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Abstract

Background: Rod-cone dystrophy, also known as retinitis pigmentosa (RP), and cone-rod dystrophy (CRD) are
degenerative retinal dystrophies leading to blindness. To identify new genes responsible for these diseases, we
have studied one large non consanguineous French family with autosomal dominant (ad) CRD.

Methods: Family members underwent detailed ophthalmological examination. Linkage analysis using microsatellite
markers and a whole-genome SNP analysis with the use of Affymetrix 250 K SNP chips were performed. Five
candidate genes within the candidate region were screened for mutations by direct sequencing.

Results: We first excluded the involvement of known adRP and adCRD genes in the family by genotyping and
linkage analysis. Then, we undertook a whole-genome scan on 22 individuals in the family. The analysis revealed a
41.3-Mb locus on position 2q24.2-2q33.1. This locus was confirmed by linkage analysis with specific markers of this
region. The maximum LOD score was 2.86 at θ = 0 for this locus. Five candidate genes, CERKL, BBS5, KLHL23,
NEUROD1, and SF3B1 within this locus, were not mutated.

Conclusion: A novel locus for adCRD, named CORD12, has been mapped to chromosome 2q24.2-2q33.1 in a non
consanguineous French family.

Background
Retinitis pigmentosa (RP, [MIM 268000]) is a genetically
heterogeneous group of retinal photoreceptor degenera-
tion characterized by night blindness and loss in the
peripheral visual field, slowly progressing towards total
blindness after several decades [1]. RP accounts for
about 2/3 of the inherited retinal dystrophy cases [2]. In
contrast to typical RP, also called rod-cone dystrophies
(RCDs) because of primary involvement of rods, inverse
RP or cone-rod dystrophies (CRDs) are pigmentary reti-
nopathies characterized by first decrease in visual acuity
and loss in the central visual field and lately by night
blindness and loss in the peripheral visual field. CRDs
are due to the primary degeneration of cone photore-
ceptors, followed by the secondary, or, sometimes,

concomitant loss of rod photoreceptors [3]. Fourty nine
genes and loci are responsible for non syndromic RP
and 18 for non syndromic CRD (including 6 in common
with RP and 4 with Leber congenital amaurosis) http://
www.sph.uth.tmc.edu/Retnet. The three types of Mende-
lian inheritance are encountered in both RP and CRD.
Among the 18 CRD genes, ten (GUCY2D, PITPNM3,

GUCA1A, HRG4/UNC119, CRX, AIPL1, RIMS1,
SEMA4A, PROM1 and PRPH2/RDS) are found in auto-
somal dominant (ad) CRD, six (ABCA4, RPGRIP1,
RAX2, CORD8, ADAM9 and CERKL) in autosomal
recessive (ar) CRD and two (RPGR and CACNA1F) in
X-linked CRD http://www.sph.uth.tmc.edu/Retnet. The
prevalence of mutations for each gene in the CRD
population is highly variable. ABCA4, which causes Star-
gardt macular dystrophy, is also a major gene for CRD,
being responsible for 30-60% of arCRD cases [4-6]. In
contrast, the overall prevalence of adCRD genes remains
low, many of them being described in only one or a few
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cases. Only CRX, GUCY2D and PRPH2/RDS have been
consistently reported in adCRD [7-10]. Yet, CRX was
estimated to account for only 5-10% of adCRD cases
and the prevalence of GUCY2D and PRPH2/RDS is
unknown [11,12]. Therefore, there are probably other
genes remaining to be discovered in adCRD.
In search for new genes responsible for pigmentary

retinopathies, we recruited one large non-consangui-
neous French family with adCRD. This family was
unlinked to any known adRP or adCRD locus and SNP
genotyping revealed that it was linked to a new locus on
chromosome 2, designated CORD12.

Methods
Clinical examination
Members of this large French non-consanguineous
family (RP470) were identified with CRD which segre-
gated as a dominant trait (adCRD). There were 9

affected patients out of 22 in 4 generations (Figure 1).
Examination included assessment of visual acuity, slit
lamp biomicroscopy, direct funduscopy and full field
electroretinography. There was no evidence of extra-
ocular signs of disease indicating that CRD was non
syndromic.

