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The PTPN22 C1858T gene variant is associated
with proinsulin in new-onset type 1 diabetes
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Abstract

Background: The protein tyrosine phosphatase nonreceptor type 2 (PTPN22) has been established as a type 1
diabetes susceptibility gene. A recent study found the C1858T variant of this gene to be associated with lower
residual fasting C-peptide levels and poorer glycemic control in patients with type 1 diabetes. We investigated the
association of the C1858T variant with residual beta-cell function (as assessed by stimulated C-peptide, proinsulin
and insulin dose-adjusted HbA1c), glycemic control, daily insulin requirements, diabetic ketoacidosis (DKA) and
diabetes-related autoantibodies (IA-2A, GADA, ICA, ZnT8Ab) in children during the first year after diagnosis of type
1 diabetes.

Methods: The C1858T variant was genotyped in an international cohort of children (n = 257 patients) with newly
diagnosed type 1 diabetes during 12 months after onset. We investigated the association of this variant with
liquid-meal stimulated beta-cell function (proinsulin and C-peptide) and antibody status 1, 6 and 12 months after
onset. In addition HbA1c and daily insulin requirements were determined 1, 3, 6, 9 and 12 months after diagnosis.
DKA was defined at disease onset.

Results: A repeated measurement model of all time points showed the stimulated proinsulin level is significantly
higher (22%, p = 0.03) for the T allele carriers the first year after onset. We also found a significant positive
association between proinsulin and IA levels (est.: 1.12, p = 0.002), which did not influence the association between
PTPN22 and proinsulin (est.: 1.28, p = 0.03).

Conclusions: The T allele of the C1858T variant is positively associated with proinsulin levels during the first
12 months in newly diagnosed type 1 diabetes children.

Background
Type 1 diabetes is a T-cell mediated autoimmune disease
leading to beta-cell destruction and loss of insulin secre-
tion resulting in severe hyperglycemia. Type 1 diabetes
results from a complex interaction between environmen-
tal and genetic factors. Several genes have been identified
as causative in the development of type 1 diabetes [1,2]
and some of these genes as well as other genes are shown
to exert an impact on the disease progression from onset
in newly diagnosed type 1 diabetes children [3-6]. In a
number of studies, the non-synonymous variant,
C1858T, of the PTPN22 gene has been associated with

development of type 1 diabetes as well as other auto-
immune diseases [7-11]. Recently, this PTPN22 suscept-
ibility variant was found to be significantly associated to
lower fasting C-peptide levels, poorer glycemic control in
recent onset type 1 diabetes subjects [6] and to higher
GADA in type 1 diabetes patients with long disease dura-
tion [12]. The objective of the current longitudinal inves-
tigation was therefore to evaluate the impact of PTPN22
on disease progression as assessed by liquid meal-stimu-
lated C-peptide and proinsulin, HbA1c, daily insulin dose,
insulin dose-adjusted HbA1c (IDAA1C) [13], antibodies
to the protein tyrosine phosphatase related IA-2 mole-
cule (IA-2A), islet cell antibodies (ICA), insulin antibo-
dies (IA), glutamic acid decarboxylase antibodies
(GADA) and zinc transporter-8 antibodies (ZnT8Ab) in
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the Hvidoere Study Group on Childhood Diabetes (HSG)
remission phase cohort [14].

Methods
The study population representing 15 countries in Eur-
ope and Japan was collected through HSG and is
described in Mortensen et al 2009 [14]. The cohort
included 126 girls and 131 boys, 84% of the patients
were white Caucasian, and age at clinical diagnosis was
9.1 ± 3.7 years (mean ± SEM), BMI 16.5 ± 3.2 kg/m2,
and HbA1c 11.2 ± 2.1% at the time of diagnosis. DKA
(HCO3 ≤ 15 mmol/l and/or pH ≤ 7.30) was present in
20.7% of the cases at the time of diagnosis.
Exclusion criteria were: suspected non-type 1 diabetes

(type 2 diabetes, maturity-onset diabetes of the young
(MODY) or secondary diabetes), decline of enrolment
into the study by patients or parents, and patients initi-
ally treated outside of the centres for more than 5 days.
There were no significant differences with respect to
gender distribution, age, anthropometric data, HbA1c at
diagnosis, ethnicity or family history of diabetes between
patients included and patients not included into the
study (data not shown). The diagnosis of type 1 diabetes
was according to the World Health Organization cri-
teria. The study was performed according to the criteria
of the Helsinki II Declaration and was approved by the
local ethic committee in each centre. All patients, their
parents or guardians gave informed consent.
In order to estimate the residual beta-cell function (C-

peptide and proinsulin) a liquid-meal Boost™-test (6
ml/kg (max: 360 ml, Mead Johnson, Evansville, IN,
USA; 237 ml = 8 FL OZ contains 33 g carbohydrate,
15 g protein and 6 g fat, a total of 240 kcal)) was carried
out at 1, 6 and 12 months (± 1 week) after diagnosis in
all 257 children with newly diagnosed type 1 diabetes.
HbA1c, IDAA1c, insulin regimen, HLA typing, antibo-
dies (except ZnT8Ab) and liquid-meal stimulated
C-peptide levels were analyzed centrally [14]. Liquid-
meal stimulated proinsulin was analysed by a sandwich
ELISA assay using two monoclonal antibodies. The
assay detects total proinsulin as well as the four meta-
bolites: split(32-33), des(31-329, split(65-66) and des
(64-65)-proinsulin. The detection limit is 0.3 pmol/l
and the interassay coefficients of variation are
<8.7%. This assay has no cross reactivity with insulin,
C-peptide, IGF-I and IGF-II. ZnT8Ab measurements
were done as described in [15]. C1858T genotyping
(rs2476601) was done using an in-house KASPar
system at KBioscience, UK.

