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Reassessing the role of mitochondrial DNA
mutations in autism spectrum disorder
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Abstract

Background: There is increasing evidence that impairment of mitochondrial energy metabolism plays an
important role in the pathophysiology of autism spectrum disorders (ASD; OMIM number: 209850). A significant
proportion of ASD cases display biochemical alterations suggestive of mitochondrial dysfunction and several
studies have reported that mutations in the mitochondrial DNA (mtDNA) molecule could be involved in the
disease phenotype.

Methods: We analysed a cohort of 148 patients with idiopathic ASD for a number of mutations proposed in the
literature as pathogenic in ASD. We also carried out a case control association study for the most common
European haplogroups (hgs) and their diagnostic single nucleotide polymorphisms (SNPs) by comparing cases with
753 healthy and ethnically matched controls.

Results: We did not find statistical support for an association between mtDNA mutations or polymorphisms and
ASD.

Conclusions: Our results are compatible with the idea that mtDNA mutations are not a relevant cause of ASD and
the frequent observation of concomitant mitochondrial dysfunction and ASD could be due to nuclear factors
influencing mitochondrion functions or to a more complex interplay between the nucleus and the mitochondrion/
mtDNA.

Background
Autism/autistic spectrum disorders (ASD) are complex
neurodevelopmental conditions affecting approximately
one in 150 children. They are characterized by a distur-
bance in communication skills and reciprocal social
interaction, along with restrictive and repetitive beha-
viours. There is increasing evidence that ASD have an
important genetic component with aetiological heteroge-
neity, including association with several metabolic disor-
ders [1,2]. Rare mutations in a few genes, copy number
variants (CNVs) disrupting functional pathways and
linkage or association to a number of different loci can
account for the genetic aetiology or liability to ASD in
up to 20% of cases [1,3-6].

Recent studies have also suggested that impairment of
mitochondrial energy metabolism plays a role in the
aetiology of ASD [7-9]. The study by Oliveira et al. [2]
found that 7% of children in a population-based survey
of school-age children with ASD met the criteria for
mitochondrial respiratory chain disorders, and that they
were also clinically indistinguishable from other children
with ASD. This already recognized feature of ASD has
lead several researchers to analyse mutations of the
mtDNA as potential risk factors in ASD. Thus, Graf
et al. [10] reported a family with a heterogeneous group
of neurological disorders associated with the mtDNA
8363G > A transfer ribonucleic acid (RNA)Lys mutation;
the phenotype of one child in the family (heteroplasmic
for this mutation) was consistent with ASD; however,
there was not a solid reason to consider this mutation
as responsible for ASD in that patient. Pons et al. [11]
explored the association of mtDNA mutations with
autistic spectrum disorders, with special emphasis on
mutation A3243G and mtDNA depletion. These authors
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reported two ASD patients bearing the 3243A > G
mutation located in the mtDNA tRNALeu(UUR) gene.
This mutation typically causes mitochondrial encephalo-
pathy with lactic acidosis and stroke-like episodes
(MELAS) and has also been associated with develop-
mental delay and seizures and maternally inherited pro-
gressive external ophthalmoplegia [11]. According to
Pons et al. [11], ASD with or without additional neuro-
logical features can be an early presentation of the
A3243G mutation and can be a prominent clinical man-
ifestation of mtDNA depletion.
There are evidences suggesting that inherited mtDNA