Genotyping of microsatellite markers and linkage analysis
Informed written consent and peripheral blood samples
were obtained from 22 examined family members. The
investigators followed the tenets of the Declaration of
Helsinki. Genomic DNA was isolated from 10 ml per-
ipheral blood leucocytes using standard salting out pro-
cedure [13]. The DNA samples were quantified by a
spectrophotometer and diluted to 25 ng/μl for PCR
amplification. PCR was carried out in a 25 μl final
volume containing 50 ng genomic DNA, 5 picomoles of
each primer, 0.2 mM dNTPs (MP Biochemicals), 2 mM

Figure 1 Pedigree of family RP470 with autosomal dominant inherited cone-rod dystrophy (adCRD). Arrow indicates the index patient.
Filled symbols represent members with adCRD and empty symbols represent unaffected patients. Haplotypes of microsatellite markers spanning
the locus 2q24.2-2q33.1 are shown. Question marks indicate unknown alleles. Solid bars denote the haplotype that segregated with the disease
phenotype.
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MgCl2, PCR buffer and 1 unit of DNA polymerase
(AmpliTaq Gold; Applied Biosystems, Foster city, CA).
Initial denaturation at 95°C for 10 minutes was followed
by 35 cycles of denaturation at 94°C for 30 seconds, spe-
cific annealing temperature for 30 seconds, and exten-
sion at 72°C for 1 minute. A final extension step was
performed at 72°C for 10 minutes. The PCR products
were diluted and mixed with Genescan 400HD ROX
size standard and subsequently analysed on an Applied
Biosystems 3130xL genetic analyser (Applied Biosys-
tems, Foster city, CA).
Genotyping was performed using 2 to 3 polymorphic

commercially available microsatellite markers from ABI
PRISM Linkage Mapping Set version 2.5 (Applied Bio-
systems, Foster city, CA), within or contiguous to
known adRP and adCRD genes, and within the locus
CORD12. Results were analysed with GeneMapper soft-
ware (version 4.0, Applied Biosystems, Foster city, CA).
Segregation of the markers among the family members
was examined.
Two-point LOD scores were calculated with Super-

link-online http://bioinfo.cs.technion.ac.il/superlink-
online/. The phenotype was analyzed as an autosomal
dominant and fully penetrant trait with an affected allele
frequency of 0.0001. Family and haplotype data were
generated using Cyrillic software (version 2.1.3; Cherwell
Scientific, Oxford, UK).

SNP genotyping and analysis
To map the disease locus, a genome-wide scan was per-
formed by the Centre National de Génotypage (CNG,
http://www.cng.fr) by genotyping 262,264 SNPs (Gene-
Chip Mapping 250 K Nsp Array, Affymetrix, Santa
Clara, CA). Results were analyzed using TASE (Trans-
mitted Allele Search Engine) a home-made software
which compared every SNP between each individuals in
the family.
The first test, named Common Allele to All Affected

individuals (C3A), highlighted the common allele to all
affected patients within the family. The second test,
Transmitted Allele to All Children (TAAC), estimated
the specific allele carried by the affected parent in a
nuclear family (parents + child) and transmitted to the
affected child. Two consecutive mismatched SNPs lim-
ited the size of the locus. Only the regions longer than 1
Mb were considered.

Mutation screening
Coding exons and adjacent intronic sequences of candi-
date genes were sequenced with an Applied Biosystems
3130xL genetic analyser (Applied Biosystems, Foster
city, CA) using BigDye Terminator cycle sequencing
ready reaction kit V3.1 (Applied Biosystems, Foster city,
CA) following manufacturer’s instructions. Primer pairs

and PCR conditions are available on request. Sequence
analysis and mutation identification were performed
using Collection and Sequence Analysis software pack-
age (Applied Biosystems, Foster city, CA).
Ethics Committee
Statement about Conformity with Author Information:
Informed and written consent was obtained for all
patients participating to the study. The study was done
in adherence to the tenets of the Declaration of
Helsinki.
The authors confirm that they are in compliance with

their Institutional Review Boards (IRBs) as the Depart-
ment of Ophthalmology of the Hospital of Montpellier
has the authorization # 11018S from the French Minis-
try of Health for biomedical research in the field of phy-
siology, pathophysiology, epidemiology and genetics in
ophthalmology.

