation of a human choroidal neovascular membrane with anti-P-selectin antibody. Sections of affected eyes were dual
labeled with UEA-1 lectin, which binds both normal and neovascular endothelial cells (A), and antibodies directed against P-selectin (B). Panel C
shows the merged image with DAPI (blue; UEA-I labeling appears red and anti-P-selectin labeling appears green). Labeling of the vasculature
with P-selectin antibody was unremarkable. The extent of the neovascular membrane is indicated by the bracket. Arrows indicate endothelial
cells within the neovascular complex and asterisks indicate points along Bruch’s membrane. RPE, two layer of dystrophic RPE cells above the
neovascular membrane; CHO, choroid.
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(e.g., E-selectin) and/or mobilization of intracellular
stores of adhesion molecules and redistribution to the
cell surface (e.g., P-selectin).
We consider endothelial cell activation molecules to be

attractive targets for AMD pathogenesis for the several
reasons. First, leukocytes have been noted to be elevated
in human eyes with AMD [5-8], as well as associated
with drusen. The presence of dispersed MHC class II
antigens in drusen may support a causative rather than
beneficial role for choroidal leukocytes in drusen

pathophysiology [3,27]. Second, depletion of monocytes
[9,10] and neutrophils [11] has been found to reduce the
severity of neovascularization in animal models of CNV.
Third, blood derived macrophages are components of
neovascular membranes in human [28,29] and murine
[30] eyes with CNV. Moreover, targeted deletion of the
Ig superfamily gene Icam1 appears protective against
experimental CNV in mouse [31], indicating a direct link
between endothelial cell-leukocyte interactions and neo-
vascularization and endothelial cell adhesion molecules,

Table 1 SNPs evaluated in SELE, SELL and SELP

Gene rs ID Affect on
encoded
protein

Position on
chromosome 1

Spacing
(bp)

MAF (AMD
cohort)

MAF (NL
cohort)

MAF
(HapMap
CEU)

HWE
(p-

value)