sequence variants also have a subtle influence on
respiratory chain activity during a critical stage of neu-
rodevelopment which is highly energy dependent; there-
fore, these variants could contribute to the complex
aetiology of neurodevelopmental disorders such as ASD.
Thus, with this hypothesis in mind, Weissman et al. [12]
analyzed selected mtDNA mutations in 25 ASD patients
with mitochondrial disorders. The authors detected the
following mutations: 3397A > G and 4295A > G (both
regarded as variants of probable pathogenicity), and
3394T > C, 10394C > T, 11809T > C and 11984T > C
(regarded as variants of unclear pathogenicity) (see
Table four in Weissman et al. [12]). According to the
authors “Each DNA sequence variant was evaluated for
pathogenicity by a search of the MITOMAP, and mtDB-
Human Mitochondrial Genome databases, PubMed, and
compendia of mtDNA mutations including guidelines for
determination of pathogenicity“. It is not clear, however,
whether these mutations can be regarded as pathogenic.
For instance, the scoring system proposed by Mitchell
et al. [13] gives the 3397A > G mutation a low score (5
out of 40), while its ‘pathogenic’ status in MITOMAP is
regarded as provisional. Phylogenetic considerations do
not favour its disease status [14-16]: this variant appears
independently in at least 11unrelated phylogenetic
branches in apparently healthy individuals (see for
instance http://www.genpat.uu.se/mtDB/).
Kent et al. [17] investigated the most common

mtDNA variants defining the main European hap-
logroups hgs (clades of maternal lineages phylogeneti-
cally closely related) in ASD probands versus two
healthy control groups. Their results showed no evi-
dence of an association between mtDNA hg and ASD.
Therefore there is a certain amount of evidence that

seems to suggest a role of mtDNA variants in ASD;
however, this evidence is weak and/or has not been
replicated yet in different independent cohorts of
patients. The main aim of the present work is to explore
the potential association of mtDNA mutations and well-
known polymorphisms with both control and coding
regions, and/or the hg background in patients ascer-
tained for ASD.

Methods
Patients
The characteristics of a subset of the patients used in
the present study are described in Cuscó et al. [18].
Briefly, a total of 148 Spanish patients (88 children fol-
lowed in the neurology clinic and 60 institutionalized
adults) with a confirmed diagnosis of one of the cate-
gories of ASD listed in the Diagnosis and Statistical
Manual of Mental Diseases (DSM-IV) were included in
the study. All patients were studied using the Autism
Diagnostic Interview-Revised (ADI-R) instrument to
define a specific category of ASD and the Wechsler
Intelligence Scale for Children (WISC) or the Wechsler
Adult Intelligence Scale (WAIS), allowing us to measure
general, verbal and performance IQ, as well as analysis
of multiple factorial components of cognitive function-
ing. The Leiter International Performance Scale-Revised
(Leiter-R) and the Raven Progressive Matrices (RPM)
were used for non-verbal patients. All patients had an
extensive evaluation by neurologists and clinical geneti-
cists along with an intensive laboratory workup includ-
ing standard karyotyping, fragile-X molecular testing
and subtelomeric and targeted Multiplex Ligation-
Dependent Probe amplification (MLPA) assays (home-
made panel designed to detect genomic duplications/
deletions of specific regions associated with ASD and
mental retardation: 1p36, 1q21.1, 2q37, 7q11.23,
15q11.2, 15q13.3, 16p11.2, 17p11.2, 22q11.2 and
22q13.3), molecular karyotyping by microarray compara-
tive genomic hybridization in 2/3 of cases, as well as
metabolic and brain imaging studies in cases where
clinically indicated. Individuals with genetic or structural
anomalies potentially causative of ASD were excluded
from the study. Table 1 summarizes some of the medi-
cal and demographic features of the final 148 idiopathic
ASD patients in the present study.

Control group
Two different control group samples were used in the
present study. A control group of DNA samples from
137 (population control) individuals matched for popu-
lation ancestry (Spanish anonymous blood donors) were
collected and analysed for the presumed pathogenic
mutations. The second control group, referred as CG2,
as used in Salas et al. [19], consisted of 616 healthy
Spanish individuals. The two control groups were com-
bined (n = 753) for the case-control association study
involving the polymorphisms which define the main
European hgs.

DNA extraction
Genomic DNA was extracted from blood samples using
a salting-out method and employing the Puregene DNA
Purification Kit (Gentra Systems; Minneapolis; USA).