Results
Clinical description
The pedigree of the four generations family is shown in
Figure 1. The 9 affected patients revealed features of
adCRD with intra-familial variable phenotype including
progressive loss of the visual acuity, typical bone spicule-
shaped pigmentary deposits in the macular area or macu-
lar atrophy, moderate night blindness and reduced elec-
troretinogram (ERG) responses (Table 1). The proband
(III:1) showed patches of atrophy in the macular area
with a few pigment deposits, attenuation of retinal arter-
ioles and temporal pallor of the optic disc (Figure 2).

Mapping to CORD12
Microsatellite markers for the 21 adRP genes http://www.
sph.uth.tmc.edu/Retnet, the 3 most frequent adCRD
genes (CRX, GUCY2D and PRPH2/RDS) [7-10] and a
fourth adCRD gene, GUCA1A, were used to genotype
family members, and to search for co-segregation of the
markers with the disease phenotype. All these candidate
genes were excluded. We then performed a genome wide
scan using Affymetrix 250 K microarrays and genotypes
were analysed with the TASE software. No linkage was
found for most chromosomal regions except for a large
region located on chromosome 2q24.2-2q33.1. The
boundaries of the locus were determined by SNP exclu-
sion between SNPs rs174240 and rs4619591 and encom-
passed a 41.3-Mb region (Figure 3).
Microsatellite markers were then used to confirm link-

age with the locus. We genotyped all 22 members of the
family with 8 microsatellite markers located on 2q24.2-
2q33.1 (Figure 1). All affected patients had a common
haplotype and the boundaries of the region were deter-
mined by recombination events that occurred in affected
individuals III:1, III:4, III:9, IV:4, IV:9 and healthy indivi-
dual III:7. The proximal boundary was defined by the
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Table 1 Clinical features of patients with cone-rod dystrophy

Patient Sex Age at
onset

Symptoms Age
at

exam.

Visual
acuity
OD/OS

Fundus Visual field ERG OD/OS
Scotopic dim blue

Photopic single white flash
Light adapted 30-Hz flickers

II:2 F None 64 20/20
20/16

Mild attenuation of
retinal vessels

NA 40 μV/23 μV
181 μV/175 μV
90 μV/94 μV

II:3 F 40 Nystagmus
Night

blindness
Photophobia

70 20/40
20/32

Mild attenuation of
retinal vessels.
Macular atrophy

OD:relative 20° central
scotoma

OS:absolute 20-30° central
scotoma

Normal PVF on both eyes

124 μV/173 μV
56 μV/60 μV
46 μV/56 μV

III:1 F 32 Nystagmus
No

photophobia
No night
blindness

44 20/100
20/100

Severe macular atrophy
Rare bone spicule-
shaped pigment

deposits

Absolute 30° central
scotoma and normal PVF

on both eyes

48 μV/35 μV
44 μV/42 μV
32 μV/41 μV

III:2 M None 38 20/25
20/20

Normal Normal 253 μV/275 μV
30 μV/41 μV
70 μV/84 μV

III:9 F 35 Nystagmus
Night

blindness
Photophobia

45 20/25
20/25

Mild attenuation of
retinal vessels

Normal 130 μV/121 μV
34 μV/46 μV
41 μV/40 μV

III:10 M Early
childhood

Night
blindness

Mild
photophobia

38 20/32
20/32

Posterior pole atrophy
Mild attenuation of

retinal vessels

Absolute 10° central
scotoma and normal PVF

on both eyes

157 μV/160 μV
51 μV/45 μV
88 μV/77 μV

IV:1 M Photophobia 1 NA Mild attenuation of
retinal vessels.

Abnormal pigmentation
of the macular area.

NA NA

IV:4 M No
photophobia
No night
blindness

11 20/32
20/50

Posterior pole atrophy
Attenuated retinal

vessels

Normal NA/139 μV
NA/24 μV
NA/66 μV

IV:10 M Early
childhood

Nystagmus
Photophobia
No night
blindness

19 20/200
20/200

Moderate pallor of the
optic discs, and macular

atrophy

Relative 20° central
scotoma and normal PVF

on both eyes

91 μV/89 μV
20 μV/13 μV
39 μV/42 μV

PVF = Peripheral Visual Field

OD/OS = oculus dexter/oculus sinister

NA = Not available

Normal value ranges are:

Scotopic dim blue: 160 μV - 250 μV

Photopic single white: 70 μV - 150 μV

Light adapted 30-Hz flickers: > 110 μV

Figure 2 Fundus photographs of the patient III:1. at 47 years of age showing area of macular atrophy, rare pigment deposits and
attenuation of retinal vessels.
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recombination event between markers D2S142 and
D2S306 in affected patient IV:9 and distal boundary by
the recombination event between markers D2S117 and
D2S325 in healthy individual III:7 (Figure 3). Using
Superlink software, we found a maximum LOD score of
2.86 at θ = 0 for the marker D2S118, defining a new

locus named CORD12. The markers D2S142, D2S325,
D2S2361 and D2S126, outside the locus, gave negative
LOD scores (Table 2).
The CORD12 41.3-Mb interval contains 280 genes.