Statistical Analyses
Stimulated C-peptide (logarithmic) and stimulated
proinsulin (logarithmic) at 1, 6, 12 months after diagno-
sis and HbA1c, daily insulin dose and IDAA1C at 1, 3, 6,

9, 12 months after diagnosis were analyzed as dependent
variables in two separate multiple regression repeated
measurements models with unstructured variance with
gender, age, genotype and IA as explanatory factors.
The assumption of constant effect of genotype was
checked by first allowing for interaction between geno-
type and disease duration. Results are given as the esti-
mated factor between the T allele carriers (CT and TT)
and the CC genotype. Autoantibodies were examined by
the non-parametric Wilcoxon test for single time points.
The relationship between IA and proinsulin was tested
by multiple regression analysis at each time point with
IA (logarithmic), age, gender and stimulated C-peptide
(logarithmic) as explanatory factors. There were no sta-
tistical differences between the variables according to
genotype groups whether the statistical analyses were
performed with or without the four Japanese patients.
P values below 0.05 were considered statistically
significant.

Results
The genotype distribution of the PTPN22 C1858T var-
iant among the 257 patients from the HSG [186 CC
(73%), 65 CT (25%), 6 TT (2%)] was in Hardy-Weinberg
equilibrium. The clinical characteristics according to
PTPN22 genotypes are presented in Table 1. There were
no significant genotype differences in clinical and demo-
graphic data at disease onset. Excluding the Japanese
patients from the following analyses did not change the
results.
When analyzing the effect of the PTPN22 gene variant

on the residual beta-cell function in a repeated measure-
ment model (including 1, 6 and 12 months) we did not
find an effect on the stimulated C-peptide levels the first
year after onset (est.: 1.018, p = 0.88) (Figure 1A).

Table 1 Clinical characteristics at onset in type 1 diabetes
subjects according to PTPN22 C1858T genotypes

The HSG cohort C1858T genotype

CC CT TT

Sex (male/female) 90/96 33/32 3/3

Age (yrs) 9.3 ± 0.3 8.8 ± 0.5 6.7 ± 1.1

Presences of DKA (+/-) (%) 22/78 13/87 17/83

BMI (kg/m2) 17.8 ± 0.2 18.0 ± 0.4 16.3 ± 0.6

HLA risk genes:
(Caucasian/Japanese = 253/4)

Low (%) 52/0.8 * 46 17

Moderate (%) 11/0.4 * 14 17

High (%) 37/0.4 * 40 67

Data are mean values ± SEM. HLA DRB1 high risk genotypes: DR 03/04 and DR
04/04; HLA DRB1 moderate risk genotypes: DR 03/03 and DR04/08; all other HLA
DRB1 genotypes were considered low risk. The HLA DRB1 genotypes for the 4
Japanese patients were: DR 01/09, DR 04/08, DR 09/09 and DR 04/09. These
were classified as HLA risk: low, low, moderate and high, respectively* [20].
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However, when analyzing the relation between proinsu-
lin and carriers of the C1858T variant we find CT and
TT carriers had significantly higher proinsulin (30%)
levels over the 12 month period compared to the CC
genotype group (est.: 1.30, p = 0.03) (Figure 1B). When
adjusting for the IA levels in this analysis, we found a
significant association between proinsulin and the IA
levels (est.: 1.12, p = 0.002), which, however, did not
influence the association between the PTPN22 gene var-
iant and proinsulin (est.: 1.28, p = 0.03). Furthermore,
the CT and TT genotype carriers had a borderline sig-
nificant higher proinsulin/C-peptide ratio in comparison
with the CC genotype carriers (est.: 1.25, p = 0.05).

There were no significant differences in the IDAA1C
levels among the PTPN22 carriers, an HbA1c and insu-
lin weighted indirect measure of the residual beta-cell
function [13]. Nor did we find any differences between
carriers of the PTPN22 variant and the glycemic control
(as assessed by HbA1c) or daily insulin dose.
Finally a significant association was observed between

carriers of the CT and TT genotype groups and high IA
levels at 12 months after onset (est.: 1.56, p = 0.05)
(Figure 2), while there were no significant difference in
the IA levels at 1 and 6 months. The prevalence of
ZnT8Ab was 68% 1 month after disease diagnosis (time
point nearest to disease onset) for either ZnT8RAb and/
or ZnT8WAb. There was no association between the
PTPN22 variant and the other diabetes-related autoanti-
bodies (ICA, IA-2A, GADA and ZnT8Ab), neither close
to onset or later during disease progression.