Álvarez-Iglesias et al. BMC Medical Genetics 2011, 12:50
http://www.biomedcentral.com/1471-2350/12/50

Page 2 of 7

http://www.genpat.uu.se/mtDB/


Ethical approval
All subjects participated after written informed consent
was obtained from their families or other legal care-
givers. The DNA extracts were submitted to the labora-
tory in Santiago de Compostela for genotyping. In
addition, this study was approved by the Ethical com-
mittee of the University of Santiago de Compostela and
conformed to the Spanish Law for Biomedical Research
(Law 14/2007- 3rd July).

Automatic sequencing
The mtDNA hypervariable region I (HVS-I) segment
was sequenced in forward and reverse directions and
were previously reported in Álvarez-Iglesias et al. [20].

Genotyping of mtDNA variants
The following 25 well-known pathogenic mutations in
mitochondrial disorders were genotyped in all of the
patients: 3243A > G, 3460G > A, 3697G > A, 3946G > A,
3949T > C, 7445A > G, 7445A > C, 8993T > G, 8993T >
C, 9176T > C, 9176T > G, 10158T > C, 10191T > C,
10663T > C, 11777C > A, 11778G > A, 11832G > A,
12706T > C, 13513G > A, 13514A > G, 14459G > A,
14482C > A, 14482C > G, 14484T > C, and 14487T > C.
Genotyping was carried out using the minisequencing
assay reported in Álvarez-Iglesias et al. [21].
In addition, the six mtDNA mutations reported by

Weissman et al. [12] as being probable (3397A > G,
4295A > G) or unclear (3394T > C, 10394C > T, 11809T
> C and 11984T > C) pathogenic mutations were also gen-
otyped (see their Table four). A new minisequencing assay
was designed ad hoc, following the methodology reported
before [21,22].

The hg status of several mtDNA profiles cannot be
inferred solely from control region data. We therefore
genotyped the mtSNPs defining the main branches of
the European mtDNA phylogeny, as done in the study
by Quintáns et al. [23]. These polymorphisms were used
for a case-control association study.

Association study
A case-control association study was carried out
between ASD patients (n = 148) and controls (n = 753)
for hg status, and individually for each mtSNP. Firstly,
allele frequencies between cases and controls were com-
pared in order to assess individual mtSNP associations
using a one degree of freedom chi-square test (or Fish-
er’s exact test for cell counts below five). A nominal
value of a = 0.05 was selected to assess the significance
of the association. Secondly, these same statistical tests
were used to carry out association analyses for hgs in
cases and controls by comparing the frequency of each
hg versus the other hgs aggregated. A permutation test
was employed to address the issue of multiple testing
(see footnote of Table 2).
The statistical analyses were carried out using the sta-

tistical packages Stata v.8 (http://www.stata.com/) and R
(http://www.r-project.org/).
Quanto software [24] was used for power calculations.

See Salas et al. [19] for some caveats.

Results
Analysis of mtDNA mutations in ASD patients
Additional file 1: Table S1 shows the mtDNA control
region sequences and the minisequencing results of
patients and a control group which consist of 137 healthy
individuals (see Materials and methods). All of these indi-
viduals and a second Spanish control group consisting of
616 people were genotyped for a set of mtSNPs diagnos-
tic of the main mtDNA European hgs. All of this infor-
mation put together indicated that the patients were very
representative of the frequency pattern of a typical Span-
ish population [20,25]. Haplogroup H was the most com-
mon in the cases (40%) and controls (44%), and H1 was
its most prevalent sub-lineage (16% in the cases and 19%
in the controls). Other well-known hgs were present,
such as U (where K is nested phylogenetically), J, T, V
and W. However, a few non-European lineages were
observed in our patients. Although there were not coding
region SNPs to assist hg classification, some of these
non-European mtDNAs can be clearly allocated to typical
East Asian lineages. However, given the fact that immi-
gration from South America to Spanish cosmopolitan
cities (such as Barcelona) significantly increased during
the last decade, it is highly probably that these Asian
lineages belonged to Native American branches of
the Asian phylogeny, i.e. hg A2, B2, C1 and D1 [26-28].