None of them were previously reported in adCRD or
adRP. However the interval does contain two previously

Figure 3 Physical map of the linked region 2q24.2-2q33.1. The microsatellite markers are shown on the left part of the locus. The 3
analyzed candidate genes and the 2 SNPs which delimit the locus are indicated on the right.
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described autosomal recessive RP genes, namely CERKL
and BBS5, which cause autosomal recessive RP and Bar-
det-Biedl syndrome, respectively [14,15]. All exons and
flanking intron regions were sequenced but no mutation
was found. Within the CORD12 locus, three other can-
didate genes were also sequenced. KLHL23 has strong
similarities with the recently described gene KLHL7
responsible for adRP [16]. NEUROD1 regulates develop-
ment and maintenance in the visual system [17]. SF3B1
is a splicing factor [18]. Other essential components of
the spliceosome, PRPF31, PRPF3, PRPF8, PAP1 and
SNRNP200, have been associated with adRP [19-22]. No
disease causing mutations were detected in KLHL7,
NEUROD1 and SF3B1.

Discussion
In this study, a novel locus, CORD12, for autosomal
dominant cone-rod dystrophy (adCRD) was identified
and localized to chromosome 2q24.2-2q33.1. With
CORD8 assigned to chromosome 1q23.1-q23.3, it is the
second CRD locus for which the causative gene remains
unknown [23]. To date, the total number of known
adCRD genes and loci, including CORD12, is eleven.
A maximum two-point LOD score of 2.86 at θ = 0 for

the marker D2S118, close to theoretical significance,
was obtained. The common haplotype for affected
patients in the family was flanked by SNPs between
rs174240 and rs4619591, which defined the 41.3-Mb
CORD12 locus. Two other retinal dystrophy loci are
mapped on chromosome 2. RP54, a 19.98-Mb autosomal
recessive RP interval flanked by D2S149 and D2S367 on
chromosome 2p22.3-p24.1[24] and RP28, a 14-Mb auto-
somal recessive RP interval flanked by D2S1337 and
D2S286 on chromosome 2p11-p15 [25,26]. The causa-
tive genes have recently been reported for both regions
in September 2010, respectively ZNF513[27] for RP54
and FAM161A for RP28 [28,29]. A third gene,
C2ORF71, was identified earlier this year next to
ZNF513, by homozygosity mapping in two independent

studies in an 8-Mb locus on chromosome 2p24.1-p23.1
and in a 6.8-Mb locus on chromosome 2p23.1-p24.1
[30,31]. None of these 3 regions overlap with CORD12.
The CORD12 41.3-Mb interval contains 280 annotated

genes. We sequenced five possible candidate genes.
CERKL and BBS5 which cause autosomal recessive RP
and Bardet-Biedl syndrome, respectively,[14,15]KLHL23,
which has strong similarities with the recently described
gene KLHL7 responsible for adRP,[16]NEUROD1 which
regulates development and maintenance in the visual
system[17] and the splicing factor SF3B1[18]. No muta-
tion was found in the coding region and splice sites
junctions, indicating that these genes do not cause
CORD12. However, mutations in other parts of the gene
cannot be excluded. Indeed, a single-base substitution in
dominant retinitis pigmentosa disease-causing gene,
PRPF31, located deep within intron 13 was recently
identified [32]. No other obvious candidate genes have
been identified in CORD12 based on tissue expression
pattern and function of gene products similar to known
CRD genes. The comparison with additional families
with cone-rod dystrophy showing linkage to this locus
will be necessary to narrow the interval and to help the
identification of a novel gene.

Conclusions
In summary, we report on the identification of a novel
locus for adCRD in chromosome 2q24.2-2q33. Identifi-
cation of the disease causing gene in the interval will
increase our understanding of the causes of cone-rod
dystrophy.
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