P-values

Allele
frequencies

Genotype
frequencies

SELE rs4786 - 167,958,756 0.23 0.22 0.24 0.39 0.66 0.74

SELE rs3917438 - 167,960,474 1,718 0.068 0.055 0.05 0.050 0.33 0.27

SELE rs5368 His468Tyr 167,963,570 3,096 0.099 0.094 0.08 0.39 0.79 0.92

SELE rs2076059 - 167,965,545 1,975 0.42 0.42 0.44 0.019 >0.99 0.51

SELE rs3917454 - 167,967,477 1,932 0.030 0.032 0.051 0.63 0.88 0.53

SELE rs5361 Ser149Arg 167,967,684 207 0.097 0.11 0.092 0.049 0.39 0.54

SELE rs12408179 - 167,974,751 7,067 0.15 0.17 0.17 0.24 0.66 0.46

SELL rs909628 - 167,927,289 0.090 0.11 0.092 >0.99 0.33 0.51

SELL rs2298902 - 167,929,703 2,414 0.11 0.11 0.12 0.25 >0.99 0.85

SELL rs2223286 - 167,932,256 2,553 0.32 0.31 0.27 0.17 0.61 0.48

SELL rs4987351 - 167,933,979 1,723 0.48 0.50 0.45 0.017 0.49 0.23

SELL rs2298900 - 167,935,644 1,665 0.33 0.34 0.36 0.080 0.78 0.65

SELL rs2298899 - 167,936,356 712 0.093 0.083 0.075 0.26 0.52 0.64

SELL rs4987318 - 167,938,102 1,746 0.23 0.22 0.2 0.34 0.66 0.82

SELP rs3917843 - 167,826,881 0.043 0.041 0.05 >0.99 0.90 0.78

SELP rs17522707 - 167,829,686 2,805 0.097 0.095 0.058 0.081 0.85 0.29

SELP rs6136 Thr756Pro 167,830,575 889 0.10 0.11 0.092 0.086 0.55 0.45

SELP rs1569471 - 167,830,754 179 0.22 0.21 0.18 0.037 0.61 0.11

SELP rs6133 Val640Leu 167,831,970 1,216 0.12 0.11 0.12 0.075 0.75 0.36

SELP rs6127 Asp603Asn 167,832,937 967 0.49 0.44 0.48 0.024 0.11 0.20

SELP rs3917751 - 167,843,192 10,255 0.31 0.38 0.38 0.25 0.0077 0.018

SELP rs3917740 - 167,845,890 2,698 0.20 0.21 0.23 0.82 0.70 0.77

SELP rs3917739 - 167,846,002 112 0.37 0.37 0.33 0.18 0.82 0.72

SELP rs2235304 - 167,846,377 375 0.051 0.066 0.058 0.10 0.27 0.25

SELP rs3917734 - 167,847,087 710 0.30 0.29 0.32 0.59 0.73 0.93

SELP rs6131 Ser331Asn 167,847,509 422 0.16 0.16 0.22 0.58 >0.99 0.62

SELP rs6125 Val209Met 167,848,941 1,432 0.052 0.050 0.067 0.25 0.90 0.90

SELP rs3917686 - 167,857,788 8,847 0.11 0.11 0.083 0.13 0.56 0.50

SELP rs3917682 - 167,858,172 384 0.41 0.40 0.433 0.066 0.75 0.41

SELP rs3917681 - 167,858,327 155 0.11 0.11 0.125 0.57 0.80 0.86

MAF = Minor allele frequency. HWE = Hardy-Weinberg equilibrium. Reported p-values are uncorrected for multiple measures and those uncorrected p-values <
0.05 are shaded grey. No SNPs produced p-values below the corrected threshold for significance of 0.0042.
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including E-selectin, ICAM-1 and ICAM-2 have been
observed in human neovascular membranes [24,32].
We evaluated expression and a number of genetic var-

iants in the selectin genes. All three of the selectin gene
products were detected at the mRNA and protein level.
Both SELE and SELL were localized to cells in the inner
retina with a dendritic morphology, interpreted to be
retinal microglia, cells that alter their phenotype in eyes
with AMD [33]. E-selectin and P-selectin were further

identified on some choroidal endothelial cells, where
they can bind carbohydrate epitopes on circulating
leukocytes.
In light of the evidence linking endothelial cell activa-

tion molecules and AMD, we hypothesized that variants
in the genes for these molecules might be skewed in
AMD patients. The functional impact of variants in
these genes could be difficult to predict: since the help-
ful or harmful roles of monocytes in AMD is somewhat