Table 1 Medical history and demographic data of ASD
patients

Adult cohort
n = 60

Child cohort
n = 88

Sex (M/F ratio) 2.3 4.5

Age (Mean ± SD; years) 42.8 ± 8 10.2 ± 4.2

Ethnicity (%)

Western Europeans1 60 (100%) 81 (92%)

Other ethnicities - 7 (8%)

Epilepsy 23 (38.3%) 9 (10.2%)

Dysmorphism2 22 (36.6%) 6 (6.8%)

Mild mitochondrial dysfunction23 1/9 (11%) 2/26 (7.7%)
1Western Europeans refers to people born mainly in Catalonia (northeast
Spain), but some are from other Spanish locations;
2All patients were examined by at least two clinical geneticists. Body and
facial measurements were compared with normal ranges for age.
Microcephaly or macrocephaly were defined by measures of the
occipitofrontal head circumference (OFC) below the 3rd centile or above 97th

centile, respectively. In this study we classified the patients as “dysmorphic” if
they had three minor anomalies or more, abnormal growth or OFC
parameters, or at least one major malformation.
3Slight elevation of the lactic acid in blood or urine in single or repeated
sampling.
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In addition, a few individuals undoubtedly carried typical
sub-Saharan lineages belonging to different L-hgs (Addi-
tional file 1: Table S1) [29,30].
In addition, a total of 25 well-known pathogenic mtDNA

mutations were minisequenced in all patients and 137
controls. All patients were carriers of non-pathogenic
wild-type variants. We also genotyped the six mutations
reported in Weissman et al. [12] as being of probable
pathogenicity or of uncertain pathogenic significance; only
3397A > G was observed in one patient (AU010), while
3394T > C was identified in two healthy controls. It is
important to note that AU010 did not suffer any mito-
chondrial disorder. Given the fact that the pathogenic sta-
tus of these variants is debatable, it was not surprising to
detect similar frequencies in cases and controls.

Case-control association study
A case-control association study was carried out for 148
patients and 753 controls. The mtSNPs genotyped

represent well-known branches of the West European
mtDNA phylogeny. Pearson’s chi-square or Fisher’s exact
tests were used to assess mtSNP associations. The best P-
value (Pearson’s c2 test, nominal P-value = 0.028) was
found for mtSNP 12705C > T, which lead from macro-hg
N to R; this mtSNP apparently increases the risk of suf-
fering from ASD as indicated by the OR value (OR =
1.82; 95% CI = 1.06-3.13); however, this significance was
not maintained after correcting for multiple hypotheses
using a permutation test procedure (adjusted P-value =
0.315) (Table 2), as done in previous studies [19,31].
The association test was only carried out on the most fre-

quent hgs in order to increase the probability of detecting
any association. The frequency of mtSNPs and hgs in Iberia
is already known from empirical population studies [20].
The a priori power to detect odds ratios as low as two for
mtSNPs and hgs with frequencies higher than 20% was
about 96%; whereas a statistical power of 80% and OR = 1.5
can only be obtained for the most frequent mtSNPs or hgs.

Table 2 Pearson’s chi-square test for cases versus controls of SNPs and most frequent hgs

rCRS ref.a MAb MAFCA
c MAFCO

c CHI2 Exact P-value Adjusted P-valued OR (95% CI)e

3010G > A G A 0.24 0.27 0.557 0.455 1 0.85 (0.56-1.29)

3915G > A G A 0.02 0.04 0.874 0.350 0.995 0.57 (0.17-1.89)

3992C > T C T 0.00 0.01 1.320 0.251 0.979 -

4216T > C T C 0.13 0.16 0.939 0.333 0.993 0.77 (0.46-1-30)

4336T > C T C 0.04 0.04 0.047 0.828 1 1.11 (0.45-2.72)

4529A > T A T 0.01 0.01 0.182 0.669 1 0.64 (0.08-5.13)

4580G > A G A 0.06 0.03 1.620 0.203 0.941 1.69 (0.75-3.82)

4769A > G A A 0.02 0.02 0.060 0.799 1 1.17 (0.34-4.04)