Discussion
The PTPN22 gene is shown in numerous studies to be
associated with the development of type 1 diabetes and
other autoimmune diseases. The gene encodes a lym-
phoid tyrosine phosphatase (LYP) which by dephosphor-
ylation of Src family kinases negatively regulates T cell
receptor (TCR) signalling. The current working hypoth-
esis suggest that the risk carrying allele, T1858, sup-
presses TCR signalling more efficiently during thymic
development resulting in survival of autoreactive T-cells
[16].
Bottini N and co-workers [16] suggested the use of

PTPN22 SNPs as a prognostic factor for disease severity
and variability in autoimmune diseases, but also
requested further studies taking this point under
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Figure 1 Stimulated C-peptide and proinsulin over time
according to PTPN22 genotypes. The association of stimulated C-
peptide (A.) and proinsulin (B.) level 1, 6 and 12 months after
disease onset by PTPN22 genotype (homozygous+heterozygous (CT
+TT) (n = 71) carriers of the variant versus wildtype (CC) (n = 186)).
Mean values (pmol/l) ± SEM.
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Figure 2 Insulin antibodies over time according to PTPN22
genotypes. Distribution of insulin antibodies (IA) by PTPN22
genotype ((CT+TT) (n = 71) carriers of the variant versus wildtype
(CC) (n = 186)) 12 months after disease onset. Mean values (pmol/l)
± SEM.
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investigation. One such study was recently reported in
120 new onset type 1 diabetes patients (from 5 to 36
years) [6]. The authors found an association between
the T allele of the C1858T variant (using a dominant
model) and low fasting C-peptide (as a surrogate marker
of residual beta-cell mass) and poorer glycemic control
(HbA1c) from onset and during 12 months follow-up.
The relationship between carriers of the T allele and
proinsulin was not investigated. The present study,
which was conducted in 257 children (from 2 to
16 years) (Table 1) with new onset type 1 diabetes, did not
find a direct correlation between stimulated C-peptide and
the PTPN22 variant (Figure 1A), but suggests an associa-
tion between carriers of the T allele and high proinsulin
throughout the first year after disease onset (Figure 1B). In
accordance with this, an increased proinsulin/C-peptide
ratio was evident in the T allele carriers. Previously, ele-
vated proinsulin and proinsulin/C-peptide ratio was found
in non-diabetic first-degree relatives positive for islets
autoantibodies to identify individuals with increased risk
of developing type 1 diabetes within 5 years [17]. Further-
more, elevated proinsulin levels were found to reflect an
impaired beta-cell function in type 2 diabetes patients
[18]. Thus, the increased proinsulin level and proinsulin/
C-peptide ratio might either be due to impaired proinsulin
processing or increased secretory demand on the beta-
cells resulting from either autoimmunity or hyperglycemia
induced residual beta-cell stress.
Circulating IA’s are known to change the metabolic

clearance rate of proinsulin through proinsulin binding
to IgG [19], correspondingly we found a significant posi-
tive association between proinsulin and IA levels, irre-
spective of genotypes (Table 2). This relation did not
affect the association between proinsulin and the
PTPN22 variant in the statistical analyses. There was a
tendency of higher IA levels among the T allele carriers
12 months after onset (Figure 2), pointing towards a
genuine association between IA and the PTPN22 var-
iant, independent of proinsulin. A plausible explanation
for these findings could be that PTPN22 1858T is
involved in two initially independent processes: first, the
severity of autoimmune destruction of beta-cells evi-
denced by its association with higher proinsulin, this
would be in accordance with the data reported by Pet-
rone et al. [6] and second, that PTPN22 1858T is also

involved in the antibody response to exogenous insulin
treatment. In our case these two processes converge
because of the effect that insulin antibodies have on the
metabolic clearance rate of proinsulin. Thus, carriers of
the PTPN22 1858T allele seem to have both a higher
proinsulin and a higher IA level during disease progres-
sion despite they are treated with comparable insulin
dose as CC carriers.
The discrepancies in significant/non-significant find-

ings on C-peptide levels between this study and the
study mentioned above [6] may relate to the use of fast-
ing contra stimulated C-peptide. In the fasting state the
differences between the genotype groups and C-peptide
are apparent while during liquid-meal stimulated condi-
tions the beta-cells are probably capable of compensat-
ing the hyperglycemia but with a rise in proinsulin
indicating the stressed residual beta-cell function.
Furthermore, the differences in the mean age between
the patients from the two studies (14.9 yrs vs 9.1 yrs,
Petrone et al vs. our study, respectively) might also
partly explain the different results. Younger children
have less residual beta-cell function as assessed by sti-
mulated C-peptide the first year after diagnosis com-
pared to older age groups [13]. GADA were not related
to the PTPN22 variant, supporting previous findings
that impact of this gene on the presence of GADA may
only be observed in patients with long disease duration
(> 10 years) [12].

Conclusion
Our results align with previous observations that
PTPN22 gene variant may be associated with changes
in residual beta-cell function and disease pathogenesis
during the first year after onset of type 1 diabetes.
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