Table 2 Sub-group analysis of SNPs in SELE, SELL and SELP

Gene rs ID Affect on
encoded
protein

Dry AMD vs. Normals Fisher’s
extact test

GA vs. Normals Fisher’s extact
test

Wet AMD vs. Normals Fisher’s
extact test

Allele
Frequency
p-value

Genotype
Frequency
p-value

Allele
Frequency
p-value

Genotype
Frequency
p-value

Allele
Frequency
p-value

Genotype
Frequency
p-value

SELE rs4786 - 0.38 0.54 0.087 0.21 0.44 0.56

SELE rs3917438 - 0.75 0.73 0.43 0.70 0.028 0.039

SELE rs5368 His468Tyr 0.81 0.35 0.42 0.20 0.52 0.75

SELE rs2076059 - 0.65 0.62 0.46 0.67 0.42 0.28

SELE rs3917454 - >0.99 >0.99 0.74 0.73 >0.99 0.29

SELE rs5361 Ser149Arg 0.91 0.61 0.35 0.45 0.47 0.71

SELE rs12408179 - 0.68 0.92 0.74 0.71 0.36 0.13

SELL rs909628 - >0.99 0.93 0.12 0.35 0.34 0.65

SELL rs2298902 - 0.34 0.12 0.70 >0.99 0.30 0.53

SELL rs2223286 - 0.88 0.71 0.90 0.97 0.44 0.43

SELL rs4987351 - 0.61 0.30 0.10 0.28 >0.99 0.37

SELL rs2298900 - 0.88 0.73 0.036 0.096 0.21 0.28

SELL rs2298899 - 0.31 0.45 0.19 0.25 0.42 0.32

SELL rs4987318 - 0.30 0.54 0.045 0.13 0.49 0.60

SELP rs3917843 - 0.22 0.21 0.762 0.76 0.74 0.20

SELP rs17522707 - 0.62 0.72 0.42 0.92 0.83 0.26

SELP rs6136 Thr756Pro 0.030 0.090 0.71 0.67 0.61 0.15

SELP rs1569471 - 0.66 0.50 0.77 0.60 0.53 0.14

SELP rs6133 Val640Leu 0.91 0.45 >0.99 0.63 0.49 0.62

SELP rs6127 Asp603Asn 0.023 0.041 0.24 0.50 0.84 0.94

SELP rs3917751 - 0.0029* 0.0066 0.093 0.012 0.31 0.14

SELP rs3917740 - 0.65 0.52 0.19 0.31 0.69 0.90

SELP rs3917739 - 0.48 0.45 0.54 0.55 0.20 0.31

SELP rs2235304 - 0.88 0.88 0.078 0.069 0.28 0.26

SELP rs3917734 - 0.94 0.99 0.70 0.91 0.39 0.65

SELP rs6131 Ser331Asn 0.56 0.35 0.75 0.54 0.79 0.94

SELP rs6125 Val209Met >0.99 >0.99 0.59 0.58 0.77 0.76

SELP rs3917686 - 0.30 0.39 0.36 0.28 0.76 0.81

SELP rs3917682 - 0.56 0.81 0.23 0.10 0.60 0.36

SELP rs3917681 - 0.57 0.72 0.25 0.092 0.76 0.91

Reported p-values are uncorrected for multiple measures and those uncorrected p-values < 0.05 are indicated by bold text. One SNPs in SELP (rs3917751) that is
indicated by bold text and an asterisk produced a p-value below the corrected threshold of 0.0042.
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controversial [34], it is plausible that alleles that confer
either a gain or loss of function could be involved in
AMD pathophysiology.
Our focused association study was designed to search

for ancestral mutations in the selectin genes (SELE,
SELL, and SELP) that might be common risk factors
for AMD. This genetic screen did not detect any SNPs
that were highly associated with AMD affection status.
Our results for the SELE S149R SNP (rs5361) were
similar to those of Bojanowski et al., [35] who pre-
viously genotyped this SNP in 88 AMD and 110 con-
trol samples and found no association with AMD.
However, one SNP located within an intron of the
P-selectin gene (rs3917751) showed a modest associa-
tion with AMD overall, but given the number of SNPs
and genes evaluated, this observation is not statistically
significant.
When subtypes of AMD were individually analyzed,

one SELP SNP (rs3917751) produced a p-value of
0.0029 that was statistically significant after correction
for multiple measures. The SNP rs3917751 is located
within an intron of SELP and its biological significance
is unclear. Further study with additional cohorts and
functional assays will likely clarify the potential role of
rs3917751 and SELP in the pathogenesis of dry AMD.
Overall, the association study detected evidence of one

ancestral risk allele for dry AMD in SELP (rs3917751).
No associations were detected with studies of AMD
overall or with wet AMD or geographic atrophy. How-
ever, as association studies are unable to identify non-
ancestral risk alleles, it remains possible that sporadic or
rare mutations in SELE, SELL, or SELP have a role in
the pathogenesis of AMD.

Conclusions
This genetic screen did not detect any SNPs that were
highly associated with AMD affection status overall.
However, subtype analysis showed that a single SNP
located within an intron of SELP (rs3917751) is statisti-
cally associated with dry AMD in our cohort. Future
studies with additional cohorts and functional assays
will clarify the biological significance of this discovery.
Based on our findings, it is unlikely that common ances-
tral variants in the other selectin genes (SELE and SELL)
are risk factors for AMD. Finally, it remains possible
that sporadic or rare mutations in SELE, SELL, or SELP
have a role in the pathogenesis of AMD.
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