4793A > C A G 0.00 0.01 1.166 0.280 0.987 -

6776T > C T C 0.04 0.05 0.577 0.448 1 0.69 (0.27-1.79)

7028C > T C C 0.40 0.44 0.683 0.409 0.999 1.16 (0.81-1.67)

10398A > G A G 0.15 0.20 2.010 0.156 0.902 0.70 (0.43-1.15)

10400C > T C T 0.02 0.01 1.023 0.312 0.991 1.97 (0.52-7.52)

10463T > C T C 0.09 0.09 0.001 0.982 1 1.01 (0.53-1.92)

10873T > C T C 0.06 0.04 1.609 0.205 0.951 0.61 (0.28-1.32)

12308A > G A G 0.19 0.23 1.270 0.260 0.982 0.77 (0.49-1.21)

12705C > T C T 0.14 0.08 4.857 0.028 0.315 1.82 (1.06-3.13)

13966A > G A G 0.02 0.02 0.001 0.972 1 1.02 (0.29-3.58)

14766C > T C T 0.47 0.49 0.242 0.622 1 0.91 (0.64-1.31)

H - - 0.40 0.44 0.791 0.374 0.999 0.85 (0.59-1.22)

H1 - - 0.16 0.19 0.689 0.406 0.999 1.22 (0.76-1.96)

HV - - 0.52 0.50 0.121 0.728 1 1.06 (0.75-1.51)

U - - 0.19 0.23 1.248 0.264 0.983 1.29 (0.83-2.01)

J - - 0.03 0.08 4.411 0.036 0.390 2.61 (1.03-6.61)

T - - 0.09 0.08 0.077 0.782 1 0.92 (0.49-1.71)

JT - - 0.12 0.16 1.727 0.189 0.941 1.42 (0.84-2.41)

rCRS = revised Cambridge Reference Sequence; MA = minor allele; MAF = minimum allele frequency.
arCRS: allele in the revised Cambridge Reference Sequence (rCRS)[41];
bMA: minor allele;
cMAF: minimum allele frequency computed on cases (MAFCA) and control (MAFCO) individuals;
dAdjusted P-value: adjustment of chi-square P-values was carried out with a permutation-based approach; number of permutations = 20,000;
eOR (95%CI): ORs were computed with the rCRS allele as a reference.
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Discussion
The brain is strongly dependent on the ATP production
of the cell energy-producing organelle, the mitochon-
drion. Therefore, adequate mitochondrial metabolism is
essential for normal brain functions. There is a large
body of evidence involving mitochondrial dysfunctions
in ASD [6,32,33]. While some evidence points to candi-
date nuclear DNA (nDNA) loci influencing mitochon-
drial functions [2,34,35], other evidence seems to imply
that mtDNA mutations are potential causes of ASD
[11]. Although the implication of nDNA factors has
found relatively strong support, the presumable role of
the mtDNA genome is still weak. The present study
aimed to provide more evidence to support the role of
mtDNA mutations or polymorphisms in ASD by screen-
ing one of the largest cohort of patients analysed to
date. We tried to screen the mtDNA of these patients
for a wide spectrum of mutations and polymorphisms in
order to explore the presumable roles of high pene-
trance mtDNA mutations or low penetrance common
polymorphisms in ASD.
We targeted 25 well-known high penetrance patho-

genic mutations in the mtDNA genome. All of these
mutations are commonly responsible for a wide spec-
trum of mitochondrion diseases. We did not observe
any of these mutations, either in homoplasmic or het-
eroplasmic conditions, in the patients or controls ana-
lysed in the present study. It is therefore unlikely that
well-known pathogenic mutations are responsible for a
significant proportion of ASD.
In addition, a set of six other mutations regarded as

unclear or probable pathogenic by Weissman et al. [12]
were also targeted in our patients. We did not observe
any of these mutations in our patients or in a sample of
healthy controls, with only anecdotic exceptions. As
inferred from the complete genome sequences available
in GenBank and the literature, several of these muta-
tions are likely to be rare variants that normally charac-
terize mtDNA genomes in populations or even in some
minor hgs (e.g. 10394C > T is the unique diagnostic site
for H16, [20,36]). The fact that these variants are non-
synonymous or highly conserved in comparisons among
species does not guarantee their disease status [19].
Many of these variations are normally located at the tips
of the phylogenies in the mtDNA tree (see e.g. http://
www.phylotree.org), although their rarity is often inter-
preted as indicative of their pathogenic condition by
many authors without any solid evidence [14,15,37]. The
mere appearance of a mutation in MITOMAP reporting
it as pathogenic has been over-interpreted [16]. The
results of the present article indicate that it is unlikely
that these mutations play an important role in ASD.
We also carried out a case-control association study in

ASD patients and we could not find any evidence

relating common polymorphisms to ASD. Although we
did not detect a statistical association between cases and
controls, it is important to be aware of the presence of
non-European mtDNA lineages in cohorts of patients
and controls because these haplotypes could provide the
basis for a false positive finding of association (due to
population stratification). Therefore, the mtDNA hg
background as analysed in the present study does not
seem to be a risk or protection factor in ASD. A type II
error due to a lack of statistical power cannot be fully
rule out, though this possibility is more unlikely for the
most frequent mtSNPs and hgs. Analysis of entire
mtDNA genomes could also provide new insights about
the potential role (if any) of other rare variants; how-
ever, very large sample sizes would be necessary to
achieve an suitable statistical power. Next-Generation
Sequencing (NGS) could perhaps bring the opportunity
for large cohort of samples to be analyzed for entire
mtDNA genomes; unfortunately, the few recent
attempts of NGS mtDNA genomes do not seem to hold
the necessary quality standards (Bandelt and Salas: Cur-
rent Next Generation Sequencing technology may not
meet forensic standards, submitted) when evaluated
under a phylogenetic perspective [38,39]. The role of
mtDNA gene dosage in ASD as very recently assessed
by Giulivi et al. [33] would also be a good target for
future replication. Therefore, although previous findings
are in agreement with our results [17], we consider that
further studies are needed in order to definitely rule out
any role of mtDNA hgs in ASD.
As reviewed by Palmieri and Persico [32], regarding

ASD, oxidative phosphorylation (OXPHOS) in the mito-
chondrion requires at least 80 proteins, of which only
13 are encoded by the mtDNA, while mitochondrial
functioning has been estimated to need the participation
of approximately 1500 nuclear genes [40]. Any of these
nuclear genes or copy number variations (CNVs) could
explain the mitochondrial defects observed in a small
minority of ASD patients [40].

Conclusions
Although it is widely accepted that some forms of ASD
appear concomitantly with the impairment of mitochon-
drial energy metabolism, there are reasons to believe
that the cause of these mitochondrial disorders does not
systematically rest on mutations or variants in the
mtDNA molecule. Pathogenic mtDNA mutations have
been reported in ASD patients, but this seems to be the
exception rather than the rule. It is more likely that the
real causes of mitochondrial deficiencies in some ASD
cases are due to the intervention of several nuclear fac-
tors acting alone (additively or epistatically) or through
a complex interplay with mtDNA variants. For the time
being, while the cause for mitochondrion dysfunction in

Álvarez-Iglesias et al. BMC Medical Genetics 2011, 12:50
http://www.biomedcentral.com/1471-2350/12/50

Page 5 of 7

http://www.phylotree.org
http://www.phylotree.org


ASD remains unclear, there is no reason to indicate sys-
tematic screening for mtDNA mutations in ASD
patients unless a mitochondrion disorder is suggested by
a clear phenotype.

Additional material

Additional file 1: Table S1. MtDNA control sequences and coding
region mtSNP genotypes. Mutations are referred to with respect to the
rCRS. Transitions are omitted while transversions are indicated as a suffix.
A “+” indicates an insertion whereas “del” refers to a deletion. See text
for hg assignation criteria.
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